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Although large amounts of genomic data are available, it remains a challenge to

reliably infer causal (i. e., regulatory) relationships among molecular phenotypes (such

as gene expression), especially when multiple phenotypes are involved. We extend the

interpretation of the Principle of Mendelian randomization (PMR) and present MRPC,

a novel machine learning algorithm that incorporates the PMR in the PC algorithm,

a classical algorithm for learning causal graphs in computer science. MRPC learns

a causal biological network efficiently and robustly from integrating individual-level

genotype and molecular phenotype data, in which directed edges indicate causal

directions. We demonstrate through simulation that MRPC outperforms several popular

general-purpose network inference methods and PMR-based methods. We apply

MRPC to distinguish direct and indirect targets among multiple genes associated with

expression quantitative trait loci. Our method is implemented in the R package MRPC,

available on CRAN (https://cran.r-project.org/web/packages/MRPC/index.html).

Keywords: causal inference, graphical models, biological networks, bioinformatics, Mendelian randomization

INTRODUCTION

Experiments (e.g., temporal transcription or protein expression assays, gene knockouts or
knockdowns) have been conducted to understand the causal relationships among genes (Segal et al.,
2003; Housden et al., 2013), or between an expression Quantitative Trait Locus (eQTL) and its
direct and indirect target genes (Cheung and Spielman, 2009). However, it remains a challenge to
learn causality directly from genomic data. It is even harder to learn (i.e., infer) a causal network
of multiple genes, which may represent which genes regulate which other genes (Hill et al., 2016;
Ahmed et al., 2018). We address this problem in this paper. Correlation (or association) is often
used as a proxy of a potentially causal relationship, but similar levels of correlation can arise
from different causal mechanisms (Models 1–4 in Figure 1). For example, between two genes with
correlated expression levels, it is plausible that one gene regulates the other gene (Models 1 and 2
in Figure 1); it is also plausible that they do not regulate each other directly, but both are regulated
by a common genetic variant (Model 3 in Figure 1).

Correlation between the expression, or any molecular phenotype, of two genes is
symmetrical—we cannot infer which of the two genes is the regulator and which the target.
However, if a genetic variant (e.g., an eQTL) is significantly associated with the expression of
one of the two genes, then we may assign a directed edge from the variant to the gene, as it is
reasonable to assume that the genotype causes changes in the phenotype (expression), not the other
way around. This additional, directed edge breaks the symmetry between the two genes, and makes
it possible to infer the causal direction between them (e.g., compare Models 1 and 2 in Figure 1).
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This is the rationale behind the Principle of Mendelian
Randomization (PMR). The randomization principle in
experimental design (e.g., clinical trials) is critical in establishing
causality: only when subjects are randomly assigned to
different exposures is it possible to draw causal connections
between exposure and outcome. By definition, the PMR is a
randomization principle under which the alleles of a genetic
variant are assumed to be randomly assigned to individuals in
a population, analogous to a natural perturbation experiment
and therefore achieving the goal of randomization (Davey Smith
and Hemani, 2014). The above definition of the PMR implies
three assumptions: (i) alleles of a genetic variant (or equivalently,
genotypes) are causal to the associated phenotypes; (ii) the
genetic variant is not associated with confounding variables
that are also correlated with phenotypes; and (iii) the causal
relationship cannot be explained by other variables. The PMR
has been widely used in epidemiology studies, where genetic
variants are used as instrumental variables to facilitate the
estimate of causal effect between a mediator (or exposure, such
as gene expression) and an outcome (e.g., a disease phenotype
Davey Smith and Hemani, 2014). It received increasing attention
in genetics in recent years (Millstein et al., 2009; Stojnic et al.,
2012; Zhu et al., 2012; Gutierrez-Arcelus et al., 2013; Neto et al.,
2013; Zhang et al., 2013; Huang et al., 2015; Oren et al., 2015;
Franzén et al., 2016; Hill et al., 2016; Connor and Price, 2017;
Wang and Michoel, 2017; Yang et al., 2017).

Large consortia, such as the Genetic European Variation
in Disease (GEUVADIS) consortium (Lappalainen et al.,
2013) and subsequently the Genotype-Tissue Expression
(GTEx) consortium (The GTEx Consortium, 2017), have
established the widespread genetic variation (i.e., eQTLs) in
human genome that may regulate gene expression, making
PMR-based methods increasingly relevant and important
for understanding interactions among genes. Furthermore,
Genome-Wide Association Studies (GWASs) have identified
a large number of genetic variants that are potentially causal
to diseases (MacArthur et al., 2017). Understanding the roles
of these GWAS-significant variants is key to understanding
the mechanisms underlying diseases. Interestingly, likely half
of the GWAS-significant genetic variants are eQTLs (Nicolae
et al., 2010). As it becomes more common nowadays to collect
gene expression data in disease studies (Zhang et al., 2013;
Franzén et al., 2016), studying eQTLs (which may also be
GWAS-significant SNPs) and their associated genes provides
a powerful approach for a deeper understanding of complex
traits and diseases. An important application of causal network
inference is then dissecting the relationships among multiple
target genes of the same eQTL.

However, existing methods adopting the PMR, such as
the mediation-based methods (Millstein et al., 2009; Wang
and Michoel, 2017) and the Mendelian Randomization (MR)
methods (Hemani et al., 2017; see Discussion on the relationships
between these two classes of methods), are not directly applicable
to inference of a causal network of gene expression. This is
because these methods typically focus on the graph of V1→
T1→ T2 (i.e., Model 1 in Figure 1), where V1 is the genetic
variant, T1 may represent gene expression, and T2 a clinical trait.
This graph, considered the canonical causal model by existing

PMR-based methods, is sensible when T2 is a potential outcome
of T1. However, when we examine relationships among gene
expression or othermolecular phenotypes, it is usually not known
beforehand which of T1 and T2 is more likely to be the outcome
of the other, and Model 1 alone does not have the flexibility of
examining additional possibilities. As a result, these methods are
limited in the causal relationships they can recover. In this paper,
we generalize the interpretation of the PMR to account for a
variety of causal relationships, which enables us to infer more
complex networks, although not at a high dimension yet.

On the other hand, in machine learning, a class of algorithms,
such as those based on the classic PC algorithm (named after
its developers Peter Spirtes and Clark Glymour; Spirtes et al.,
2000; Tsamardinos et al., 2006; Scutari, 2010; Kalisch et al., 2012;
Colombo and Maathuis, 2014), have been developed in over
a decade to efficiently learn causal graphs for a large number
of nodes. These algorithms typically consist of two main steps
(Figure 2): (i) inferring the graph skeleton through a series of
statistical independence tests. The graph skeleton is the same
as the final graph except that the edges are undirected; and (ii)
determining the direction of the edges in the skeleton. Variants
of the original PC algorithm have been developed to reduce the
impact of the ordering of the nodes on inference (e.g., the R
package pcalg Kalisch et al., 2012; Colombo andMaathuis, 2014),
or to reduce the number of statistical tests needed for inferring
the skeleton (e.g., the R package bnlearn Tsamardinos et al., 2006;
Scutari, 2010).

