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Genome-wide association study (GWAS) is a powerful approach to identify genomic

regions and genetic variants associated with phenotypes. However, only limited mutual

confirmation from different studies is available. We conducted a large-scale GWAS using

294,079 first-lactation Holstein cows and identified new additive and dominance effects

on five production traits, three fertility traits, and somatic cell score. Four chromosomes

had the most significant SNP effects on the five production traits, a Chr14 region

containing DGAT1 mostly had positive effects on fat yield and negative effects on milk

and protein yields, the 88.07–89.60Mb region of Chr06 with SLC4A4, GC, NPFFR2,

and ADAMTS3 for milk and protein yields, the 30.03–36.67Mb region of Chr20 with

C6 and GHR for milk yield, and the 88.19–88.88Mb region with ABCC9 as well as the

91.13–94.62Mb region of Chr05 with PLEKHA5, MGST1, SLC15A5, and EPS8 for fat

yield. For fertility traits, the SNP in GC of Chr06, and the SNPs in the 65.02–69.43Mb

region of Chr01 with COX17, ILDR1, and KALRN had the most significant effects for

daughter pregnancy rate and cow conception rate, whereas SNPs in AFF1 of Chr06, the

47.54–52.79Mb region of Chr07, TSPAN4 of Chr29, and NPAS1 of Chr18 had the most

significant effects for heifer conception rate. For somatic cell score, GC of Chr06 and

PRLR of Chr20 had the most significant effects. A small number of dominance effects

were detected for the production traits with far lower statistical significance than the

additive effects and for fertility traits with similar statistical significance as the additive

effects. Analysis of allelic effects revealed the presence of uni-allelic, asymmetric, and

symmetric SNP effects and found the previously reported DGAT1 antagonism was an

extreme antagonistic pleiotropy between fat yield and milk and protein yields among all

SNPs in this study.

Keywords: GWAS, dairy cattle, milk production, fertility, somatic cell score

INTRODUCTION

The discovery of quantitative trait loci (QTL) is an important step to identify and understand
genetic variants associated with economically important phenotypes, and genome-wide association
study (GWAS) has become a widely used approach for identifying QTL and genome regions
associated with phenotypes. GWAS in several dairy cattle breeds have reported a large number
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of QTL effects on dairy traits (Bolormaa et al., 2010; Pryce et al.,
2010, 2014; Cole et al., 2011; Guo et al., 2012; Ma et al., 2012;
Rothammer et al., 2013; Raven et al., 2014; Littlejohn et al., 2016;
Jiang et al., 2017; Sanchez et al., 2017; Bouwman et al., 2018;
Weller et al., 2018). However, the number of confirmed QTL
effects across studies is low (Ma et al., 2018; Weller et al., 2018),
and only limited understanding of the genetic mechanism of the
QTL effects is available. The DGAT1 gene was widely confirmed
to have the most significant effects for milk production (Grisart
et al., 2002; Spelman et al., 2002; Schennink et al., 2007; Cole et al.,
2011;Ma et al., 2012; Jiang et al., 2017), and previously was shown
to have antagonistic pleiotropy effects between fat yield and milk
and protein yields based on candidate causal variants (Thaller
et al., 2003) or causal alleles (da Silva et al., 2010). However, it was
unknownwhether theDGAT1 antagonismwas the strongest of its
kind on the genome or how far the antagonism extends around
DGAT1. To build consensus about QTL effects affecting dairy
traits and to understand the genetic mechanisms of significant
SNP effects, additional studies are needed. A powerful approach
to build consensus on QTL effects is the use of large samples for
GWAS (Bouwman et al., 2018; Dadaev et al., 2018; Gurevitch
et al., 2018; Nagel et al., 2018; Yengo et al., 2018). The U.S.
Holstein cattle have uniquely large sample sizes (VanRaden, 2016;
Wiggans et al., 2017) and provides an opportunity to identify
SNPs associated with dairy traits using GWAS. The purpose of
this study was to identify SNPs associated with nine dairy traits
using a large-scale GWAS combined with the analysis of allelic
effects in Holstein cattle to provide a large-sample perspective of
dairy QTL effects.

MATERIAL AND METHODS

Holstein Populations and Genotyping Data
The sample for GWAS analysis contained 294,079 first lactation
Holstein cows with phenotypic observations for five milk
production traits (milk, fat and protein yields, and fat and protein
percentages), three fertility traits (daughter pregnancy rate, cow
conception rate, and heifer conception rate), and somatic cell
score. Daughter pregnancy rate is the percentage of cows that
become pregnant during each 21-d period, and cow and heifer
conception rate each is defined as percentage pregnancy at each
service (Ma et al., 2018). The number of phenotypic observations
ranged from 294,079 for milk yield to 186,188 for cow conception
rate (Table S1). The 294,079 cows had SNP genotypes of 60,671
SNPS (60K) imputed from 18 SNP chips with 2,710 to 60,671
original SNPs (Table S2). The imputed 60K SNPs were from
the dairy genomic evaluation at the Council of Dairy Cattle
Breeding (CDCB) and the Animal Genomics and Improvement
Laboratory at U.S. Department of Agriculture (USDA). Of the
294,079 cows for the GWAS, 98.4% were born between 2006 and
2015 (Table S3).

GWAS Analysis
The GWAS analysis used two methods, an approximate
generalized least squares (AGLS) analysis, and a Bayesian linear
mixed model implemented by the BOLT-LMM program. The
BOLT-LMM method accounts for population stratification and

cryptic relatedness using “leave-one-chromosome-out” genomic
relationships, overcomes the computing difficulties of other
mixed model methods such as GCTA (Yang et al., 2011) and
EMMAX (Kang et al., 2010) that use SNP relationships for sample
stratification correction (Loh et al., 2015; Loh, 2018), and was able
to analyze a large human sample with ∼700,000 individuals for
GWAS (Yengo et al., 2018). However, BOLT-LMM tests additive
effects only. The AGLS method is original to this study with
capability to test both additive and dominance effects, estimate
additive, allelic and dominance effects, and estimate allele and
genotypic frequencies. Results in this study showed AGLS and
BOLT-LMM virtually identified the same sets of additive SNP
effects with only minor differences in effect rankings, indicating
that AGLS had similar efficiency as BOLT-LMM for sample
stratification correction. The main difference was that BOLT-
LMM had much smaller p-values and much larger effect sizes
than those of AGLS. As an extreme case, the most significant
SNP effect for fat percentage had a p-value of 3.7(10−10,871)
from BOLT-LMM or 6.2(10−5,150) from AGLS, and the effect
size from BOLT-LMM was 79% larger than that from AGLS. As
a result of the much smaller p-values from BOLT-LMM than
from AGLS, BOLT-LMM had 46% more significant additive
SNP effects than AGLS. Therefore, AGLS was more conservative
in declaring significance and likely was more realistic for the
estimated effect sizes than BOLT-LMM, with additional benefit of
testing dominance effects and estimating allelic and dominance
effects that were unavailable from BOLT-LMM.

The AGLS method combines the least squares (LS) tests
implemented by EPISNP1mpi (Ma et al., 2008; Weeks et al.,
2016) with the estimated breeding values from routine genetic
evaluation using the entire U.S. Holstein population. The
statistical model was

y = µI + Xgg + Za + e = Xb + Za + e (1)

where y= column vector of phenotypic deviation after removing
fixed non-genetic effects such as heard-year-season (termed as
“yield deviation” for any trait) using a standard procedure for
the CDCB/USDA genetic and genomic evaluation; µ = common
mean; I = identity matrix; g = (g11, g12, g22)′ = column vector
of genotypic values of the three SNP genotypes A1A1, A1A2, and
A2A2; Xg = model matrix of g; b = (µ, g′)′, X = (I, Xg); a =

column vector of additive polygenic values; Z = model matrix
of a = identity matrix if each individual has one observation;
and e = random residuals. The first and second moments of
Equation 1 are: E(y)=Xb, and var(y)=V=ZGZ′ +R=σ2aZAZ

′

+ σ2eI, where σ2a = additive variance, A = additive relationship
matrix, andσ2e = residual variance. The problem of estimating the
b vector in Equation 1 is the requirement of inverting theV if the
generalized least squares (GLS) equations are used, or inverting
the A matrix if the mixed model equations (MME) (Henderson,
1984) are used. However, both V and A cannot be inverted for
our sample size. The first approximation of the AGLS method is
to use existing estimates of a from routine genetic evaluation so
that inverting V or A is no longer required for estimating b. This
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approximation is based on the following results:

b̂ = (X′V−1X)
−
X′V−1y (2)

b̂ = (X′R−1X)
−
(X′R−1y− X′R−1Zâ) = (X′X)−X′(y− Zâ)

= (X′X)−X′y* (3)

where y∗ = y − Zâ, and where â = the best linear unbiased
prediction (BLUP) of a. Equation 2 is the GLS solution and
Equation 3 is the MME solution of b. These two equations yield

identical results and the b̂ from either equation is termed as
the best linear unbiased estimator (BLUE) (Henderson, 1984).
Equations 2, 3 have two important messages. First, the GLS
solution or BLUE of Equation 2 in fact has the same formula
as the LS solution of Equation 3 if the residual variance-
covariance matrix has the structure of R = σ2eI and the BLUP of
a (denoted by â) is removed from the phenotypic observations.
Second, the GLS solution or BLUE of Equation 2 in fact removes
â from the phenotypic observations as shown by the equivalence
between Equations 2 and 3 even though Equation 2 does not
show the removal of â explicitly. If â is known, the LS version
of BLUE given by Equation 3 is computationally efficient relative
to the GLS of Equation 2 requiring the V inverse, or the joint

