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Breast cancer tumors display different cellular phenotypes. A growing body of
evidence points toward a population of cancer stem cells (CSCs) that is important
for metastasis and treatment resistance, although the characteristics of these cells
are incomplete. We used mammosphere formation assay and label-retention assay
as functional cellular approaches to enrich for cells with different degree of CSC
properties in the breast cancer cell line MDA-MB-231 and performed single-cell RNA
sequencing. We clustered the cells based on their gene expression profiles and
identified three subpopulations, including a CSC-like population. The cell clustering into
these subpopulations overlapped with the cellular enrichment approach applied. To
molecularly define these groups, we identified genes differentially expressed between
the three subpopulations which could be matched to enriched gene sets. We also
investigated the transition process from CSC-like cells into more differentiated cell
states. In the CSC population we found 14 significantly upregulated genes. Some of
these potential breast CSC markers are associated to reported stem cell properties and
clinical survival data, but further experimental validation is needed to confirm their cellular
functions. Detailed characterization of CSCs improve our understanding of mechanisms
for tumor progression and contribute to the identification of new treatment targets.

Keywords: breast cancer, cancer stem cell, cell proliferation assay, mammosphere assay, single-cell analysis,
single-cell RNA sequencing

INTRODUCTION

Breast cancer is the most common cancer type affecting women worldwide and is one of the main
causes of cancer-related deaths in women (Torre et al., 2015). It is a complex disease with many
subtypes differing in prognosis and treatment options. Currently, breast cancer can be divided
into four intrinsic subtypes; Luminal A, Luminal B, HER2-enriched and basal-like. The subtypes
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are further subgrouped based on their expression pattern of
proliferation marker Ki67, HER2, and the hormone receptors ER
(estrogen receptor) and PgR (progesterone receptor) (Reis-Filho
and Pusztai, 2011; Senkus et al., 2013). Breast cancer displays both
large inter- and intra-tumor heterogeneity, where each tumor
contains small subpopulation of cancer stem cells (CSCs) that
drive tumor progression. Similarly to normal stem cells, CSCs
are able to self-renew and can give rise to progenitor cells as
well as more differentiated cells (Reya et al., 2001; Beck and
Blanpain, 2013; Kreso and Dick, 2014). It is also known that CSCs
are important for metastasis and therapy resistance in breast
cancer (Al-Hajj et al., 2003; Bhola et al., 2013; Lawson et al.,
2015). Hence, detailed understanding of CSCs is important when
developing novel treatment strategies.

Breast CSCs display several cellular features that can be used
to enrich for this specific subpopulation. CSCs, in contrast to
other tumor cells, display the ability to initiate tumor formation
in immunodeficient mice (Al-Hajj et al., 2003). CSCs are also
connected to therapy-resistance (Fillmore and Kuperwasser,
2008). Another property of CSCs is their ability to proliferate and
differentiate under non-adherent cell culture conditions, which
is used in the mammosphere formation assay (Dontu et al.,
2003). Studies have also shown that CSCs, similarly to normal
stem cells, often have a slow-dividing, and sometimes quiescent,
phenotype (Dembinski and Krauss, 2009; Pece et al., 2010; Lyle
and Moore, 2011). This cellular feature can be assessed with
label-retention assays, where the ability of cells to maintain high
amounts of an incorporated dye indicates few cell divisions (Lyle
and Moore, 2011). Specific expression of cell surface markers,
like CD44+/CD24−/low (Al-Hajj et al., 2003), and activity of
aldehyde dehydrogenase (Ginestier et al., 2007) are also useful
when enriching for CSCs. However, all these features are not
unique to CSCs but shared by other cells too, limiting their use.

Most performed breast CSC studies are on populations of cells
that cannot reveal any information about CSC heterogeneity.
Single-cell analysis overcomes this obstacle. In breast cancer,
single-cell gene expression analysis have been used to study,
for example, metastatic potential (Lawson et al., 2015; Nguyen
et al., 2016), drug response (Lee et al., 2014; Savage et al., 2017),
intratumoral heterogeneity (Chung et al., 2017), and cell state
transitions (Akrap et al., 2016).

In this study, we first enriched for breast CSCs by
collecting slow/non-dividing MDA-MB-231 cells, identified by
a label-retention assay, that formed mammospheres in non-
adherent cell culture conditions. We then performed single-
cell RNA sequencing and used single-cell algorithms to
define CSC subpopulations. We also studied CSCs transition
into more differentiated cells and identified potential breast
CSC-specific biomarkers.