Here we develop a new method, namely MRPC, which
incorporates the PMR into PC algorithms and goes beyond the
canonical causal model. MRPC learns a causal graph where
the nodes are genetic variants and molecular phenotypes (such
as gene expression), and where the edges between nodes are
undirected or directed, with the direction indicating causality.
Crucially, by combining the PMR with machine learning, our
method is efficient and accurate. Our extended interpretation
of the PMR can be thought of as a way of introducing useful
constraints in graph learning and effectively reducing the search
space of topologies.

METHODS

An Extended Interpretation of the Principle
of Mendelian Randomization (PMR)
Consistent with other PMR-based methods, we represent the
causal network among variables in terms of a set of marginal and
conditional dependencies. For example,Model 1 (V1→ T1→T2),
the canonical causal model, can be represented mathematically
as follows:

V1 and T1 are marginally dependent: V1⊥/ T1;
V1 and T2 are marginally dependent: V1⊥/ T2;
T1 and T2 are marginally dependent: T1⊥/ T2;
V1 and T2 are conditionally independent given
T1: V1⊥T2 | T1.

Defining causality through these dependencies means that if we
can establish the statistical dependencies, then we can make
causal statements.
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FIGURE 1 | Five basic causal relationships under the principle of Mendelian randomization. Each topology involves three nodes: a genetic variant (V1), and two

molecular phenotypes (T1 and T2). Directed edges indicate direction of causality, and undirected edges indicate that the direction is undetermined (or equivalently,

both directions are equally likely). For each topology (or model), a scatterplot between the two phenotypes is generated using simulated data, the topology is shown,

and the marginal and conditional dependence relationships are given. M0 is the null model where T1 and T2 are marginally independent, and therefore the scatterplot

does not show correlation. All the other models show scatterplots with similar levels of correlation. M1 is the canonical causal model.

The above model is under the standard interpretation of the
PMR. Causal Inference Test (cit; Millstein et al., 2009, 2016) and
Fast Inference of Networks from Directed Regulations (findr;
Wang and Michoel, 2017), two existing PMR-based methods
for example, both focus on testing this model. This model,
however, is rather limited. Here we extend the interpretation
of the PMR to consider five causal relationships in a triplet of
a genetic variant and two phenotypes, including the canonical
causal model (Figure 1). Under the assumptions that genotype
influences phenotype and not the other way around and that
confounding variables are absent, these five models are mutually
exclusive and encompass all possibilities, with Model 0 being the
null model where the two phenotype nodes are not related, and
the other four models being non-null models.

Each of the other possible causal relationships also
corresponds to a distinct set of marginal and conditional
dependencies (Figure 1). Among them, Model 2 (V1→ T1←T2)
defines a v-structure where both edges point to the same node.
This model is suitable when no genetic variant is available for
T2 in the data. This model is important to account for because
although gene regulation by genetic variants is widespread,
whether an eQTL is identified for a gene depends on the tissue
type, sample size, and so on (The GTEx Consortium, 2017).
Model 3 (V1→ T1 and V1→ T2) captures the scenario where

T1 and T2 are not directly related, but both regulated by V1. The
current interpretation of the PMR in other methods typically
rejects these two models in search of the canonical causal model
(Model 1). However, under our interpretation of the PMR,
Models 2 and 3 describe alternative regulatory mechanisms
between two genes, and therefore should also be allowed when
constructing the network of molecular phenotypes. Model 4
(V1→ T1; V1→ T2; T1-T2) refers to the case where the two
phenotypes T1 and T2 have additional dependence (represented
by the undirected edge) on top of that induced by the sharing
genetic variant. We consider undirected and bidirected edges to
be equivalent for simplicity, in that an undirected edge can be
thought of as representing two equally likely directions: T1→ T2

and T1←T2. It is plausible that a hidden variable regulates both
T1 and T2, or affects the triplet in other ways. We describe how
to identify and account for potentially confounding variables in
section Accounting for Confounding Variables.

MRPC, a Novel Causal Network Learning
Algorithm
Our method, namely MRPC, is a novel causal network
inference method for individual-level genomic data (Figure 2;
Figures S1, S2). This method analyzes a data matrix with each
row being an individual, and each column a genetic variant or a
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FIGURE 2 | The MRPC algorithm. The MRPC algorithm consists of two steps. In Step I, it starts with a fully connected graph shown in (1), and learns a graph

skeleton shown in (2), whose edges are present in the final graph but are undirected. In Step II, it orients the edges in the skeleton in the following order: edges

involving at least one genetic variant (3), edges in a v-structure (if v-structures exist) (4), and remaining edges, for which MRPC iteratively forms a triplet and checks

which of the five basic models under the PMR is consistent with the triplet (5). If none of the basic models matches the triplet, the edge is left unoriented (shown as

bidirected). (A) An example illustrating the algorithm. (B) The pseudocode of the algorithm. See details in Figure S1 and an example for Step II in Figure S2.

molecular phenotype. Similar to PC algorithms, our method also
consists of two main steps. The first step of learning the graph
skeleton is similar to that of PC algorithms: MRPC performs a
series of statistical tests for marginal or conditional dependence
in node pairs. If the dependence is not statistically significant,
then the edge between the two nodes is removed. Unlike existing
PC algorithms, though, MRPC implements an online control of
the False Discovery Rate (FDR), which is explained in detail in
the next section.

We incorporated the PMR in the second step of edge
orientation (Figure 2; Figure S2). In this step, we deal with
scenarios where the edge direction is more easily determined,
before moving onto difficult situations. Specifically, MRPC first
identifies edges involving the genetic variants and orient these
edges to point to the molecular phenotype. Next, MRPC looks
for three nodes that form a potential v-structure (e.g., Model
2 in Figure 1, or among three molecular phenotypes, T1→
T2←T3). The skeleton of a v-structure may be represented as
X–Y–Z, where each node may be a genetic variant or gene
expression. Four directed graphs are possible: (i) X→ Y←Z;
(ii) X→ Y→ Z; (iii) X←Y←Z; and (iv) X←Y→ Z. Graphs
(ii) through (iv) all represent conditional independence between
X and Z given Y, and are therefore indistinguishable (they are
termed Markov equivalent graphs; Richardson, 1997). Among
these four possibilities, only the v-structure in graph (i) is
uniquely determined. MRPC conducts additional conditional
independence tests between X and Z given Y, if no such test has
been performed in the first step. Among the remaining edges,

MRPC iteratively finds node triplets with only one undirected
edge. It examines the results from the independence tests from
the first step to identify which of the five basic topologies is
consistent with the test results for this triplet.