MME solutions of b̂ and â requiring the A inverse. Therefore,
we used estimates of a (ã) from routine genetic evaluation as an
approximation of â in Equation 3, i.e.,

b̂ = (X′X)−X′(y− Zã) = (X′X)−X′y∗ (4)

where y∗ = y−Zã, and where ã= column vector of 2(PTA), PTA
= predicted transmission ability from routine genetic evaluation.
Equation 4 achieves the benefit of sample stratification correction
frommixed models without the computing difficulty of inverting
V or A, as shown by the nearly identical SNP effects detected
by both BOLT-LMM and AGLS. Moreover, the ã from routine
genetic evaluation in Equation 4 should be more accurate than
the â in Equation 3, because the sample size for ã generally
was much larger than the sample size of a GWAS study. For
example, the August 2017 Holstein genetic evaluation used
87,729,358 Holstein cows whereas our GWAS used 294,079 cows.
Consequently, the approximate ĝ in the b̂ vector of Equation 4

should be more accurate than the ĝ in the b̂ vector of Equation
3. The second approximation of the AGLS approach is the t-test
using the LS rather than the GLS formula of the t-statistic to
avoid using the V inverse in the GLS formula. The significance
tests for additive and dominance SNP effects used the t-tests
of the additive and dominance contrasts of the estimated SNP
genotypic values (Mao et al., 2007; Ma et al., 2012). The t-statistic
of the AGLS was calculated as:

tj =
|Lj|

√

var(Lj)
=

|sjĝ|

v
√

sj(X
′
X)−ggs

′

j

, j = a,d (5)

where Lj = additive or dominance contrast,
√

var(Lj)= standard
deviation of the additive or dominance contrast, sa = additive
contrast coefficients= (P11/p1,0.5P12(p2 − p1)/(p1p2), –P22/p2);

sd = dominance contrast coefficients = (−0.5, 1, −0.5); v2 =

(y− Xb̂)′(y− xb̂)/(n− k) = estimated residual variance; ĝ =

column vector of the AGLS estimates of the three SNP genotypic
effects of g11, g12, and g22 from Equation 4; (X

′
X)−gg = submatrix

of (X
′
X)− corresponding to ĝ; and where p1 = frequency of A1

allele, p2 = frequency of A2 allele of the SNP, P11 = frequency
of A1A1 genotype, P12 = frequency of A1A2 genotype, P22 =

frequency of A2A2 genotype, n = number of observations, and
k = rank of X. The formula of sa defined above allows Hardy-
Weinberg disequilibrium (Mao et al., 2007), and simplifies to (p1,
p2 − p1, –p2) under Hardy-Weinberg equilibrium.

In addition to being a computationally efficient method
for sample stratification correction for large samples, the
AGLS method implemented by EPSNPmpi (Ma et al., 2008;
Weeks et al., 2016) offers tests and estimates unavailable from
BOLT-LMM, including dominance test, estimates of allelic
and dominance effects, and estimates of allele and genotypic
frequencies of each SNP. Additive effects of each SNP were
estimated using three measures, the average effect of gene
substitution, allelic mean, and allelic effect of each allele based
on quantitative genetics definitions (Falconer and Mackay, 1996;
Mao et al., 2007; Da, 2015). The allelic mean (µi), the population
mean of all genotypic values of the SNP (µ), the allelic effect
(ai), and the average effect of gene substitution of the SNP
(α) are:

µ1 = P11.1g11+0.5P12.1g12 (6)

µ2 = 0.5P12.2g12+P22.2g22 (7)

µ=
∑2

i=1
piµi (8)

ai = µi −µ, i = 1, 2 (9)

α = La = saĝ= a1 − a2 = µ1 −µ2 (10)

where P11.1 = P11/p1, P12.1 = P12/p1, P12.2 = P12/p2, and
P22.2 = P22/p2. The additive effect measured by the average
effect of gene substitution of Equation 10 is the distance between
the two allelic means or effects of the same SNP, and is the
fundamental measure for detecting SNP additive effects as shown
by the t-statistic of Equation 5. The allelic effects defined by
Equation 9 provide an understanding of the effect size and
direction of each allele, but is not comparable across SNPs
because the allelic effect is affected by the genotypic mean of
the SNP defined by Equation 8. To compare allelic effects across
SNPs, we replaced the SNP genotypic mean (µ) in Equation 9
with the average of all SNP genotypic means (µall), i.e.,

ai = µi −µall i = 1, 2, (11)

Dominance effect of each SNP was estimated as the dominance
contrast in Equation 5, i.e.,

δ = Ld = d12 − (d11+d22)/2 = g12 − (g11 + g22)/2 (12)
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where dij = dominance deviation of the AiAj SNP genotype, and
gij = the AGLS estimates of SNP genotypic value from Equation
4, i, j= 1, 2.

The t-tests of additive and dominance effects of each SNP
as well as the estimation of each allelic effect and each
genotypic value of a SNP were implemented by EPISNPmpi (Ma
et al., 2008; Weeks et al., 2016). A limitation in EPISNPmpi
causes a p-value < 10−308 to be printed as “0”. For such p-
values, we used empirical log10(1/p) values as a power function
of the observed t-values based on the empirical formula of
log10(1/p) = 0.2416(t1.9713), and the empirical log10(1/p) values
had a 100% correlation with the observed log10(1/p) values
(Figure S1). The t-test of Equation 5 for additive effects accounts
for variations associated with allele frequencies and none of the
SNPs with rare alleles was among the most significant SNPs
for any trait in this study. Generally, the statistical significance
of additive effects represented by the t-value of Equation 5
decreases as the allele frequencies deviate further away from
equal allele frequencies. However, the allelic effects of Equations
9, 11 do not account for variations associated with allele
frequencies and many rare alleles with small frequencies had
large effects. Therefore, a minor allele frequency (MAF) of
0.05 was required for reporting SNP effect size and direction
and 57,067 SNPs satisfied this requirement. For 57,067 SNPs
and nine traits, the Bonferroni correction with 0.05 genome-
wide false positives is 10−7. Nearly all figures were produced
using SNPEVG2 in the SNPEVG package (Wang et al.,
2012). The SNP positions are those from the UMD 3.1 cattle
genome assembly.

RESULTS AND DISCUSSION

Overview of GWAS Results
The GWAS identified a large number of SNP effects exceeding
the statistical significance with the Bonferroni correction for
5% genome-wide false positives (p < 10−7), 61,062 SNP effects
from AGLS and 89,457 SNP effects from BOLT-LMM for the
nine dairy traits (Table S4). Majority of these SNPs effects,
58,207 of the 61,602 effects (95%) from AGLS or 84,072 of
the 89,457 effects (94%) from BOLT-LMM, were those for
the five milk production traits: milk, fat and protein yields,
and fat and protein percentages. The method of BOLT-LMM
(Loh et al., 2015; Loh, 2018) and the method of AGLS in
this study had virtually identical Manhattan plots of p-values
(Figure S2). These methods virtually identified the same set
of highly significant additive effects with minor differences in
the rankings of statistical significance (Tables 1–4) although the
differences in effect ranking between these two methods became
larger for less significant SNP effects (Table S5; Figure S3). For
the top 200 most significant effects, BOLT-LMM consistently
had larger effect sizes than the corresponding AGLS effect
size for the five production traits and somatic cell score, but
had similar effect sizes as AGLS for the three fertility traits
(Figure S3). The correlation between effect rankings of all
60,671 SNPs between these two methods was in the range 0.47
for heifer conception rate to 0.76 for fat percentage. BOLT-
LMM generally had much smaller p-values than AGLS. For

the extreme case of the most significant SNP effect for fat
percentage, the p-value was 3.7(10−10,871) from BOLT-LMM
and was 6.2(10−5,150) from AGLS. Consequently, BOLT-LMM
had 46% more significant SNP effects than AGLS, i.e., 89,457
additive SNP effects from BOLT-LMM and 61,062 additive
SNP effects from AGLS with p < 10−7 (Table S4). BOLT-
LMM also had much larger effect sizes than those from AGLS.
For the sample of the SNP effect on milk yield for SNP
rs109421300 located in DGAT1, the effect size was −248.13 kg
from AGLS and was −445.05 kg from BOLT-LMM (Table 1).
The AGLS effect size of −248.13 kg was closer to those of
previous reports for the effect sizes of the causal variant in
DGAT1, −180 kg in German Holsteins (Thaller et al., 2003)
and −81 kg in U.S. Holsteins (da Silva et al., 2010). Therefore,
the effect sizes from AGLS likely were more realistic than
the effect sizes from BOLT-LMM, noting that inflated effect
size necessarily inflates the statistical significance (reduces the
p-value) of the SNP. Given this comparison for statistical
significance and effect size between BOLT-LMM and AGLS,
the AGLS’ ability to test dominance effects and estimate allelic
and dominance effects, the discussion henceforth mostly uses
the AGLS results. The number of dominance SNP effects with
p < 10−7 was 494 for production and fertility traits, about
0.8% of the number of additive effects detected by AGLS, and
somatic cell score had no significant dominance effect. The
larger number of significant SNP effects of the five production
traits than the three fertility traits and somatic cell score was
consistent with the fact that the production traits had higher
heritabilities than the fertility traits and somatic cell score
(Schopen et al., 2009; Jiang et al., 2017).