MATERIALS AND METHODS

Cell Culture
MDA-MB-231 luciferase cells were cultured in DMEM medium
(Lonza) supplied with 10% FBS (Gibco, Thermo Fisher
Scientific), 1% penicillin/streptomycin (Gibco, Thermo Fisher

Scientific), 1 × MEM Non-essential Amino Acid Solution
(Sigma-Aldrich), and 1% L-glutamine (GE healthcare). When
passaging, cells were washed with DPBS (Gibco, Thermo Fisher
Scientific) and detached using 0.25% trypsin (Gibco, Thermo
Fisher Scientific) supplemented with 0.5 mM EDTA (Invitrogen,
Thermo Fisher Scientific).

Cell Proliferation Staining and
Mammosphere Formation Assay
Cells were stained with PKH26 Red Fluorescent Cell Linker Kit
(Sigma-Aldrich), according to the manufacturer’s instructions
with some modifications. Briefly, cells were trypsinized and
washed once with serum-free media. 1 × 106 cells were
resuspended in 1 ml Diluent C and then mixed with 1 ml Diluent
C containing 2 µM PKH26. After 3 min in room temperature the
staining was inactivated by addition of 2 ml FBS (Gibco, Thermo
Fisher Scientific) for 1 min in room temperature. Cells were then
centrifuged for 10 min at 300 g and washed 3 times with 5 ml
complete medium. For each wash, cell suspension was transferred
to a clean tube. Finally, cells were resuspended in 1 ml DPBS.

For non-adherent mammosphere formation assay, single
cells were generated using a 25G needle (HSW FINE-JECT).
90,000 cells were added to T175 flasks (TPP) pre-coated with
1.2% poly(2-hydroxyethyl methacrylate) (Sigma-Aldrich) in 95%
ethanol (Apoteket) using 30 ml phenol-red free DMEM/F-
12 medium supplied with 2% B-27 supplement (both Gibco,
Thermo Fisher Scientific), 1% penicillin/streptomycin and
20 ng/ml epidermal growth factor (Corning).

After 120 h, spheres were carefully collected with a pipette
and centrifuged for 3 min at 10 g to include spheres, but avoid
single cells. The supernatant was discarded leaving 2 ml of media
in the bottom of the tube. Mammospheres from 6 T175 flasks
were pooled and then centrifuged for 5 min at 120 g. The cells
were resuspended in 0.25% trypsin followed by 3 min incubation
at 37◦C. A single-cell suspension was obtained using a 25G
needle and trypsin was inactivated using complete medium. Cells
were centrifuged for 5 min at 580 g, washed once with DPBS,
centrifuged for 5 min at 300 g and resuspended in DPBS supplied
with 2% bovine serum albumin (Sigma-Aldrich). Finally, cells
were filtered through a 70 µm cell strainer into a FACS tube (both
Falcon, Corning) and kept on ice until sorting.

Cell Cycle Staining
To sort cells in the G1 cell-cycle phase, cells were trypsinized
and 1 × 106 cells/ml were resuspended in Hanks’ balanced
salt solution (Gibco, Thermo Fisher Scientific) and stained for
nuclear DNA using Vybrant DyeCycle Violet stain (Invitrogen,
Thermo Fisher Scientific) using a final concentration of 5 µM for
30 min at 37◦C. After staining, cells were resuspended in Hanks’
balanced salt solution and filtered through a 70 µm cell strainer
into a FACS tube. Cells were kept on ice until sorting.

Single-Cell Sorting
Single cells were sorted using a BD FACSAria II instrument
and the FACSDiva software (both BD Biosciences). Single cells
with high or low PKH26 intensity or with low intensity of
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Vybrant DyeCycle Violet were sorted into 96-well PCR plates
(Applied Biosystems, Thermo Fisher Scientific) containing 5 µl
lysis buffer containing 1 µg/µl BSA supplied in 2.5% glycerol
(Thermo Scientific, Thermo Fisher Scientific) and 0.2% Triton X-
100 (Sigma-Aldrich). Three wells were kept with only lysis buffer
as cell-free controls. After sorting, plates were immediately frozen
on dry ice and stored in−80◦C.