In MRPC, we use the standard Fisher’s z transformation for
Pearson correlation in all the marginal (Fisher, 1915) tests and for
the partial correlation in all the conditional tests. Consider testing
conditional (Fisher, 1924) independence between variables x and
y conditioned on a set S of other variables. From the correlation
matrix, one may estimate the partial correlations using an
iterative approach (Kalisch et al., 2012). Then application of
Fisher’s z transformation gives the test statistic

T =
√
n− |S| − 3

2
log

(

1+ r̂x,y|S
1− r̂x,y|S

)

,

which follows N(0,1) under the null hypothesis of conditional
independence. In the expression above, n is the sample size, and
|S| the number of variables in the set S, and r̂x,y|S the estimated
partial correlation. If the set S is empty, then we are testing
marginal independence.

Sequential FDR Control
Existing network inference algorithms (such as those
implemented in R packages pcalg and bnlearn) control the
type I error rate for each individual statistical test, but not the
Family-Wise Error Rate (FWER) or the FDR, as most methods
controlling both the FWER and FDR require the knowledge
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of the total number of tests, which is not known in advance in
graph learning. Lack of correction for multiple comparison often
leads to too many false edges in the inferred graph, especially
when the graph is large (see our simulation results below).

We implemented in MRPC the Levels based on Number
of Discoveries (LOND) method for controlling the FDR
in an online manner (Javanmard and Montanari, 2015), as
we generally do not know the number of tests beforehand
in learning the causal graph. The LOND method estimates
the expected FDR conditioned on the number of tests
performed so far and the number of rejections from these
tests. Specifically, consider a sequence of null hypotheses
(marginal or conditional independence between two molecular
phenotypes) H (m) = H1,H2,H3, . . . ,Hm, with corresponding
p-values p (m) = p1, p2, p3, . . . , pm. The LOND algorithm aims
to determine a sequence of significance level αi, such that the
decision for the ith test is

Ri =
{

1, if pi ≤ αi (reject Hi)
0, if pi > αi (accept Hi)

.

The number of rejections overm tests is then

D(m) =
∑m

i= 1
Ri.

For the overall FDR to be δ, the significance level αi is set to be

αi = δi
[

D(i−1) + 1
]

,

where the FDR for the ith test is

δi =
C

ia
,

such that

∑∞
i=1

δi = δ,

for integer a >1 and a constant c. We choose a nonnegative
sequence δi, such that

∑∞
i=1 δi = FDR. The default value for

a is set to 2 in MRPC. At an FDR of 0.05 and a = 2, we have

∞
∑

i=1
δi =

∞
∑

i=1

c

i2
= c

∞
∑

i=1

1

i2
= cπ2

6
= 0.05.

Then

c = 6× 0.05

π2
= 0.0304.

We provide an example of the LONDmethod in Table S1, where
values of δi and αi for the first 18 tests of analysis of a simulated
data set under the complex topology in Figure 3A are listed.
The larger a is, the more conservative the LOND method, which
means that fewer rejections will be made. We therefore used
a = 2 throughout simulation and real data analyses.

FIGURE 3 | Simulation setup to compare MRPC with other methods. (A)

Topologies used to generate synthetic data (section Generating Simulated

Data). (B) Table summarizing graphs to which each method under comparison

is applicable. *Note that QPSO does not learn the causal graph from scratch.

Instead, it takes a graph skeleton as the input and seeks the optimal

orientation of the edges in this undirected network. Edges involving genetic

variants need to be already oriented in the skeleton. Therefore, QPSO does

not identify M0 or M3.

Robust Correlation in the Presence
of Outliers
Genomic data may contain outliers (Badsha et al., 2013), which
can greatly distort the inferred graph (see our simulation results
below). Like the methods in pcalg, MRPC uses the correlation
matrix as input. We implemented in MRPC a method for
calculating the robust correlation matrix (Badsha et al., 2013) in
place of Pearson correlation to alleviate the impact of outliers
if they are present. Specifically, for data that are approximately
normal (usually after preprocessing of the data), we calculated
iteratively the robust mean vector µ and the robust covariance
matrix v until convergence. At the t+1st iteration,

µt+1 =
∑n

i=1 [ϕβ

(

xi;µt , vt
)

xi]
∑n

i=1 ϕβ

(

xi;µt , vt
) (1)

and

vt+1 =
∑n

i=1 [ϕβ

(

xi;µt , vt
) (

xi − µt

) (

xi − µt

)T
]

(1+ β)−1
∑n

i=1 ϕβ

(

xi;µt , vt
) , (2)
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where,

ϕβ (x;µ, v) = exp

(

−β

2
(x− µ)Tv−1(x− µ)

)

. (3)

In the equations above, xi is the vector of gene expression in
the ith sample, n the sample size, and β the tuning parameter.
Equation (3) downweighs the outliers through β , which takes
values in [0,1]. Larger β leads to smaller weights on the outliers.
When β = 0, equation (2) is similar to the standard definition of
the variance, except that the scalar is 1/n, whereas the unbiased
estimator of the variance has a scalar of 1/(n-1). When the data
matrix contains missing values, we perform imputation using the
R package mice (van Buuren and Groothuis-Oudshoorn, 2011).
Alternatively, one may impute the data using other appropriate
methods, and calculate the correlation matrix as the input
for MRPC.

When analyzing simulated data with no outliers, we set β = 0,
which is close to Pearson correlation. We set β = 0.005 if outliers
were included in simulation. On real data, we would usually
perform two analyses with β = 0 and β = 0.005. These two
values did not lead to different results in most cases.

Generating Simulated Data
We simulated data using linear models for the five basic
topologies, three common topologies in biology (Hunter, 2000;
Alon, 2007) (such as multi-parent, star, and layered graphs), as
well as a complex topology with over 20 nodes (Figure 3A). We
varied the sample size, as well as the signal strength through the
coefficients in the linear models.

In each topology, we simulated the data first for the nodes
without parents, and then for other nodes. Genetic variants are
nodes without parents, and we assume them to be biallelic with
three genotypes 0, 1, and 2. Denote the minor allele frequency by
q and assume Hardy-Weinberg equilibrium. Then the genotype
of the ith variant, Vi , follows a multinomial distribution:

Pr (Vi = 0) = (1− q)2, Pr (Vi = 1) = 2q
(

1− q
)

, Pr (Vi = 2) = q2.

Denote the jth molecular phenotype by Tj and the set of its parent
nodes by P, which may be empty, or may include variant nodes
or nodes of other molecular phenotypes. We assume that the
molecular phenotype Tj follows a normal distribution

Tj ∼ N

(

γ0 +
∑

k∈p
γkVk +

∑

l∈p
γlTl, σ

2
j

)

.

The variance may be different for different nodes. For simplicity,
we use the same value for all the nodes.