The understanding of a large number of SNP effects
necessarily will be a long process. Therefore, this article only
reports a subset of the SNP effects exceeding the Bonfferoni
significance based on mutual confirmation between AGLS and
BOLT-LMM. For additive effects of the five milk production
traits, the top 1% significant effects from AGLS (570 effects per
trait) were selected, and those effects were further filtered by
the requirement that the reported effects also were among the
top 1% effects by BOLT-LMM. For the low-heritability traits of
somatic cell score, daughter pregnancy rate, and cow conception
rate (Jiang et al., 2017), the top 200 effects from AGLS were
selected and those effects were further filtered by the requirement
that the reported effects also were among the top 200 effects
by BOLT-LMM. Heifer conception rate had only 15 additive
effects exceeding the Bonferroni significance and we report eight
of those effects ranked high by both methods. For dominance
effects, all effects exceeding the Bonferroni significance are
reported because BOLT-LMM does not test dominance effects
and because only limited dominance results were available for
comparison. In total, this study reports 2617 additive SNP effects
involving 1472 SNPs (Table S5) and 494 dominance SNP effects
involving 354 SNPs (Table S6) for nine dairy traits. Given the
mutual confirmation between AGLS and BOLT-LMM and the
large sample size of 294,079 cow, the 2617 additive SNP effects
reported in this study should be high confidence SNP effects. In
addition to statistical significance and SNP effect size measured
as the difference between the two allelic effects of the SNP,
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TABLE 1 | Significant additive effects of milk, fat, and protein yields.

AGLS BOLT-LMM

SNP Chr Position (bp) Candidate gene Effect (α, kg) t-value p-value Rank Effect (β, kg) p-value Rank

MILK YIELD

rs109421300 14 1801116 DGAT1 −248.13 61.81 1.0E-820a 1 −445.05 9.4E-1907 1

rs135549651 14 1967325 SMPD5 223.79 57.45 9.5E-710a 2 −395.74 4.8E-1593 3

rs109146371 14 1651311 PPP1R16A −213.34 55.06 7.4E-653a 3 −392.86 5.2E-1597 2

rs109350371 14 2054457 PLEC (u) −210.23 54.37 7.2E-637a 4 −376.92 2.1E-1490 4

rs109558046 14 2909929 ARC-ADGRB1 145.29 42.71 1.0E-396a 5 6

rs109752439 14 1489496 ZNF34 (u) 145.00 41.05 1.0E-347a 6 5

rs110527224 6 88592295 GC (u) 96.49 29.91 1.2E-231 32 −241.13 4.4E-285 49

rs137147462 6 88887995 GC (d) 104.43 28.08 2.6E-173 44 139.70 1.8E-259 62

rs110694875 6 89139865 ADAMTS3 (u) −96.16 28.08 2.7E-173 45 147.33 1.8E-285 48

rs109901151 6 88494442 SLC4A4 92.14 26.76 1.4E-157 52 −143.44 8.2E-276 56

rs41938455 20 33354480 C6 136.60 26.60 9.3E-156 53 227.08 1.3E-283 51

rs137431035 20 33824992 PTGER4 (d) −137.47 26.57 2.3E-155 54 222.77 3.1E-281 52

rs41573457 20 30036600 MRPS30 (u) 120.01 24.53 9.3E-133 65 209.05 2.5E-279 54

rs110914335 14 2570165 LY6H (d) −107.26 21.56 5.0E-103 94 161.29 7.1E-166 135

rs110482506 20 32030332 GHR 82.31 21.52 1.1E-102 96 142.67 2.1E-211 93

FAT YIELD

rs109421300 14 1801116 DGAT1 6.26 41.50 9.0E-374a 1 13.15 5.6E-1124 1

rs109146371 14 1651311 PPP1R16A 5.49 37.60 4.8E-308 2 11.47 5.1E-905 2

rs109350371 14 2054457 PLEC (u) 5.26 36.00 5.0E-283 3 10.84 4.9E-833 3

rs135549651 14 1967325 SMPD5 −5.08 34.70 3.7E-263 4 11.04 2.3E-849 4

rs109350371 14 2084067 LOC786966 −4.26 31.20 9.8E-214 5 −8.12 5.1E-532 6

rs109558046 14 2909929 ARC-ADGRB1 −3.81 29.80 3.1E-194 6 8.39 1.1E-622 5

rs110825637 5 93995487 MGST1-SLC15A5 3.37 26.30 6.4E-152 12 5.70 6.5E-295 37

rs137735153 5 91136990 PLEKHA5 −3.05 22.70 1.6E-113 27 −4.70 1.1E-184 64

rs42718234 5 88680972 ABCC9 −3.31 21.20 1.3E-99 34 −5.64 4.4E-195 60

rs42406616 5 88702470 ABCC9 −3.12 20.50 4.6E-93 37 5.59 6.2E-203 56

PROTEIN YIELD

rs109421300 14 1801116 DGAT1 −4.50 41.30 3.5E-371a 1 −7.60 1.9E-659 1

rs135549651 14 1967325 SMPD5 4.16 38.40 8.4E-320a 2 −6.84 5.9E-572 2

rs109146371 14 1651311 PPP1R16A −3.86 37.60 4.8E-308 3 −6.76 4.7E-552 3

rs109350371 14 2054457 PLEC (u) −3.82 36.00 5.0E-283 4 −6.53 6.2E-531 4

rs109558046 14 2909929 ARC-ADGRB1 2.72 28.80 0.3E-181 5 −4.17 3.8E-276 6

rs109558046 14 1489496 ZNF34 (u) 2.69 27.94 0.1E-164 6 −4.79 7.3E-340 5

rs110694875 6 89139865 ADAMTS3 (u) −2.27 22.40 2.7E-173 13 3.41 1.8E-285 18

rs109901151 6 88494442 SLC4A4 2.22 23.20 0.6E-126 16 3.45 5.5E-187 16

rs137147462 6 88887995 GC (d) 2.13 28.08 0.3E-118 21 3.06 5.0E-150 26

rs110478571 5 106367181 CCND2 (u) −2.05 19.10 4.9E-81 48 −2.97 6.4E-111 56

rs41257416 5 105870613 NDUFA9b −1.92 18.30 8.5E-75 55 −2.72 2.5E-102 62

rs110000229 5 105804923 GALNT8b 1.80 17.70 6.0E-70 59 −2.79 1.1E-102 61

rs110914335 14 2570165 LY6H (d) −2.08 15.10 1.8E-51 113 2.99 1.8E-68 148

aThis is the empirical p-value based on the observed t-value using the formula of log10(1/p)=0.2416(t
1.9713) (Figure S1), because the observed p-value was printed as “0” when the

t-value is too large due to a limitation in the EPISNPmpi program. bThese two genes are also highly significant for milk yield (Table S5). “u” indicates the SNP is upstream of the gene,

and “d” indicates the SNP is downstream of the gene. “rank” is the rank of the statistical significance. “effect” is the average effect of gene substitution or the difference between allelic

effects of “allele 1” and “allele 2.”

we also analyzed the effect size and direction of each allele
of a significant SNP, and the allelic analysis provided valuable
insights into the genetic mechanism and practical impact of
each significant SNP. Since Table S5 has detailed information

for all 2617 additive effects, Tables 1–4 for additive effects only
summarizes the top six effects fromAGLS and BOLT-LMM along
with a few SNPs with large allelic effects (positive or negative)
for each trait. Global graphical comparison between statistical
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TABLE 2 | Significant additive effects of fat and protein percentages.

AGLS BOLT-LMM

SNP Chr Position (bp) Candidate gene Effect (α) t-value p-value Rank Effect (β) p-value Rank

FAT PERCENTAGE

rs109421300 14 1801116 DGAT1 0.11 157.00 6.2E-5150a 1 0.18 3.7E-10872 1

rs109146371 14 1651311 PPP1R16A 0.10 140.00 1.7E-4109a 2 0.16 6.2E-8983 2

rs135549651 14 1967325 SMPD5 −0.10 139.00 3.6E-4051a 3 0.16 5.5E-8710 3

rs109350371 14 2054457 PLEC (u) 0.10 137.00 2.8E-3937a 4 0.15 7.2E-8321 4

rs109558046 14 2909929 ARC-ADGRB1 −0.07 108.00 4.8E-2463a 5 0.10 1.1E-5014 5

rs109558046 14 1489496 ZNF34 (u) −0.06 96.50 2.1E-1973a 6 0.10 7.2E-4363 6

rs110825637 5 93995487 SLC15A5 (u) 0.03 46.00 5.9E-434a 85 0.05 4.5E-1099 76

rs133114040 5 94622206 EPS8 0.04 41.40 1.3E-372a 103 −0.04 7.2E-789 104

rs137735153 5 91136990 PLEKHA5 −0.02 35.40 2.3E-273 135 −0.04 1.1E-615 123

PROTEIN PERCENTAGE

rs109421300 14 1801116 DGAT1 0.02 78.70 1.5E-1320 1 0.04 6.3E-3842 1

rs135549651 14 1967325 SMPD5 0.02 70.50 5.7E-1062 2 0.04 6.7E-3080 3

rs109146371 14 1651311 PPP1R16A −0.02 70.50 5.7E-1062 3 0.04 1.2E-3231 2

rs109350371 14 2054457 PLEC (u) 0.02 68.90 5.4E-1015 4 0.04 3.6E-2911 4

rs109558046 14 67443766 VPS13B −0.02 58.10 6.3E-725 5 −0.03 2.6E-1900 5

rs135228504 20 32394009 LOC104975266 (d) −0.02 56.30 1.4E-682 6 −0.03 3.8E-1848 6

rs109774038 20 293732441 HCN1 −0.02 52.00 1.8E-583 10 −0.03 2.5E-1536 13

rs41573457 20 30036600 HCN1-GHR −0.02 51.70 4.3E-576 11 −0.03 8.2E-1471 15

rs132896414 20 32045791 GHR −0.01 51.10 3.3E-563 12 −0.03 2.1E-1543 10

aThis is the empirical p-value based on the observed t-value using the formula of log10(1/p)=0.2416(t
1.9713) (Figure S1), because the observed p-value was printed as “0” when the

t-value is too large due to a limitation in the EPISNPmpi program. “u” indicates the SNP is upstream of the gene, and “d” indicates the SNP is downstream of the gene. “rank” is the

rank of the statistical significance. “effect” is the average effect of gene substitution or the difference between allelic effects of “allele 1” and “allele 2.”

significance of each SNP and effect size and direction of the allelic
effects of the SNP is shown in Figure S4. The primary purpose
of GWAS is to identify candidate genes and chromosome
regions associated with phenotypes. For this purpose, the figures
and tables in this study show or list genes implicated by the
SNP effects.