RNA Sequencing
The Smart-seq2 protocol was used to generate a sequencing
library (Picelli et al., 2014). Reverse transcription was performed
directly on the 96-well plates with collected cells. First,
1 µM of an adapter sequence-containing oligo-dT30VN (5′-
AAGCAGTGGTATCAACGCAGAGTACT30VN-3′), 1 mM
dNTP (both Sigma-Aldrich), and 0.04 µl of a 1:100,000 dilution
of ERCC RNA Spike-In Mix 1 (Ambion, Thermo Fisher
Scientific) were added to the sample followed by incubation
at 72◦C for 3 min and cooling to 4◦C. Next, 1 × first-
strand buffer (50 mM Tris–HCl pH 8.3, 75 mM KCl, and
3 mM MgCl2), 5 mM dithiothreitol (both Invitrogen, Thermo
Fisher Scientific), 10 mM MgCl2 (Ambion, Thermo Fisher
Scientific), 1 M betaine (Sigma-Aldrich), 0.6 µM adapter
sequence-containing template switching oligonucleotides (5′-
AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3′ with
rG = riboguanosine and +G = locked nucleic acid modified
guanosine, Eurogentec), 15 U RNaseOUT and 150 U SuperScript
II (both Invitrogen, Thermo Fisher Scientific) were added to a
final volume of 15 µl. Reverse transcription was performed in
a PTC-200 instrument (MJ Research) at 42◦C for 90 min and
70◦C for 15 min. cDNA was stored at −20◦C. Concentrations
indicated refer to the final reverse transcription reaction.

Preamplification was performed in a 50 µL reaction
containing 1 × KAPA Hifi HotStart ReadyMix (KAPA
Biosystems), 0.1 µM primer (5′-AAGCAGTGGTATCAACGC
AGAGT-3′; Sigma-Aldrich) and 7.5 µl cDNA. Preamplification
was performed in a PTC-200 instrument at 98◦C for 3 min
followed by 23 cycles of amplification at 98◦C for 20 s, 67◦C for
15 s, and 72◦C for 6 min and a final additional incubation at
72◦C for 5 min. Samples were transferred from 72◦C directly to
dry ice and stored at−20◦C.

Concentration and quality of preamplified cDNA were
assessed with Agilent High Sensitivity DNA Kit on a 2100
Bioanalyzer Instrument (Agilent Technologies). To determine
the concentration range of the samples, 33 randomly selected
samples were analyzed. Based on these concentrations, 2 µl
preamplified cDNA was diluted 1:100 in RNase/DNase-free water
(Invitrogen, Thermo Fisher Scientific) and 2 µl diluted sample
was used for tagmentation and indexing, in order to not exceed
100 pg cDNA. In total, 52 each of high and low intensity of
PKH26 and 31 G1 cells, were further processed. Tagmentation
and indexing were performed using Nextera XT DNA Library
Preparation Kit and Nextera XT Index Kit v2 (Illumina). To each
sample, 10 µl Tagment DNA Buffer and 5 µl Amplicon Tagment
Mix was added in a total volume of 20 µl and tagmentation was
performed in a PTC-200 instrument at 55◦C for 5 min followed
by cooling to 10◦C. 5 µl Neutralize Tagment Buffer was added
followed by centrifugation for 1 min at 1100 rpm and 5 min

incubation at room temperature. A mixture of 15 µl Nextera PCR
Master Mix and 5 µl of each index 1 (i7) and index 2 (i5) adapters
was added to a total volume of 50 µl. Library amplification was
performed in a PTC-200 instrument at 72◦C for 3 min, 95◦C for
30 s followed by 16 cycles of amplification at 95◦C for 10 s, 55◦C
for 30 s, and 72◦C for 30 s and a final additional incubation at
72◦C for 5 min followed by cooling to 10◦C.

Amplified samples were purified using Agencourt AMPure XP
beads (BD Biosciences). All sample volume was added to 30 µl
beads generating a beads-to-sample ratio of 0.6 and suspension
was mixed by pipetting. DNA binding to beads was performed
for 5 min at room temperature followed by 5 min incubation on
a magnet (DynaMag, Thermo Fisher Scientific). Supernatant was
discarded and beads washed twice with 200 µl 80% ethanol. Beads
were left to dry and sample was eluted with 17.5 µl RNase/DNase-
free water for 2 min followed by 2 min incubation on magnet
before eluted sample was retrieved.

The mass concentration of each sample was analyzed using
Qubit dsDNA High Sensitivity Assay Kit (Invitrogen, Thermo
Fisher Scientific). To assess the quality and molarity, 35 selected
samples were analyzed with Agilent High Sensitivity DNA
Kit. The average mean size was used to calculate the molar
concentration of each sample. Samples with lower concentration
than 5 nM were excluded and remaining samples were diluted to
5 nM and pooled. The library pool was purified once more using
Agencourt AMPure XP beads with a beads-to-sample ratio of 0.6
and diluted to 3 nM.