We treat undirected edges as bidirected edges and interpret
such an edge as an average of the two directions with equal
weights. For example, for the undirected edge in Model 4 in
Figure 1, we generate data for T1→ T2:

T1 ∼ N
(

γ0 + γ1V , σ
2
1

)

; T2 ∼ N
(

γ0 + γ1V + γ2T1, σ
2
2

)

,

and separately for T1←T2:

T1 ∼ N
(

γ0 + γ1V + γ2T2, σ 2
1

)

; T2 ∼ N
(

γ0 + γ1V , σ 2
2

)

.

We then randomly choose a pair of values with 50:50 probability
for each sample.

For simplicity in simulation, we set γ0 = 0 and all the other
γ ′s to take the same value, which reflects the strength of the
association signal. We considered three values for the slopes:
0.2 (weak signal), 0.5 (moderate signal), and 1.0 (strong signal).
We also varied the sample size: 50 (very small), 200 (small),
500 (medium), and 1,000 (large). Thus, we considered twelve
combinations of signal strength and sample size (Tables S2, S3).

Under each combination, we generated 1,000 data sets
for each topology. For each data set, which contains
both genotype and gene expression data, we shuffled the
columns corresponding to gene expression to generate
one data set with those columns reordered; if an inference
method is sensitive to the ordering of the columns, the
inferred graph would have a large variance across data
sets. We then applied each method to a data set with
permuted columns.

The simulation strategy described above assumes the same
signal strength (value of γ , the coefficient of the parent
node) across the network, which allows us to examine the
performance of the methods in simple and well-controlled
settings. For the complex topology, we further allowed the
values of γ to vary when generating data for each node. Each
γ has equal probability of taking on one of three values: 0.2,
0.5 and 1.0. Similar to the procedure described above, we
also generated 1,000 data sets with this strategy and applied
relevant methods.

Assessing the Inference Performance
To summarize the inference results, we computed the mean and
standard deviation of recall and precision across 1,000 data sets
for each method. Recall (i.e., power, or sensitivity) measures how
many edges from the true graph a method can recover, whereas
precision (i.e., 1-FDR) measures how many correct edges are
recovered in the inferred graph:

Recall = (# edges correctly identified in inferred graph) / (#
edges in true graph);

Precision = (# edges correctly identified in inferred graph) /
(# edges in inferred graph).
An edge needs to be identified to be present before its direction
determined. Therefore, we assign 1 to an edge with the correct
direction and 0.5 to an edge with the wrong direction or
no direction.

For all the topologies except M0 and M3 (which have no
edge between T1 and T2), we excluded edges involving genetic
variants when calculating recall and precision. This is because
our method sets constraints on these edges such that as long as
they are inferred to be present, they are always correctly oriented.
Consider the scenario where the true graph is M1 (V→ T1→
T2). Suppose that the inferred graphs are (i) V→ T1→ T2, and
V→ T2; (ii) V→ T1-T2; and (iii) V→ T1←T2. We exclude edges
V→ T1 and V→ T2 when calculating recall and precision. Then
recall is 1/1= 100%, 0.5/1= 50%, and 0.5/1= 50% for each of the
three inferred graphs, respectively, whereas precision is identical
to recall in this case.
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For data simulated under the null hypothesis (M0 andM3), we
assessed the inference performance through the empirical type
I error rate, where we counted how many times an edge was
inferred between T1 and T2, ignoring edges involving V.

Since eachmethod under comparison had recall and precision
over a large number of scenarios, we further summarized the
performance of each method by the median of recall and
precision across all topologies and all parameter settings. We also
calculated for each method the standard deviation in recall and
precision across all the scenarios.

Application of Other Methods
We compared MRPC with two popular network inference
algorithms, namely the Max-Min Hill Climbing (mmhc) method
(implemented in bnlearn) and the pc method (implemented in
pcalg), and three PMR-based methods, namely cit, findr, and
QTL+Phenotype Supervised Orientation (QPSO; Wang and van
Eeuwijk, 2014). Except for QPSO, which is implemented in
MATLAB, all the methods are implemented in R.

We applied each of these methods to the (simulated or real)
individual-level genotype and gene expression datamatrix, where
each row is an individual, and each column is a genotype or
gene expression variable. mmhc uses the above data matrix as
the input, whereas pc requires a correlation matrix derived from
the above data matrix as the input. We further experimented
with two settings of the pc function: the default (“PC”) and the
conservative (“PCcons”). QPSO requires a graph skeleton as the
input, which may be generated by pc or MRPC.

Unlike mmhc and pc that learn the graph skeleton first and
orient the edges next, findr and cit test for directed edges in a
single step for a triplet of nodes (the genetic variant and two
gene expression nodes). This means that in order to learn the
topology, we needed to examine all possible gene pairs (e.g., T1

and T2; and T2 and T1) and then apply findr or cit to the triplet
of each of the gene pairs and the genetic variant. To keep track
of the result for each gene pair, we used a K-by-K adjacency
matrix, where K is the number of nodes. Parent nodes are in
the rows and child nodes in the columns. The default values
are 0, which corresponds to no edge between any node pair.
Based on the hypothesis testing result from findr or cit, if there
was evidence for a directed edge between two nodes, we added
1 to the current value in the adjacency matrix for those two
nodes. Otherwise we left the value unchanged. After examining
all gene pairs, we converted all positive values in the adjacency
matrix to 1 to represent a directed edge. This way, no edges
inferred would be eliminated in later tests. We then calculated
recall and precision using the inferred adjacency matrix and
that of the true graph, and averaged the rates across simulated
data sets.

Although findr aims to compute a causality probability for
a triplet, its current implementation for this calculation cannot
be applied to small graphs, or cases where multiple genes share
the same eQTL and where some of the genes do not have
eQTLs. Specifically, we conducted five hypothesis tests (the p-
values from these five tests are then converted to a causality
probability) for each ordered gene pair with the genetic variant

(using the function findr.pijs_gassist_pv() from the R package
findr). Consider a triplet V1, T1 and T2. The null (H0) and
alternative (Ha) hypotheses of these five tests are:

Test #1: H0: V1 and T1 independent; Ha: V1→ T1;
Test #2: H0: V1 and T2 independent; Ha: V1→ T2;
Test #3: H0 (M1): V1→ T1→ T2; Ha: V1→ T1, V1→
T2, T1→ T2;
Test #4: H0 (M0): V1→ T1, both independent of T2; Ha:
V1→ T1, V1→ T2, T1→ T2;
Test #5: H0 (M3): V1→ T1, V1→ T2; Ha: V1→ T1, V1→
T2, T1→ T2.

We extracted the p values (i.e., pi, i = 1, . . . , 5) for the five tests.
The data supports M0, if p1 is less than, and p2 and p4 greater
than a certain threshold. The data supports M1, if p1 is less than,
and p3 greater than a certain threshold. The data supports M3,
if p1 and p2 are less than, and p5 greater than a certain threshold.
We determined the p-value threshold with Bonferroni correction,
dividing the desired threshold 0.05 by 5m, where m is the total
number of genes pairs, and each findr test contains five tests.

cit generates an omnibus p-value for testing whether the triplet
follows M1 (using the function cit.cp() from the R package
cit). Similarly, we determine the p-value threshold also with
Bonferroni correction (dividing 0.05 by the total number of
genes pairs).