Additive SNP Effects of Production Traits
Production traits had the largest number of significant additive
SNP effects, with 11,856, 9803, 9984, 11,349, and 15,215
significant additive effects for milk yield, fat yield, protein
yield, fat percentage, and protein percentage, respectively
(Table S4). Four chromosomes, Chr14, Chr06, Chr20, and
Chr05, had the most significant additive SNP effects for the
yield traits (Figures 1, 2). Specific regions with significant
effects were the 1.42–5.49Mb region of Chr14, the 88.07–
89.60Mb region of Chr06, the 30.03–36.67Mb region of Chr20,
and the 88.19–88.88Mb and 91.13–94.62Mb regions of Chr05
(Figure 2).

The 1.19–7.98Mb region of Chr14 had two unique features:
the extremely significant effects of rs109421300 in DGAT1
at 1,801,116 bp, which is 1,153 bp upstream of the K232A
causal mutation (Grisart et al., 2004), and the large cluster
of highly significant effects (Figure 2A). In our SNP data,

rs109421300 was the only SNP located in DGAT1. This SNP
had extreme antagonistic pleiotropy between fat yield and
milk and protein yields among all SNPs (Table 1; Figure 3;
Figure S5). This antagonism was in agreement with previous
report about DGAT1’s antagonistic pleiotropy based on four
candidate causal variants in 858 German Holstein bulls (Thaller
et al., 2003) and causal alleles of DGAT1 in 3028U.S. Holstein
bulls (da Silva et al., 2010), but this study showed the extreme
antagonism of rs109421300 among all SNPs for the yield traits.
The rs109421300 SNP has A and G alleles. The G allele was
responsible for the extreme antagonistic pleiotropy between
positive fat yield and negative milk and protein yields, i.e.,
#1 for the highest fat yield with allelic effect of 4.81 kg, and
#1 for the lowest milk and protein yields with −190.51 kg
for milk yield and −3.46 kg for protein yield (Figure 3A).
The A allele had antagonistic pleiotropy between negative fat
yield and positive milk and protein yields but this antagonistic
pleiotropy was far less strong than the antagonistic pleiotropy
of the G allele. The effect rankings of the A allele were #139
for milk yield with allelic effect of 57.60 kg, #332 for protein
yield with allelic effect of 1.04 kg, and #46 for the lowest fat
yield with allelic effect of −1.46 kg (Figure 3B). Therefore, the
significance ofDGAT1 for the yield traits was due to the extremely
positive and negative effects of the “G” allele: #1 for positive
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TABLE 3 | Significant additive effects of fertility traits.

AGLS BOLT-LMM

SNP Chr Position (bp) Candidate gene Effect (α) t-value p-value Rank Effect (β) p-value Rank

DAUGHTER PREGNANCY RATE (DPR)

rs133300430 6 88724389 GC 1.07 11.41 3.6E-30 1 1.05 6.5E-24 20

rs110254685 1 65025357 COX17 1.76 11.08 1.6E-28 2 −2.24 1.3E-36 1

rs108944043 1 60231667 ZBTB20 −1.43 10.87 1.6E-27 3 −1.64 4.5E-29 7

rs43244044 1 67115284 ILDR1 −1.37 10.87 1.7E-27 4 −1.63 8.9E-31 5

rs109894310 5 70997483 BTBD11 0.96 10.70 1.0E-26 5 0.82 1.6E-16 51

rs110966376 1 69574228 KALRN 1.38 10.65 1.8E-26 6 −1.76 5.0E-34 2

rs109901151 6 88494442 SLC4A4 −0.95 10.63 2.1E-26 7 −1.14 2.9E-30 6

rs109218398 5 71144630 BTBD11 0.97 9.71 2.7E-22 11 0.89 1.6E-16 57

rs110543856 18 48150900 SIPA1L3 1.60 9.70 3.1E-22 12 −2.00 1.4E-27 10

rs41572869 5 82738732 PPFIBP1 −0.85 9.30 1.5E-20 19 −0.90 3.9E-19 36

rs29009709 1 82032365 IGF2BP2 −1.21 9.18 4.3E-20 21 −1.55 2.7E-26 13

rs136965551 1 71581159 UBXN7 0.93 8.80 1.4E-18 31 −1.39 1.3E-32 3

rs41579094 1 71602911 UBXN7 (d) 0.91 8.66 4.9E-18 34 −1.37 7.2E-32 4

COW CONCEPTION RATE (CCR)

rs110254685 1 65025357 COX17 2.04 9.75 1.8E-22 1 −2.37 2.7E-24 1

rs109155375 1 62968592 – 1.68 8.88 6.8E-19 2 −1.10 2.5E-17 16

rs133300430 6 88724389 GC 1.01 8.13 4.5E-16 3 1.21 5.7E-19 7

rs109447734 6 88887995 GC (d) −0.95 8.08 6.8E-16 4 −1.13 3.4E-18 11

rs110527224 6 88592295 GC (u) −0.96 8.00 1.2E-15 32 −1.16 3.8E-18 13

rs109447734 1 69435214 KALRN 1.06 7.93 2.3E-15 6 −1.12 5.4E-14 35

rs110693378 1 72844496 ACAP2 −0.98 7.92 2.3E-15 7 −1.08 1.1E-15 21

rs29009709 1 82032365 IGF2BP2 −1.36 7.83 5.1E-15 8 −1.68 2.8E-18 10

rs136965551 1 71581159 UBXN7 1.08 7.80 6.3E-15 9 −1.49 2.5E-22 2

rs42341093 1 82007029 IGF2BP2 −1.36 7.78 7.1E-15 10 −1.67 2.8E-18 12

rs41616008 1 82147822 IGF2BP2 1.35 7.78 7.1E-15 11 −1.68 2.4E-18 9

rs110966376 1 69574228 KALRN 1.32 7.70 1.4E-14 13 −1.82 1.7E-21 4

rs110543856 18 48150900 SIPA1L3 1.64 7.54 4.7E-14 20 −1.13 1.4E-17 15

rs43244044 1 67115284 ILDR1 −1.26 7.51 5.8E-14 21 −1.71 5.6E-20 5

rs41579094 1 71602911 UBXN7 (d) 0.91 8.66 4.9E-18 34 −1.37 5.3E-22 3

rs109960856 1 72080335 – 1.11 7.04 1.9E-12 41 −1.56 4.5E-19 6

HEIFER CONCEPTION RATE (HCR)

rs42599672 7 48908617 SLC25A48-IL9 0.66 6.97 3.1E-12 1 −0.72 2.4E-12 2

rs42195584 29 50586068 TSPAN4 0.70 6.89 5.4E-12 2 0.66 2.9E-09 8

rs42598500 7 48881790 SLC25A48 −0.57 5.70 1.2E-08 4 0.65 3.3E-09 9

rs137244569 18 54520875 NPAS1 0.59 5.70 1.2E-08 5 0.46 4.5E-05 278

rs43480825 6 103774451 AFF1 0.89 5.63 1.8E-08 6 −1.61 1.4E-20 1

rs43480805 6 103752356 AFF1 −0.51 5.42 6.1E-08 11 0.67 2.3E-11 3

rs109889673 7 50508931 SPOCK1 0.52 5.52 3.4E-08 9 −0.65 2.4E-10 4

rs109574014 7 58685318 – 0.55 5.37 8.1E-08 15 0.69 4.9E-10 5

rs41911772 19 34773688 B9D1 (d) 0.39 3.97 7.1E-05 283 −0.64 1.6E-09 6

“Effect” is the average effect of gene substitution or the difference between allelic effects of “allele 1” and “allele 2.” “rank” is the rank of the statistical significance.
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TABLE 4 | Significant additive effects of somatic cell score.

AGLS BOLT-LMM

SNP Chr Position (bp) Candidate gene Effect (α) t-value p-value Rank Effect (β) p-value Rank

rs137147462 6 88887995 GC (d) 0.05 15.18 5.21E-52 1 0.08 2.7E-87 1

rs109452259 6 88800322 GC (d) −0.05 14.91 2.80E-50 2 0.07 5.6E-73 3

rs110527224 6 88592295 GC (u) 0.05 14.68 8.45E-49 3 0.08 1.8E-76 2

rs109901151 6 88494442 SLC4A4 0.04 12.77 2.48E-37 5 0.07 1.2E-63 5

rs137844449 6 89050323 NPFFR2 0.05 12.69 7.30E-37 7 −0.06 2.0E-46 17

rs110243640 20 39017985 PRLR 0.04 12.67 9.40E-37 8 −0.06 2.1E-41 25

rs41588974 6 93157343 SHROOM3 0.05 12.62 1.78E-36 9 0.08 1.8E-64 4

rs41569309 20 37939597 RNABP3L (u) −0.04 12.61 1.89E-36 10 0.06 9.2E-42 23

rs43671733 1 46436110 CEP97 0.06 8.83 1.04E-18 141 −0.07 2.2E-15 728

“Effect” is the average effect of gene substitution or the difference between allelic effects of “allele 1” and “allele 2.” “u” indicates the SNP is upstream of the gene, and “d” indicates the

SNP is downstream of the gene. “rank” is the rank of the statistical significance.