We also assessed the inference accuracy when the graph
skeleton is known. In this case, the number of tests was reduced
to one on simple models (M0, M1, and M3), to four in the star
graph and to five in the layered graph. In other words, potential
regulators and targets are known to findr and cit. For MRPC,
however, we continued to assume that the skeleton was unknown.

Accounting for Confounding Variables
Confounding variables may lead to biased inference of the
topology. For example, if T1 and T2 in Model M3 (Figure 1)
are both regulated by another gene, then the network might
be wrongly inferred to be Model M4. Recently, Yang et al.
(2017) developed the GMAC (Genomic Mediation analysis
with Adaptive Confounding adjustment) method to explicitly
account for confounding when inferring the causal relationship
between the cis- and trans-target genes of the same eQTL.
The confounding variable was included in the analysis as an
additional node. Their analysis of real data indicated that
Principal Components (PCs) from the entire gene expression
matrix are reasonable candidates for confounding, as each PC is
a linear combination of a large number of genes, and therefore
represents a summary of potential impact from other genes
outside the triplet.

In our application here, we also performed Principal
Component Analysis (PCA) on the entire gene expression
matrix, and used the top PCs as potential confounders. For a
confounder to affect the causal inference, it should be associated
with the genes of interest. We examined the association between
each of the top 10 PCs and the eQTL-gene sets, identified
statistically significant associations, and then applied MRPC
jointly for the eQTL-gene set and the associated PC.
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RESULTS

MRPC Outperforms Existing Network
Inference Algorithms and PMR-Based
Methods on Synthetic Data in Overall
Accuracy
For each topology, we generated 1,000 data sets with different
combinations of signal strength and sample size, and ran MRPC,
mmhc, pc, cit, findr, and QPSO with their default parameters
wherever possible. We set the FDR level to be 0.05 for MRPC,
the type I error rate for each test to be the default value of 0.05 for
mmhc and pc, the FWER to be 0.05 for the Bonferroni correction
when using cit and findr. Additionally, when applyingMRPC, we
used Pearson correlation (β = 0) and the LOND method with
a = 2.

We compared the recall and precision across these methods.
For any method, the two rates generally improved with a
stronger signal strength or a larger sample size (Tables S2, S3). As
explained in section Assessing the Inference Performance, recall
measures power and precision is 1-FDR. High recall does not
suggest high precision, and vice versa. In our simulation study
here, however, most scenarios examined small graphs, and the
numbers of true and inferred edges were low. As a result, the
denominators in recall and precision tended to be close, and the
rates of recall and precision tended to be similar (Figures 4A–G).
We therefore further summarized the two metrics with the
median rates across all scenarios under comparison (Figure 4H).

Across different topologies and parameter settings, MRPC
had the highest median recall and precision, with both median
recall and median precision above 82%. MRPC was followed
by mmhc, QPSO, pc with two parameter settings, findr,
with cit trailing far behind (Figure 4H; Tables S2, S3). MRPC
recovered the true graph particularly well at moderate or
stronger signal with a medium or larger sample size. For the
complex topology, MRPC performed consistently better than
pc and mmhc. This is still the case when the signal strength
was heterogeneous across the complex topology (Figure S3).
To understand what caused low recall or low precision, we
examined some of the inferred graphs from different methods
and observed that pc could be unable to determine edge
directions or could wrongly identify v-structures when the true
model contained none (Figures S4–S6). Meanwhile, PMR-based
methods, such as findr and cit, could infer too many or too few
edges, whereas QPSO could not identify the direction correctly
(Figures S4–S6). We also summarized the median standard
deviation of recall and precision in Figure S7. Note that the
standard deviation in recall and precision reflected variation due
to both different data sets and different node orderings. Except
for QPSO, the methods under comparison did not differ much
in variation.

We next investigated the performance of these methods
when the true graph is M0 or M3, neither of which contains
an edge between the two gene nodes T1 and T2. These two
graphs are two types of nulls: T1 and T2 have no marginal
or conditional dependence in M0, whereas they have marginal
but not conditional dependence in M3. We simulated 1,000
data sets as described in section Generating Simulated Data for

FIGURE 4 | Recall and precision of different methods on simulated data.

(A–G) Mean recall and precision averaged over 1,000 data sets simulated with

four sample sizes and three signal strengths. see section Generating Simulated

Data for simulation details. See Tables S2, S3 for the mean and standard

deviation of recall and precision from each method in each of the scenarios.

(H) Median recall and precision over all parameter settings. We experimented

with two settings of the pc function: the default (“PC”) and the conservative

(“PCcons”). Since the default setting outperforms the conservative one, we

generally use only the default setting in other analyses. Note that only 20

datasets were used for QPSO in each parameter setting due to long runtime.

different settings and applied each of the methods (except for
cit and QPSO; Figure 3B). Since it is not sensible to calculate
recall or precision for these nulls, we calculated the rate of the
edge T1-T2 being inferred, which serves as the empirical type I
error rate (Table S4). As expected, this rate generally decreased
as the signal strengthened. When the sample size increases,
however, any statistical test is more likely to reject the null,
thus the empirical type I error rate does not necessarily have a
linear relationship with the sample size. Overall, findr with the
Bonferroni correction was the most conservative, with MRPC
being close. The mmhc and pc method had higher error rates,
although the rates were generally lower than 0.05, which was the
default type I error rate set for each test in these methods. This is
rather interesting, as both mmhc and pc involved multiple tests
for M0 and M3. This illustrates why controlling the error rate
is challenging in network inference, when the total number of
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tests is unknown beforehand, and when multiple tests may be
performed on the same edge.

We further assessed the performance in the presence of
outliers. Here, we focused on the complex topology and replaced
10 data points in each simulated data set with data generated
from a uniform distribution. We applied MRPC with robust
correlation (β = 0.005), as well as mmhc and pc with the default
parameters as before. We also calculated recall and precision for
the inferred graphs. MRPC with robust correlation substantially
outperformed pc and mmhc (Figure S8).

In terms of speed, our method can be 2–40 times faster than
cit and 2–3 orders of magnitude faster than QPSO, but 3–8
times slower than mmhc, 7–20 times slower than pc, and 1–2
orders of magnitude slower than findr (see runtime comparison
in Table S5). Since QPSO is at least an order of magnitude slower
than other methods, we calculated recall and precision only for
20 (instead of 1,000) data sets in simulation for QPSO, which
therefore had a larger standard deviation in recall and precision
as explained above (Figure S7).

Existing PMR-Based Methods Cannot Deal
With Complex Causal Relationships
We examine the performance of PMR-based methods more
closely in this section. Since cit and findr focus on Model 1,
the topologies they can identify are limited to those that involve
primarily Model 1, such as the star graph and the layered
graph: the star graph consists of four M1s, and the layered
graph five (Figure 3A). The findr method can also be used to
identify M3.