FIGURE 1 | Statistical significance of additive and dominance SNP effects for yield traits. (A) Additive effects of milk yield. (B) Additive effects of fat yield. (C) Additive

effects of protein yield. (D) Dominance effects of milk yield. (E) Dominance effects of fat yield. (F) Dominance effects of protein yield. The horizontal line at log10(1/p) =

7 is the threshold for statistical significance of 5% genome-wide false positives with the Bonferroni correction.
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FIGURE 2 | The four chromosomes with the most significant additive effects on milk, fat, and protein yields. (A) DGAT1 of Chr14 and its surrounding region ∼5Mb in

size had the most significant effects on all yield traits. (B) A 10-Mb region of Chr06 had highly significant SNP effects on all yield traits with peak effects in the

SLC4A4-GC-NPFFR2-ADAMTS3 region. (C) A large 19-Mb region of Chr20 had highly significant SNP effects on milk yield. The GHR-PRLR region had a high

concentration of significant effects and the C6 had the peak SNP effect. (D) A 9-Mb region of Chr05 had highly significant SNP effects on fat yield with peak effects in

the ABCC9-RERG region. The horizontal line at log10(1/p) = 7 is the threshold for statistical significance of 5% genome-wide false positives with the Bonferroni

correction.

fat effect, and #1 for negative milk and protein effects. The
antagonistic pleiotropy between fat and milk yield as well as
between fat and protein yield was present for all 41 SNPs
in the 2.08Mb region of 1,379,063–3,464,083 bp, but became
weaker as the SNP position became farther away from DGAT1
(Figures 3A,B). Four SNPs in DGAT1, PPP1R16A, SMPD5, and
PLEC (the SNP is upstream of the gene) within this 2.08Mb
region had the strongest antagonism between positive fat yield
and negative milk and protein yields, and the antagonism
of the other SNPs in this region were much weaker. The
antagonism between fat and milk yields and between fat and
protein yields had nearly identical patterns (Figure S5). The
fact that all 41 SNPs in this 2.08Mb region had the same

antagonism as DGAT1 indicated that some of the SNP effects
could be due to the linkage with DGAT1 and that haplotypes
containing the “G” allele of rs109421300 in DGAT1 would
have less variations than haplotypes containing the “A” alleles
of rs109421300. We examined haplotypes of 27 SNPs in the
1,189,341–2,194,228 kb region around DGAT1 among 398,845
Holstein cows. The results showed that 23 haplotypes with
high imputing confidence and the highest frequencies accounted
for 88% of the haplotypes in this region. Haplotypes with the
“G” allele of rs109421300 in DGAT1 had variation at only
one or two SNPs, and mostly had the highest fat yield and
the lowest milk yield. In contrast, haplotypes containing the
“A” allele of rs109421300 in DGAT1 had variations at all the
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FIGURE 3 | Extreme antagonistic pleiotropy effects of DGAT1 and haplotypes of its surrounding regions. The antagonism of SNP effects between fat yield and milk

and protein yields existed in the 2.08Mb region of 1.43–2.24Mb surrounding DGAT1 but was most pronounced in or near four genes, DGAT1, PPP1R16A, SMPD5,

and PLEC. (A) The G allele of rs109421300 in DGAT1 had the largest positive allele effect on fat yield and the largest negative effects on milk and protein yields. (B)

The A allele of rs109421300 in DGAT1 had positive allele effects on milk and protein yields and negative effect on fat yield but the antagonism was not as strong as

that of the G allele. (C) Haplotype analysis of 27 SNPs in the 1.18–2.19Mb region among 398,845 Holstein cows showed that 23 haplotypes with high imputing

confidence accounted for 88% of the haplotypes in this region. Haplotypes 3, 1, 2, 4, and 5 (highlighted in yellow) had the highest frequencies for a combined

frequency of 0.58. The four haplotypes containing the “G” allele of rs109421300 in DGAT1 (“0” of SNP 15 in pink) had little variation, with haplotypes 22, 8, and 6 not

having the alleles of haplotype 1 at only one or two SNPs. Haplotype 1 had the highest fat yield and was used as the reference haplotype. The remaining 19

haplotypes containing the “A” allele of rs109421300 had variations at all 26 SNPs surrounding DGAT1 and had different levels of milk and fat yields. Pink color: alleles

in haplotype 1. Green color: alleles not in haplotype 1. MY = milk yield as phenotypic deviation from fixed non-genetic effects such as herd, year and season. FY = fat

yield as phenotypic deviation from fixed non-genetic effects such as herd, year, and season. MY* = MY−2(milk PTA), and FY* = FY−2(fat PTA), where PTA =

predicted transmitting ability from routine genetic evaluation. The MY*, FY*, MY, and FY values shown in the last four columns further subtracted the averages of

haplotypes 24-12904. Haplotype imputing used FINDHAP with option to identify high confidence and low confidence haplotypes (VanRaden and Sun, 2014).
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remaining 26 SNPs, and had different levels of milk and fat yields
(Figure 3C). The lack of haplotype variations for haplotypes
containing the “G” allele likely contributed to the large number
of significant effects around DGAT1. The issue of linked and
independent effects around DGAT1 is analyzed toward the end
of this manuscript.

Chr06 had two QTL regions with many highly significant
SNP effects (Figures 4A-B), the 10.37Mb region at 83.37–
93.94Mb and the 37.63–38.41Mb region (Figure 2B).
The 83.37–93.94Mb region mostly affected milk and
protein yields. The peak QTL effects were located at the
88.49–89.14Mb region with 21 significant SNPs in and
near four genes, SLC4A4, GC, NPFFR2, and ADAMTS3.
This region also affected fertility traits and somatic cell
score (as to be discussed). The 37.63–38.41Mb region
affected milk yield, and this region contained a previously
reported causal gene for milk yield, ABCG2 at 37.90Mb
(Cohen-Zinder et al., 2005).

Chr20 had significant SNP effects mostly on milk yield
scattered over a large 19-Mb chromosome region at 23.86–
42.21Mb in the center of the chromosome with peak effects in
the 30.03–36.67Mb region (Figure 2C). The GHR-PRLR region
had the largest concentration of significant effects on milk yield
with peak QTL effects in C6-PTGER4 downstream of GHR. This
large QTL region was within the 28-Mb region of 21–49Mb with
the strongest evidence of selection signature by the analysis of
extended haplotype homozygosity (Ma et al., 2019).

The large region of 83.69–102.28Mb on Chr05 had a cluster
of additive effects on fat yield with peak effects in or near
MGST1, SLC15A5, PLEKHA5, and ABCC9 (Figure 2D). In terms
of statistical significance and the number of significant SNPs
for fat yield, this region was second only to the 1.42–5.49Mb
region of Chr14 containing DGAT1. Two SNPs in NDUFA9 and
GALNT8 of Chr05 had highly significant additive SNP effects on
milk and protein yields.

Additive SNP Effects of Fat and
Protein Percentages
For fat and protein percentages, the rs109421300 SNP in DGAT1
had the most significant effects (Figures 4A-B). This SNP had
an unprecedented small p-values of 3.7(10−10,871) from BOLT-
LMM and 6.2(10−5,150) from AGLS (Table 2). The significance
of rs109421300 SNP in DGAT1 for fat percentage was intuitive,
because rs109421300 had largest positive effect for fat yield and
the largest negative effect for milk yield, and the two DGAT1
alleles had antagonistic pleiotropy between fat and milk yields
(Figure 3). The extreme antagonistic pleiotropy between positive
fat yield and negative milk yield of the “G” allele was the
main contributor to rs109421300’s extremely large effect on fat
percentage, whereas the “A” allele’s antagonism between positive
milk effect and negative fat effect further added to the size
of the average effect of gene substitution of fat percentage.
Consequently, the average effect of gene substitution as the
difference between these two allelic effects was the largest effect
on fat percentage. The effect size of rs109421300 in DGAT1 for
fat percentage was at least 2.75 times as large as the effect size of

any SNP not on Chr14 based on the AGLS method, or at least
4.50 times as large based on BOLT-LMM.

Contrary to the intuitive effect on fat percentage, the most
significant effect of rs109421300 inDGAT1 for protein percentage
was non-intuitive and could be misleading, because the “G”
allele of rs109421300 had the lowest milk and protein yields
among all SNPs. Similar misleading results for protein percentage
existed, including the SNP effects on protein percentage in
HCN1 and GHR. A SNP (rs132896414) in GHR had a significant
effect for protein percentage (Table 2), but this SNP had low
milk and protein yields. Therefore, the significance of this GHR
SNP on protein percentage apparently was due to the very low
milk yield, not due to high protein yield. Although SNPs with
large effects for fat percentage and low fat and milk yields also
existed, SNPs with the most significant and largest effects on fat
percentage generally had the most significant and largest effects
on fat yield as well. The SNP alleles in PTPRO and EPS8 of
Chr05 with large effects on protein percentage and low protein
and milk yields had consistently large effects on fat yield and
percentage, the 5 and 6th largest effects for fat yield, and the 9 and
10th largest effects for fat percentage. SNP effects with significant
effects for both protein yield and percentage included those in or
near ADGRL3 and TECRL of Chr06, PRLR of Chr20, GHRHR of
Chr04, and VPS13B of Chr14.

Additive Effects of Fertility Traits and
Somatic Cell Score
Compared to yield traits, fertility traits had much smaller
effects as indicated by the much smaller t-values. The largest
t-value was 62.80 for milk yield and was 11.40 for daughter
pregnancy rate, i.e., the largest milk effect was 62.80 times of
its standard deviation whereas the largest effect for daughter
pregnancy rate was only 11.40 times of its standard deviation. The
number of additive effects exceeding the Bonferroni significance
(p < 10−7) was 1,126 for daughter pregnancy rate, 360 for cow
conception rate, and 15 for heifer conception rate (Table S5).
Highly significant additive SNP effects included those in or near
GC of Chr06, COX17 of Chr01, and SIPA1L3 of Chr18 for
daughter pregnancy rate and cow conception rate; BTBD11 of
Chr05 for daughter pregnancy rate; a Chr15 region containing
ACCSL for cow conception rate; and the SLC25A48-IL9 region
of Chr07 for heifer conception rate (Figures 5A–C; Table 3). A
notable feature of the significant SNP effects on fertility was
the large negative allelic effects. SNPs in the COX17-ILDR1-
KALRN region of Chr01 and SIPA1L3 of Chr18 had the most
negative allelic effects on daughter pregnancy rate. SNPs in or
near theCOX17-ILDR1-KALRN region, IGF2BP2 and ELAVL4 of
Chr01, SIPA1L3 of Chr18,NASP of Chr03, andDPY19L1, NPSR1,
IMMP2L, ELMO1 of Chr04 had the most negative effects on cow
conception rate; and AFF1 had the most negative effect on heifer
conception rate (Figure S4).

For somatic cell score, 2,348 additive effects (Table S5;
Figure 6A) and no dominance effects exceeded the Bonferroni
statistical significance (Figure 6B). SNPs in the SLC4A4-GC-
NPFFR2-ADAMTS3 region of Chr06 had the most significant
additive SNP effects, followed by a SNP in PRLR of Chr20
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FIGURE 4 | Statistical significance of additive and dominance SNP effects for fat and protein percentages. (A) Additive effects of fat percentage. (B) Additive effects

of protein percentage. (C) Dominance effects of fat percentage. (D) Dominance effects of protein percentage. The horizontal line at log10(1/p) = 7 is the threshold for

statistical significance of 5% genome-wide false positives with the Bonferroni correction.

(Table 4). SNPs in or near CEP97, IMPG2, and ABI3BP genes of
Chr01 had the lowest allelic effects whereas SNPs in ADAMTS3
of Chr06 and PAPPA2 of chr16 had the highest allelic effects
for somatic cell score (Table S5). However, the sizes of positive

effects were not as large as the negative effects. Although the
SNP in CEP97 had the lowest somatic cell score, its ranking for
statistical significance was only #141 because of the low allele
frequency of 0.06 for the negative allele.
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FIGURE 5 | Statistical significance of additive and dominance SNP effects for fertility traits. (A) Additive effects of daughter pregnancy rate. (B) Additive effects of cow

conception rate. (C) Additive effects of heifer conception rate. (D) Dominance effects of daughter pregnancy rate. (E) Dominance effects of cow conception rate. (F)

Dominance effects of heifer conception rate. The horizontal line at log10(1/p) = 7 is the threshold for statistical significance of 5% genome-wide false positives with the

Bonferroni correction.

Dominance SNP Effects
Dominance effects were detected for all five milk production
traits, but the statistical significance was much less than
that of additive effects and the number of SNPs with
dominance effects was much smaller than that of additive effects
(Figures 1D–F; Figures 4C,D). The number of dominance
effects exceeding the Bonferroni significance was 157, 81,
118, 25, and 117 for milk yield, fat yield, protein yield,
fat percentage, and protein percentage, respectively (Table S6;
Figure 6A). The smallest p-value for dominance effect was
4.8(10−132) for protein yield from AGLS (dominance effects
unavailable from BOLT-LMM), compared to the smallest p-value
of 6.2(10−5,150) for additive effects of fat percentage. The much
smaller number of significant dominance effects indicated that
additive effects were the primary effects underlying the nine
dairy traits.

Chr05 had the most significant and the largest number
of dominance SNP effects on milk, fat and protein yields
(Figures 1D–F; Table 5 and Table S6). SNPs in AAAS and ATF7
at the downstream end and PLXNC1 at the upstream end of

the 24.11–27.11Mb region had the most significant dominance
effects on the yield traits. A second Chr05 region at 106.89–
108.9Mb in or near PRMT8, TSPAN11, SLC6A13, and ERC1
also had significant dominance SNP effects on the yield traitss
(Figures 1D–F). For fat and protein percentages, SNPs in or
near two Chr23 genes (MOCS1 and SUPT3H) and three Chr14
genes (SMPD5, DGAT1, and PLEC) had the most significant
dominance effects for fat percentage, and five Chr23 SNPs in
MOCS1, SUPT3H, RUNX2, ADGRF5-ADGRF1, and CCND3 had
the most significant dominance effects for protein percentage
(Figures 4C,D; Table 6). Overdominance was the main effect
type of the most significant dominance effects. For the example
of milk yield, the top 34 dominance SNP effects were all positive
overdominance effects because the heterozygous genotypic value
of each SNP was higher than either homozygous genotypic values
of the SNP. For fat and protein percentages, the significant
dominance SNP effects in or near MOCS1, SUPT3H, CCND3,
and RUNX20 of Chr23 were negative overdominance effects,
i.e., the heterozygous genotypic value of each SNP was lower
than either homozygous genotypic values of the SNP. These
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FIGURE 6 | Statistical significance of additive and dominance SNP effects for somatic cell score. (A) Additive effects. (B) Dominance effects. The horizontal line at

log10(1/p) = 7 is the threshold for statistical significance of 5% genome-wide false positives with the Bonferroni correction.

TABLE 5 | Significant dominance effects of yield traits.

Trait SNP Chr Position (bp) Candidate gene Effect (δ, kg) t-value p-value Rank

MY rs11055819 5 26876852 AAAS 350.19 24.50 3.5E-115 1

MY rs109438971 5 27130695 EIF4B (d) 347.20 22.63 2.64E-113 2

MY rs109675908 5 26661043 ATF7 222.09 17.54 7.46E-69 3

MY rs110384471 5 24111835 PLXNC1 254.33 17.14 7.97E-66 4

FY rs11055819 5 26876852 AAAS 12.11 21.00 1.14E-97 1

FY rs109438971 5 27130695 EIF4B (d) 12.02 20.80 1.98E-96 2

FY rs109675908 5 26661043 ATF7 7.76 16.30 7.66E-60 3

FY rs110384471 5 24111835 PLXNC1 8.981 16.10 1.30E-58 4

PY rs11055819 5 26876852 AAAS 10.39 24.50 4.89E-132 1

PY rs109438971 5 27130695 EIF4B (d) 10.39 24.40 3.11E-131 2

PY rs109675908 5 26661043 ATF7 6.71 19.10 1.29E-81 3

PY rs110730614 5 26561662 ATF7 (u) 6.49 18.70 8.04E-78 4

PY rs110384471 5 24111835 PLXNC1 7.67 18.60 3.29E-77 5

MY, milk yield; FY, fat yield; PY, protein yield.

SNPs also had significant positive overdominance effects on
milk yield, consistent with their negative dominance effects on
protein percentage.

The fertility traits had a small number of dominance effects
exceeding the Bonferroni significance (p < 10−7), with only
2, 2, and 1 dominance effects for daughter pregnancy rate,
cow conception rate, and heifer conception rate, respectively
(Figures 5D–F; Table 6). The differences between additive and
dominance effects in statistical significance were not as much
as for production traits. The smallest p-values for additive
effects were 10−29.4, 10−21.7, and 10−11.5 (Table 3) compared to

10−11.4, 10−14.4, and 10−15.2 for dominance effects of daughter
pregnancy rate, cow conception rate, and heifer conception
rate, respectively (Table 6). A SNP (rs110543856) in SIPA1L3
of Chr18 and a SNP (rs43480825) in AFF1 of chr06 were the
only two SNPs with dominance effects exceeding the Bonferroni
significance (p < 10−7) for daughter pregnancy rate, cow
conception rate; and heifer conception rate (Figures 5D–F;
Table 6). The dominance effect of rs43480825 in AFF1 of
Chr06 was the most significant SNP effect for heifer conception
rate among all additive and dominance effects for this trait
[p= 6.43(10−16), Table 6].
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TABLE 6 | Significant dominance effects of percentage and fertility traits.

Trait SNP Chr Position (bp) Candidate gene Effect (δ) t-value p-value Rank

FPC rs109266279 23 13846320 MOCS1 −0.04 12.50 7.20E-36 1

FPC rs135549651 14 1967325 SMPD5 0.01 10.90 6.99E-28 2

FPC rs109421300 14 1801116 DGAT1 0.01 10.80 5.24E-27 3

FPC rs109350371 14 2054457 PLEC (u) 0.01 10.70 8.28E-27 4

FPC rs110993492 23 18600456 SUPT3H −0.02 9.52 1.71E-21 5

PPC rs109266279 23 13846320 MOCS1 −0.02 22.20 6.67E-109 1

PPC rs110993492 23 18600456 SUPT3H −0.02 19.20 3.12E-82 2

PPC rs43480825 23 18695002 RUNX2 −0.01 16.80 2.13E-63 3

PPC rs43705624 23 20166517 ADGRF5-ADGRF1 −0.01 15.50 3.02E-54 4

PPC rs43480825 23 15740337 CCND3 −0.01 15.20 3.17E-52 5

DPR rs110543856 18 48150900 SIPA1L3 3.11 6.93 4.35E-12 1

DPR rs43480825 6 103774451 AFF1 2.30 6.73 1.70E-11 2

CCR rs110543856 18 48150900 SIPA1L3 4.78 7.86 3.94E-15 1

CCR rs43480825 6 103774451 AFF1 3.03 6.73 1.66E-11 2

HCR rs43480825 6 103774451 AFF1 3.12 8.08 6.43E-16 1

FPC, fat percentage; PPC, protein percentage; DPR, daughter pregnancy rate; CCR, cow conception rate; HCR, heifer conception rate; “rank” is the rank of the statistical significance.