Unlike MRPC, which is agnostic about which genes may be
potential regulators and which potential targets, findr and cit are
applied to ordered gene pairs iteratively, requiring specification
of which of the two genes is the potential regulator and which the
target. For example, to test whether the data are simulated under
M1, then findr and cit will be performed twice, on (V1, T1, T2)
and then on (V1, T2, T1). The number of ordered gene pairs is

2 ×
(

5
2

)

= 20 for the star graph and 2 ×
(

7
2

)

= 42 for the

layered graph. We applied Bonferroni correction with a family
wise type I error rate of 0.05. Take again the star model with a
sample size of 1,000 for example. Although Bonferroni correction
is already a conservative method for multiple testing, findr still
sometimes inferred more edges than there are (summarized by
the lower precision in Figure 4H), whereas cit could infer a very
dense graph or no edges at all (summarized by low recall and
low precision in Figure 4H; also see examples in Figures S4–S6).
Even when the graph skeleton was known, findr and cit still did
not outperform MRPC in nearly all cases (Figures S9, S10).

Similar to MRPC, QPSO also has connections to PC
algorithms. However, QPSO does not infer a graph skeleton.
Instead, it requires a graph skeleton as the input and seeks
the optimal orientation of the edges, its performance therefore
depending heavily on how well the skeleton is inferred. Whereas,
the authors of QPSO used pc to generate the skeleton, we used
MRPC to generate the input, having observed the unsatisfactory
performance of pc. With a more accurate skeleton, QPSO is still
lacking both in recall and in precision in general (Figure 4H).

Application of MRPC to Distinguishing
Direct and Indirect Targets of eQTLs
Analysis of the GEUVADIS Data
A single eQTL can be statistically associated with the expression
of multiple genes. For such eQTLs, we are interested in
identifying true targets and understand how multiple targets

regulate one another. Multiple genes are potential targets often
because these genes are physically close to one another on the

genome, and the eQTL analysis usually examines the association

between one Single Nucleotide Polymorphysim (SNP) and one
gene at a time, ignoring dependence among genes.

The GEUVADIS project (Lappalainen et al., 2013; see
Web Resources) performed RNA-seq (gene expression) in
Lymphoblastoid Cell Lines (LCLs) on a subset of individuals

from the 1,000 Genomes Project, including 373 Europeans.
Combining the gene expression data with the genotype data from

the 1,000 Genomes Project, the GEUVADIS project identified
eQTLs across the human genome. Among the most stringent set
of eQTLs, 62 have more than one target gene.

We appliedMRPC to each of these eQTLs and their associated

genes in the 373 Europeans, and identified 10 types of topologies
(Figure 5; Table S6; also see comparison with mmhc and pc
for some of the eQTL-gene sets in Figure S11). Three of these

10 types were Models 1, 3, and 4 shown in Figure 1. Seven
other topologies were identified for eight eQTLs each with three
associated genes (Table S6).

Although the multiple associated genes of the same eQTL

are physically near one another, our method showed promise
in teasing apart the different dependence (or regulatory

relationships) among these genes. For example, the SNP rs479844
(chr11:65,784,486; GRCh38), one of the 62 eQTLs, is significant

in at least three GWASs for atopic march and more specifically,
atopic dermatitis (p- values ranging from 10−10 to 10−18)
(Paternoster et al., 2011, 2015; Marenholz et al., 2015; MacArthur
et al., 2017). This SNP has been linked with two genes, AP5B1
(chr11:65,775,893-65,780,802) and OVOL1 (chr11:65,787,022-
65,797,219), in these GWASs, but it is unclear which is the
real target. Our MRPC inferred Model 1 for the triplet:
rs479844→ OVOL1→ AP5B1 (Figure 5A), which suggests
that OVOL1 is more likely to be the direct target, and AP5B1
the indirect one. Meanwhile, for HLA-DQA1 (chr6:32,637,403-
32,654,846) and HLA-DQB1 (chr6:32,659,464-32,666,689), both
genes are associated with the SNP rs9274660 and located in
the major histocompatibility (MHC) region of high linkage
disequilibrium. As expected, MRPC inferred an undirected edge
between the two genes, as the information on the two genes
is highly symmetric in the genotype and gene expression data.
By contrast, mmhc and pc often mis-specified edges or their
directions (Figure S11).

We performed bootstrap to assess the accuracy in inferred
edges (Figure 5B). For each eQTL-gene set, we resampled the
individuals with replacement 200 times, and applied MRPC to
each of the bootstrap samples. We averaged all the topologies
(represented by adjacency matrices) such that the resulting
matrix contained proportions of the corresponding edges being
present. These proportions are estimated probabilities of the edge
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FIGURE 5 | MRPC distinguishes direct and indirect target genes of eQTLs in the GEUVADIS data for the European cohort. (A) rs479844 is a GWAS significant SNP

for atopic march in the GWAS Catalog, and an eQTL identified in GEUVADIS for two genes. (B) MRPC learns 10 distinct topologies among associated genes for

eQTLs. Numbers on edges are proportions of the corresponding directed edge being present in a bootstrap sample of 200. The number in parentheses under each

topology is the number of eQTL-gene sets with the corresponding inferred topology.

being present. Most of these bootstrap probabilities are above
50%, providing support to the inferred networks.

Examining the Impact of Confounding
We performed PCA on the expression of all the genes among
European samples in the GEUVADIS consortium, and examined
whether top PCs are correlated with the eQTLs. If not, then
Assumption (1) in the PMR is satisfied. Note that in this
paragraph the abbreviation PC refers to principal component, not
the algorithm.We calculated Pearson correlation between each of
the top 10 PCs and each of the eQTLs and genes (194 variables
in total) on which we applied MRPC (Figure S12), and tested
whether these pairwise correlations were statistically significant
(FDR=0.05 with the q value method). Among the 186 significant
correlations, none was between a PC and an eQTL. To further
examine the impact of the PCs on genes, we selected from the
186 significant correlations the top 98 based on the magnitude of
the correlation (|r|>0.3), which involved 32 eQTL-gene sets and

7 PCs. Since a PC could be associated with one or more genes in
an eQTL-gene set, we applied MRPC to each of these 32 eQTL-
gene sets together with the associated PCs, and examinedwhether
incorporating the PCs changed the inference of the topologies.
PCs may be associated with the genes in different ways, but none
of them changed the topology inferred for the eQTL-gene sets
(Figure S13).

Replication Analysis Using GTEx
Since the GTEx consortium (The GTEx Consortium, 2017)
contains data also from LCLs, we next examined whether the
causal relationships inferred from the GEUVADIS data may be
replicated in the LCL samples from GTEx.

The GTEx consortium has profiled genotypes and gene
expression levels in 53 tissues across 714 donors (Release
V7, dbGaP Accession phs000424.v7.p2; https://www.gtexportal.
org/home/). We extracted the gene expression data of the
LCLs, and the genotype data of the eQTLs used in the
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GEUVADIS analysis. We applied PEER (probabilistic estimation
of expression residuals) normalization (Stegle et al., 2012) (with
15 PEER factors) to the gene expression (following the procedure
provided by the authors of the PEER package at https://github.
com/PMBio/peer/wiki/Tutorial), such that the expression data
were processed in the same way as the GEUVADIS gene
expression data. Since GTEx uses chromosome locations to
identify genetic variants, we extracted the coordinates of the
GEUVADIS eQTLs in Ensemble (GRCh 37; https://grch37.
ensembl.org/index.html) using the rs IDs of the eQTLs. Not all
GEUVADIS eQTLs can be found in the GTEx samples. Among
eQTLs that can be found in the GTEx samples, not all their
associated genes have expression measurements. In the end, we
found 46 eQTL-gene sets with data available in both GEUVADIS
and GTEx LCLs (Table S6). For each of these sets, we ran
MRPC with an FDR of 0.05, and summarized the results in
Tables S7–S11. For those sets that were inferred to have an M1
model byMRPC in GEUVADIS, we also ran findr and cit on each
set to test whether there is a causal model as in V1→ T1→ T2 or
V1→ T2→ T1 (Table S7).

However, the sample size of 117 is much smaller in the
GTEx LCL samples, which reduces the expected number of
causal relationships to be replicated. We therefore took two
approaches in the replication analysis: the first approach was
applying MRPC directly to the GTEx sample of each eQTL-gene
set. If the topology inferred from the GEUVADIS data was not
replicated, we applied the second approach of resampling from
the GTEx sample with replacement, such that the sample size
became comparable to GEUVADIS. We then applied MRPC to
the resampled GTEx data. The latter approach is justifiable here
because we often observed similar correlation patterns between
GEUVADIS and GTEx for the same eQTL-gene set, suggesting
that the two data sets carry similar information about the gene
network. Simply because the sample size in GTEx is lower than
that in GEUVADIS, MRPC tended to infer fewer edges from
GTEx than from GEUVADIS, and the resulting topology was
often part of the topology inferred from GEUVADIS.

For eQTL-gene sets that were inferred to have an M1 model
in GEUVADIS by MRPC, we applied findr and cit, in addition
to MRPC, for comparison. Fourteen eQTL-gene sets with an
M1 model have the genotype and gene expression data in
both GEUVADIS and GTEx LCL samples. MRPC replicated the
topology for 12 sets, findr 13 and cit only 5 (without and with
up-sampling; Table S7), consistent with our expectation based
on our simulations (Figure 4H): whether the graph skeleton
is known or not, MRPC and findr had similar performance
on M1 across different sample sizes and signal strengths, both
methods being much better than cit. In particular, we replicated
the relationship rs479844→ OVOL1→ AP5B1 with both MRPC
and findr in the GTEx LCL samples.

Among eQTL-gene sets with otherMRPC-inferred topologies,
nine sets inferred to have an M3 model also had data in GTEx
and seven of them were replicated by MRPC (Table S8). Sixteen
sets inferred to have an M4 model also had data in GTEx and
six were replicated (Table S9). Four sets inferred to have three-
node alternative topology (Figure 5B) had data in GTEx and
all of them were replicated (Table S10). Among the eight sets

involving three genes, three sets had data in both GEUVADIS
and GTEx, and one was replicated (Table S11). However, most
of the edges in these sets had high bootstrap probabilities, and
MRPC inference for these sets was not affected by potentially
confounding variables.

For the eQTL-gene sets whose topologies were not replicated
in GTEx, it turned out that the correlation patterns were vastly
different in these sets between the two consortia, even when the
ethnicity (European), tissue type (LCLs) and data normalization
method (PEER normalization on the gene expression data)
were the same (see examples in Figure 6). For these genes,
the overall correlation patterns are much weaker in the GTEx
data than in the GEUVADIS data (Figures 6A,B). In contrast,
the correlation patterns in eQTL-gene sets whose topologies
were replicated in GTEx are similar in the two consortia
(Figures 6C–E). One possible explanation for the differences in
correlation patterns of some genes is measurement errors, in
particular, the type of measurement error that may be gene-
specific. Additional investigations are needed to understand
these errors, and better normalization or estimation methods are
needed to systematically adjust for these errors, such that more
accurate estimates of correlations are available not only for causal
inference, but also for other analyses based on correlations. On
the other hand, these correlation heatmaps further confirmed
that our MRPC inference is consistent with the correlation
patterns: if the correlation patters are similar in the two data sets,
then MRPC will infer the same topology (Figure 7).

DISCUSSION

In summary, we have developed MRPC to infer causal networks.
Our MRPC method examines a variety of causal relationships
implied by the PMR, and takes advantage of the development
of machine learning algorithms for causal graph inference.
MPRC integrates genotypes with molecular phenotypes, and can
efficiently and accurately learn causal networks. Our method is
flexible as it requires only the genotype data (SNPs or other types
of variants) and the molecular phenotype measurements (gene
expression, or other functional data, such as exon expression,
RNA editing, DNA methylation, etc.), and can be applied to a
wide range of causal inference problems. Ourmethod is also non-
parametric in that no explicit distributions are assumed for the
underlying graph. MRPC uses individual-level genomic data to
learn plausible biological mechanisms from combining genotype
and molecular phenotypes.

Two features distinguish MRPC from existing methods. First,
MRPC accounts for all possible causal relationships that a triplet
with a genetic variant can have under the PMR. This extended
interpretation of the PMR allows MRPC to go beyond the
canonical causal model examined by other PMR-based methods
and can deal with networks of realistic causal relationships.
Computationally, incorporation of the PMR puts constraints on
the space of possible graphs and allows for efficient search of
graphs consistent with the data. Second, MRPC implements an
online FDR control method (the LONDmethod), which controls
the overall error rate and helps reduce false positives. To our
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FIGURE 6 | Correlation heatmaps of five eQTL-gene sets using the GEUVADIS data and independently using the GTEx data. Both data sets have been PEER

normalized. The top two sets were not replicated in GTEx: (A) SNP rs147156488, and (B) SNP rs3858954. The bottom three sets were replicated in GTEx: (C) SNP

rs11305802 (replicated with upsampling), (D) SNP rs2487161 (replicated without upsampling), and (E) SNP rs7585737 (replicated with upsampling).
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FIGURE 7 | Topologies inferred by MRPC on GEUVADIS and GTEx data for

three eQTL-gene sets in Figures 6A–C. Three target genes have been

identified for each of these eQTLs. When the correlation patterns were

qualitatively different in the two consortia for the first two sets (A, B), MRPC

could not replicate the topologies but instead produced graphs consistent

with the correlation patterns. On the other hand, when the correlation patters

were similar (C), MRPC replicated the topology. Upsampling was used in the

MRPC inference for the GTEx data to compensate for a smaller sampler size.