Types and Sizes of SNP Effects and
Allelic Effects
The effect of a SNP measured by the average effect of gene
substitution (or the difference between the two allelic means) of
the SNP generally was associated with the statistical significance
of the SNP, i.e., the larger the absolute SNP effect, the more
significant the SNP effect. However, for similar SNP effect
sizes, allelic effects of different SNPs may have sharply different
interpretations. For the same SNP effect size, the allelic effects
can be symmetric effects, where the two alleles have similar allelic
effects in opposite directions; asymmetric effects, where one allele
has a larger effect size than the other allele; or uni-allelic effect,
where only one allele has effect while the other allele is a neutral
allele and has no effect (Figure 7A). All these types of allelic
effects were observed for the examples of 200 most significant
SNPs per yield trait (Figures 7B–D).

For fat yield (Figure 7B), rs109421300 in DGAT1 of Chr14
had the largest positive asymmetric effect, whereas SNPs in
ABCC9 of Chr05 had both positive and negative asymmetric
effects. The allelic effects of the three SNPs of Chr02 (red circle
in Figure 7B), a SNP between MGST1 and SLC15A5 as well
as a SNP in EPS8 of Chr05 were close to having uni-allelic
effects each with one large positive or negative allelic effect
and one allelic effect close to the zero line. Three SNPs of
Chr02 (boxed in Figure 7B) had relatively symmetric effects.
For milk yield (Figure 7C), rs109421300 in DGAT1 had the
most negative asymmetric effects, rs41938455 in C6 of Chr20
had the most positive asymmetric effects, and most of the
SNP effects of Chr20 had positive asymmetric effects. For
protein yield (Figure 7D), rs109421300 in DGAT1 had the
most negative asymmetric effects, SNPs in the HFM1-BARHL2
region of Chr03 had the most positive asymmetric effects, and
SNPs in ADGRL3 of Chr06 and the ARMC9-DIS3L2 region
of Chr02 had negative uni-allelic effects. The SNPs in the
SLC4A4-GC-NPFFR2-ADAMTS3 region of Chr06 collectively

had the most symmetric effects for milk, fat, and protein
yields (Figures 7B–D). Large allelic effects for fat and protein
percentages, the three fertility traits, and somatic cell score are
shown in Figure S4. Among the symmetric, asymmetric and uni-
allelic effects, extreme asymmetric allelic effects such as the effect
of DGAT1 and uni-allelic effects such as the SNP upstream of
SLC15A5 would be more valuable than symmetric allelic effects
that are not among the largest in either direction. These results of
SNP and allelic effects along with the allelic analysis that revealed
the extreme antagonistic pleiotropy of DGAT1 showed that the
analysis of allelic effects could yield valuable understanding of
the SNP effects unavailable from statistical significance alone.
These examples showed that the integrated analysis of statistical
significance and effect size increased the understanding of the
QTL effects.

Majority of the highly significant SNP effects also had large
allelic effects. Such SNP effects included those in DGAT1 for
all five production traits, in C6 for milk yield, in ABCC9 for
fat yield, in COX17 for daughter pregnancy rate, and in AFF1

for heifer conception rate. An example of inconsistency between
statistical significance and the size of allelic effect was the effect of
rs43671733 in CEP97 of Chr01 with the lowest somatic cell score
and #141 ranking in statistical significance (Table 4). Reasons
for large allelic effects not ranking high in statistical significance
included asymmetric and uni-allelic effects that do not have large
differences between the two allelic effects of the SNP, and extreme
allele frequencies. The t-test of additive effects by the AGLS
method accounts for variations associated with allele frequencies
and none of the SNPs with rare alleles was among the most
significant SNPs for any trait. Consequently, SNPs with extreme
frequencies and large effects were not as significant as SNPs with
similar allele effect sizes and medium allele frequencies. Such
examples included rs43480825 in AFF1 with the largest effect
size for heifer conception rate and allele frequency of 0.10 for
its negative allele, and rs43671733 in CEP97 with the largest
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FIGURE 7 | Conceptual types of allelic effects and observed SNP allelic effects among 200 most significant SNPs for each yield trait. (A) Conceptual effect types that

may involve symmetric allelic effects, positive and negative asymmetric allelic effects, and positive and negative uni-allelic effects. (B) All types of conceptual allelic

effects were observed for fat yield. DGAT1 and three other genes near DGAT1 had the largest positive asymmetric SNP effects, two SNPs in ABCC9 had both positive

and negative asymmetric effect, a SNP between MGST1 and SLC15A5 and a SNP between ELF5 and EHF had negative uni-allelic effects, three SNPs of Chr02

(circled) had positive uni-allelic effects, and another three SNPs of Chr02 (boxed) had nearly symmetric effects. (C) DGAT1 and three other genes near DGAT1 had the

largest negative asymmetric SNP effect and the C6-PTGER4 region of Chr20 had the most positive asymmetric SNP effects for milk yield. (D) DGAT1 and three other

genes near DGAT1 had the largest negative asymmetric SNP effects, and the LY6H downstream region and the ARC-ADGRB1 region had the most positive

asymmetric effects for protein yield.

effect size for somatic cell score and allele frequency of 0.06 for
its negative allele. The AFF1 SNP was ranked #6 (Table 3) and
the CEP97 SNP was ranked #141 (Table 4), although both SNPs
had the largest effect sizes of the traits. Therefore, requiring a
MAF in the t-test by AGLS generally was unnecessary. However,
the estimation of allelic effects or the average effect of gene

substitution does not account for variations associated with allele
frequencies, and many rare alleles had large effects. Some of
those effects could be true given the existence of rare elite cows
that should have their rare genetic variants but many of those
rate allelic effects could be due to sampling and hence we use a
MAF= 0.05 restriction for reporting allelic effects.
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Comparison With Previous GWAS Results
In comparing results in this study with those in other studies, it
is important to note the differences between our study and the
previous studies in sample size, number of SNPs, breeds, and
phenotypic definitions for some traits. Here, we focus on the
comparison with two recent GWAS in dairy cattle, a multibreed
dairy GWAS using 632,003 SNP markers on 17,925 Holstein and
Jersey cattle (Raven et al., 2014), and a Holstein GWAS using
17,300 bulls and over three million imputed SNPs (Weller et al.,
2018). Given that the number of SNPs in this study was only
a small fraction of those two studies, the confirmation between
our study and those two studies was expected to be mostly the
confirmation of the chromosome or gene regions rather than the
confirmation of the exact variants.

DGAT1, which had been confirmed by numerous studies, was
confirmed again by our study to contain the most significant
effect for milk production, but our study further showed DGAT1
had extreme antagonistic pleiotropy between fat yield and milk
and protein yields at the genome-wide level and this antagonism
extended to a 2.08Mb region around DGAT1. In comparison
with the multibreed dairy GWAS (Raven et al., 2014), our study
confirmed SNP effects in GC of Chr06 for milk yield and in GBA
of Chr03 for protein percentage, and confirmed several regions
that were also significant in our study but not involving the
same genes. These regions included LOC782462 of Chr20 for
milk yield,MGST1 for fat yield and percentage, CSN2 for protein
yield, and ESP8 for milk yield. The SNP effect in LOC782462
was not highly significant in our study (#8447 in statistical
significance), but was about 1.00Mb downstream of C6, which
was the most significant effect of Chr20 for milk yield in our
study. MGST1 had one SNP (rs41595602) in our study that
was insignificant for fat yield (#36,311 in statistical significance).
However, a SNP (rs110825637) only 0.42Mb downstream of
MGST1 was the most significant effect of Chr05 for fat yield
(Table 1), noting that the Chr05 region was the second most
important region for fat yield identified by this study, after
the DGAT1 region. CSN2 had no SNP in our study, but the
region of 87.15–87.38Mb with CSN1S1, CSN2, and CSN3 had
significant effects on protein yield with #205-#679 rankings in
statistical significance [p = 7.92(10−40)−1.63(10−25)]. ESP8 had
a ranking of #456 (top 1% in statistical significance) for milk
yield and was even more significant for fat yield (#81) in our
study. Compared to the study using Holstein bulls (Weller et al.,
2018), our study confirmed the SLC4A4–GC-NPFFR2 region of
Chr06 for somatic cell score,MGST1 for fat percentage, andGHR
for protein percentage. Our study partially confirmed the SNP
at 103,202,217 bp of Chr06 for heifer conception rate because
this SNP was 0.57Mb upstream of the SNP at 103,774,451 bp in
AFF1 that had themost significant dominance effect by the AGLS
method and the most significant additive effect by BOLT-LMM
for heifer conception rate. Our study also found significant effects
in the vicinity of previously reported causal variants, including
GHR for milk production (Blott et al., 2003; Pausch et al., 2015)
and ABCG2 for milk yield and composition (Cohen-Zinder et al.,
2005).We detected significant SNP effects in and aroundGHR for
milk yield and protein percentage, and detected significant effects
for milk yield in the NAP1L5-HERC3 about 0.30Mb upstream of
ABCG2 (Table 1; Figure 2B).