knowledge, this is the first time an online FDR control method is
incorporated into a network inference method. General methods
implemented in bnlearn and pcalg for learning DAGs do not
control the overall error rate; instead, they control the type I
error rate only for each individual test no matter how many tests
are conducted. On the other hand, in cit and findr, one may
control the FWER with Bonferroni correction or the overall FDR
with regular FDR control methods (e.g., the Benjamini-Hochberg
method, the q value method, etc.). However, this is because
cit and findr can infer only one or two causal relationships.
The total number of hypothesis tests can therefore be known
beforehand. As our simulation demonstrated, false positive edges
are a severe problem in other methods, whether they are based
on the PMR or not. MRPC with the LOND method showed
promising performance in reducing false positives, although it
still needs much improvement in order to have better control
of the overall error rate, especially when the signal is weak, or
when the sample size is small. Indeed, the comparison of recall,
precision and type I error in our simulation study showed that it
is a challenge to control the overall error rate (FDR or FWER) in
network inference, not only because the control has to be done in
an online manner (with the total number of tests being unknown
beforehand), but also because of the dependence among tests,
as well as different types of dependence induced by different
topologies (Ramdas et al., 2019).

Although our MRPC employs the PMR, it is fundamentally
different from other PMR-based methods. Most of the methods
incorporating the PMR fall into two classes. One class, including
cit and findr, is called mediation-based methods that require

individual-level data, generally do not estimate the causal effect
sizes, and can infer networks of multiple phenotypes (e.g., a
network of gene expression). The other class of methods are
called MR methods (Hemani et al., 2017) that can be applied to
individual-level data as well as summary statistics, estimate the
causal effect sizes, and generally focus on three-node graphs with
one node being the genetic variant, and the other two nodes
being phenotypes of interest. Both classes of methods employ the
PMR and focus on the canonical causal model, in which exposure
acts as the mediator. Although our MRPC method is closer to
the mediation-based methods according to the characteristics
described above, the notion of “mediation” is less relevant to our
method; only Model 1 considers the canonical causal model, and
therefore one of the two genes acts as the mediator (Figure 1).
More importantly, with our method we consider the PMR as a
way to define plausible causal relationships and to put constraints
on the space of possible graphs. As a result, our method can
recover a variety of causal relationships, instead of the few that
other PMR-based methods can identify (Figure 3B).

Built on the PC algorithm, MRPC also enjoys the statistical
properties of this algorithm in inferring causal graphs. A causal
graph with a mixture of directed and undirected edges is
essentially an equivalent class of directed acyclic graphs (DAGs)
that have the same likelihood. However, the search problem of
learning theDAGwith the highest likelihoodwhen the number of
parent nodes is>1 has been proven to be NP-complete (Hoffgen,
1993), the hardest computational problem; NP stands for non-
deterministic polynomial time. An NP-complete problem means
that i) its solution may be verified in polynomial time although
the solution is difficult to determine, and ii) similar problemsmay
be reduced to this problem in polynomial time. Learning even
just the equivalent classes of a DAG with the number of parent
nodes being >1 is also NP-complete (Chickering, 1996), as the
space of equivalent classes of DAGs is super-exponential (Kalisch
and Bühlmann, 2007) in the number of nodes. Therefore, the PC
algorithm and similar algorithms get around the computational
issue with local searches. Although it is not known theoretically
that these PC algorithms achieve the global optimality defined
by, for example, the likelihood, it has been shown that the PC
algorithm is consistent (Kalisch and Bühlmann, 2007): with a
large sample size, the PC algorithm is expected to recover the true
graph. In particular, consistency of the PC algorithm is essentially
consistency of the step of graph skeleton inference, as this step
contains all the statistical inference (Meek, 1995). Since MRPC
uses essentially the same procedure for skeleton inference as the
PC algorithm, MRPC is also consistent.

As general-purpose DAG inference methods, mmhc and pc
allow for directions of certain edges to be fixed before inference.
However, this option also means that the corresponding edges
are guaranteed to be in the inferred graph, even if the data
provides no evidence for such presence. This is particularly
problematic in our analysis of the GEUVADIS data, as in each
eQTL-gene set, all the genes are targets with strong association
with the eQTL; otherwise, these genes would not have been
identified to be targets. Using mmhc and pc with fixed edge
directions will result in graphs with edges connecting the eQTL
with all the genes, when our goal is to distinguish which of
these edges may be explained away by other genes. This further
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illustrates the flexibility of our MRPC method, which fixes
directions of certain edges while still assessing the evidence in
the data for the presence of these edges.

MRPC currently does not directly deal with multiple genetic
variants associated with the same molecular phenotype. For
network inference, we recommend using the variant with the
strongest association, or merging the multiple variants to create a
haplotype variant with the haplotypes being the new genotypes
(e.g., two SNPs in linkage disequilibrium, each having three
genotypes, can be merged into one variant with genotypes 00, 01,
02, 10, 11, 12, 20, 21, and 22).

Here, we demonstrated the outstanding performance of
MRPC on small to moderately-sized graphs. Additional work
is needed to extend the ability of MRPC to larger graphs while
retaining inference accuracy. Indeed, apart from mmhc and pc,
other existing methods for inferring large causal graphs also tend
to have high false positive rates: for example, the TRANSWESD
(TRANSitive Reduction in WEighted Signed Digraphs; Flassig
et al., 2013) method developed for the DREAM5 (Fifth Dialogue
on Reverse Engineering Assessment and Methods) Systems
Genetics Challenge A (a network of 1,000 SNPs and 1,000 genes
with directed and undirected edges) showed better performance
than other participating method for this challenge. However,
even TRANSWESD has an actual FDR as high as 64% at a large
sample size of 999, suggesting that much work is still needed to
accurately infer a large causal graph.

Like most PMR-based methods, we assume that the three
assumptions of the PMR are satisfied (see Introduction).
Whereas, Assumptions (i) and (ii) are easier to establish through
stringent tests for association between genetic variants and genes,
Assumption (iii) is harder to achieve. Here, we took an approach
inspired by the GMAC method (Yang et al., 2017) to examine
the impact of confounding variables on the inferred graphs. As
the next step, we are working on extensions of MRPC to more
systematically and explicitly account for confounding variables
during the causal network inference.

WEB RESOURCES

MRPC: https://cran.r-project.org/web/packages/MRPC/index.
html
pcalg: https://cran.r-project.org/web/packages/pcalg/index.html
bnlearn: https://cran.r-project.org/web/packages/bnlearn/index.
html
cit: https://cran.r-project.org/web/packages/cit/index.html
findr: https://github.com/lingfeiwang/findr
GTEx: https://www.gtexportal.org/home/datasets
GEUVADIS: http://www.ebi.ac.uk/Tools/geuvadis-das/
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