The SNP effects in the two recent GWAS (Bouwman et al.,
2018; Weller et al., 2018) confirmed by this study were all in
the four chromosomes of Figure 2. Except the Chr14 region
containing DGAT1 that was widely confirmed to have a large
cluster of significant effects for milk production, the Chr05,
Chr06, and Chr20 regions were all much larger regions and
had many new SNP effects affecting more traits than in the
previous reports. The Chr05 region at 83.69–102.28Mb was
18.59Mb in size, the Chr06 region of 83.37–93.94Mb region
was about 10.57Mb in size, and the Chr20 region at 23.86–
42.21Mb was 18.35-Mb in size. This large Chr20 QTL region
was within the 28-Mb region of 21–49Mb with the strongest
evidence of selection signature by the analysis of extended
haplotype homozygosity (Ma et al., 2019). In addition to the
four chromosomes described in Figure 2, the additive SNP
effects reported in this study involved all 29 bovine autosomes
(Table S5), and identified additional regions with significant
effects, including the 50.04–58.26Mb of Chr03, the 105.45–
106.36Mb of chr05 and the 24.96–29.97Mb of chr23 for protein
yield; the 15.36–15.62Mb of chr03 and the 64.00–71.84Mb of
Chr14 for protein percentage; the 60.23–72.08Mb of Chr01 for
daughter pregnancy rate and cow conception rate; and AFF1
for heifer conception rate. Majority of the 2617 additive SNP
effects involving 1472 SNPs (Table S5) and 494 dominance SNP
effects involving 354 SNPs (Table S6) were new effects detected
by this study.

Factors Contributing to the
Significant Effects
This large-scale GWAS had two unprecedented results: the large
number of SNP effects exceeding the Bonferroni significance,
and the extremely small p-values for the most significant effects.
These unprecedented results could be due to several factors,
the large sample size, the presence of many genetic variants
underlying the phenotypes, accurate estimation and removal of
non-genetic factors (such as herd, year, and season) from the
phenotypic values, potential inflation of statistical significance of
the AGLS and BOLT-LMM, and strong LD that have increased
the number of significant effects.

The sample size of 294,079 cows was the largest for GWAS
in any animal species. As sample size increases, the statistical
power increases and the rate of false positives decreases for a
given effect size, or the detectable effect size decreases for a given
statistical power and a rate of false positives (Mao and Da, 2005).
Therefore, the large sample size apparently was a contributing
factor for the many significant SNP effects. The presence of many
genetic variants underlying a phenotype is also a likely reason
for the large number of SNP effects. The hypothesis of many
genetic variants underlying a production is supported by the
steady genetic progress in dairy genetic selection, which has more
than doubled the milk yield from 5.3 tons in 1957 to 12.5 tons in
2015 (Figure S6). Although large sample size increases the ability
to detect more variants than small samples, the number of SNP
effects detected for the five production traits was surprisingly
large, 58,207 additive effects fromAGLS or 84,072 additive effects
from BOLT-LMM, compared to the 4231 SNP effects for human
height and body mass index (Yengo et al., 2018). The large
number of genetic variants underlying the dairy production traits
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TABLE 7 | Number of top 1% SNP effects in the 1.19–7.98Mb region of Chr14 with and without removal of DGAT1 effects from the phenotypic values for association

analysis.

MY FY PY FPC PPC Total

DGAT1 effects removed 38 15 39 154 0 246

DGAT1 effects not removed 153 98 131 188 96 666

MY, milk yield; FY, fat yield; PY, protein yield; FPC, fat percentage; PPC, protein percentage.

FIGURE 8 | Chr14 SNP effects conditional on the removal of DGAT1 effects from the phenotypic values for five production traits. The horizontal line on each graph is

the threshold log10(1/p) value for the top 1% significant effects of each trait. The threshold value was 39.48 for milk yield, 30.20 for fat yield, 26.25 for protein yield,

55.20 for fat percentage, and 93.71 for protein percentage. The duplication is at Chr14:2932132-3866447. (A–C) Yield traits. The log10(1/p) values for the most

significant effects decreased to 92.78, 56.73, and 58.72, compared to the log10(1/p) values of 820.00, 373.90, and 370.36 for milk, fat, and protein yields without

removing the DGAT1 effects, respectively. (D) Fat percentage was least affected by the removal of the DGAT1 effects although the log10(1/p) for the most significant

effect was reduced by about 10-folds, log10(1/p) = 459.64 for rs41624797 in PTK2, compared to log10(1/p) = 5150.79 for rs109421300 in DGAT1 without removing

the effects of rs109421300. (E) A large Chr14 region containing VPS13B became the most significant region with DGAT1 effects removed, and became slightly more

significant than without removing the DGAT1 effects. (F) SNP effects for the five production traits in the 1.19–7.98Mb region of Chr14. Fat percentage remained to

have the most significant effects among all five traits of milk production with the removal of the DGAT1 effects.

and the accurate estimation and removal of non-genetic factors
(such as herd, year, and season) from the phenotypic values
using large samples could have been the contributing factors to
the large number of significant SNP effects. Potential inflation
in statistical significance by both AGLS and BOLT-LMM could
exist, although AGLS detected 46% fewer significant effects than
BOLT-LMM. Genetic selection in Holstein cattle resulted in
strong LD for many haplotypes that had high extended haplotype

homozygosity for long chromosome distances (Ma et al., 2019).
Such long haplotypes necessarily should have contributed to the
number of significant effects through LD with causal effects.

To assess the impact of LD on the number of significance
effects and the significance levels, we analyzed the 1.19–7.98Mb
region of Chr14 containing DGAT1 as an example. The analysis
first estimated the genotypic effects of rs109421300 in DGAT1,
and then removed the estimated genotypic effects of rs109421300
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from the phenotypic values to produce the residual values for
the five production traits. These residual values were used for
association analysis using the AGLS method for all 2104 Chr14
SNPs. The results showed that the removal of the DGAT1 effects
represented by the rs109421300 effects drastically reduced the
number of significant effects and reduced the level of statistical
significance for many SNPs, but also showed the existence of
multiple genetic variants in the 1.19–7.98Mb region affecting
four of the five production traits (except protein percentage). The
removal of the DGAT1 effects eliminated about 63% (420 out of
666 SNPs) of the top 1% SNP effects for the five production traits
(Table 7), indicating that 63% of the top 1% SNP effects in the
1.19–7.98Mb region could have been due to LD with DGAT1.
The level of statistical significance was drastically reduced for
many but not all SNPs and some SNPs became more significant
with the removal of the DGAT1 effects (Table S7). For the three
yield traits, the log10(1/p) values for the most significant effects
decreased to 92.78, 56.73, and 58.72 (Figures 8A–C), compared
to the log10(1/p) values of 820.00, 373.90, and 370.36 for milk,
fat, and protein yields without removing the DGAT1 effects,
respectively. Fat percentage still had the largest number of top
1% effects among the five production traits, 154 effects with
the removal of DGAT1 effects and 188 effects without (Table 7;
Figure 8D), indicating that many SNP effects on fat percentage
independent of theDGAT1 effects existed. Protein percentage was
affected most by the removal of the DGAT1 effects, i.e., all the
previous 96 top 1% SNP effects were eliminated (Table 7). The
most significant region associated with protein percentage was a
large region aroundVPS13B about 65Mb downstream ofDGAT1
and this region was unaffected by the removal of the DGAT1
effects (Figure 8E). A SNP in VPS13B had the most significant
effect on protein percentage among all SNPs after removing the
DGAT1 effects. The combined analysis of the SNP effects for
the five production traits in the 1.19–7.98Mb region of Chr14
showed that fat percentage remained to have the most significant
effects among all five traits of milk production with the removal
of theDGAT1 effects (Figure 8F). The fact that 246 top 1% effects
were still present after the removal of the DGAT1 effects for the
five production traits (Table 7) showed that multiple SNP effects
independent of the DGAT1 effects existed around DGAT1. This
result along with the result of linked effects due to LD with
DGAT1 indicated that the large clusters of SNP effects in the
1.19–7.98Mb region of Chr14 was a mixture of linked effects
due to LD with DGAT1 and the presence of multiple SNP effects
independent of the DGAT1 effects.

CONCLUSION

The results in this study provided large-sample confirmation of
some previously reported SNP effects and chromosome regions
associated with dairy traits, expanded some chromosome regions
that contained reported SNP effects, detected a large number
of new additive and dominance SNP effects and several new
chromosome regions, and generated new understanding about
the genetic mechanism of SNP effects affecting dairy traits.
This study confirmed a small number of SNP effects from
previous GWAS and confirmed several previously reported

chromosome regions with SNP effects including a Chr14 region
containingDGAT1, and the Chr05, Chr06, and Chr20 regions for
milk production. For the Chr14 region, this study showed the
extremely antagonism between fat yield and milk and protein
yields of a SNP in DGAT1 among all SNPs, identified SNPs
with opposite effects to the DGAT1 effects, and showed linkage
disequilibrium with DGAT1 contributed to a large number of
significant effects around DGAT1. For the Chr05, Chr06, and
Chr20 regions with previously reported QTL effects, this study
identified those regions to be large regions of 10–19Mb in size
with QTL effects. The Chr20 region was the largest QTL regions
affecting milk, the Chr06 regions affected all nine traits, and
the Chr05 region was the second region with highly significant
and the largest number of QTL effects on fat yield after the
Chr14 region containing DGAT1. New QTL regions detected
by this study included regions with the most significant or
most negative SNP effects on fertility on Chr01, Chr03, Chr04,
Chr06 and Chr18; and the Chr06, Chr20 and Chr05 regions for
somatic cell score. Majority of the SNP effects for the nine dairy
traits reported in this study were new effects including some
in previously reported QTL regions. Additive effects were the
main effects of all nine dairy traits. A relatively small number
of new dominance effects mostly due to overdominance was
detected for dairy production and fertility traits. The dominance
effects generally were far less significant than additive effects with
a few exceptions for the fertility traits. The integrated analysis
of statistical significance with allelic effect size and direction
provided new understanding of SNP effects, including extreme
antagonistic pleiotropy, uni-allelic, asymmetric, and symmetric
allelic effects.
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