Sequencing of pooled single-cell libraries were performed by
Genomics Core facility at the University of Gothenburg on a
NextSeq 500 instrument (Illumina) using a Nextseq500 Kit High
Output V2 with paired-end sequencing and a read length of
2× 150 bp.

Single-Cell Transcriptome Data Analysis
Reads were aligned to the human genome (hg19), with ERCC
spike-in sequences included, using STAR (Dobin et al., 2012) with
splice junctions supplied from the GENCODE (Harrow et al.,
2012) V17 annotation. Gene expression levels were assessed by
binning reads to genes using HTseq (Anders et al., 2015) with
the options “-s no” and “-m intersection-strict.” The quality of
each sample was assessed using FastQC (Andrews, 2010). In total,
four samples failed either in the sequencing process or during
quality assessment.

Genes were filtered based on variability in comparison to
a noise level estimated from the ERCC spike-ins as described
(Brennecke et al., 2013), utilizing the dependence of technical
noise on the average read count and fitting a model to the ERCC
spike-ins. All genes with squared coefficient of variation above
the noise level were selected for further analyses. An additional
filtering step was included only selecting genes expressed in at
least 5% of all cells.

Cells were clustered using a modified version of the RaceID
algorithm (Grun et al., 2015). Shortly, read counts were
normalized to the median transcript number across cells.
Cells were clustered using k-means on the modified Pearson
correlation matrix with Euclidian metric and data was visualized
using t-distributed stochastic neighbor embedding. Cluster
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number k = 3 was chosen and the stability of the clusters were
assessed with Jaccard’s similarity. Only genes selected using the
filtering method described above were included in the clustering,
without any additional filtering. The RaceID algorithm also
includes an outlier detection method which was omitted.

Pseudotemporal ordering of cells was performed using the
TSCAN algorithm (Ji and Ji, 2016), which first groups cells
into clusters and then orders cells along a pseudotemporal path
using a minimum spanning tree approach. For this method,
all genes were used and filtered according to the default
filtering in TSCAN. Normalized values received from the RaceID
algorithm were used.

Differentially expressed genes between clusters were identified
using the SCDE algorithm (Kharchenko et al., 2014). The raw
data matrix, including all genes, was used for this algorithm.
Adjusted p-values were calculated from the cZ-values received as
output from the algorithm. Genes with an adjusted p-value less
than 0.05 were considered significant.

Gene set analysis was performed using the molecular
signatures database (MSigDB) (Subramanian et al., 2005). The
gene lists obtained from differential expression analysis was
compared with the Hallmark, Reactome and KEGG gene sets as
well as transcription factor targets. Top 100 significantly enriched
gene sets (cutoff of FDR q = 0.05) were identified.

Survival data was assessed using the Kaplan-Meier plotter
tool for breast cancer1 which is based on available microarray
data (Gyorffy et al., 2010). Relapse-free survival was assessed
using JetSet to select the optimal probe (Li et al., 2011) and
auto-selection of best cutoff for dividing the patients into low
and high expression of each gene. The analysis was performed
separately on patients belonging to different intrinsic subgroups.
Furthermore, ERα positive and negative breast cancer patients
were analyzed as well as ERα negative patients with or without
systemic treatment. Apart from this, no other selections of
patients were done. To distinguish significantly altered survival,
p-values were adjusted for multiple testing using false discovery
rate (Benjamini-Hochberg procedure). The p-value adjustment
was performed separately for each subgroup of patients including
p-values for all analyzed genes.

RESULTS

Enrichment of Breast Cancer Stem Cells
and Identification of Biologically Variable
Genes
It has been shown that low proliferation (Dembinski and Krauss,
2009) and the ability to form spheres under non-adherent
conditions (Dontu et al., 2003) are traits linked to the CSC
populations. To functionally enrich for breast cancer cells with
these characteristics, we applied the mammosphere assay in
combination with the label-retention PKH26 assay on breast
cancer cell line MDA-MB-231, as shown in Figure 1A. Cells
were first labeled with the membrane dye PKH26 before being
cultured as mammospheres for 5 days. Low (PKH26 high cells)

1http://kmplot.com

and high (PKH26 low cells) proliferating single cells dissociated
from mammospheres were collected (Figure 1B). As control,
normal adherent monolayer cells in the G1 cell cycle phase were
collected using the Vybrant DyeCycle Violet DNA-binding dye
(Figures 1A,C). We performed whole transcriptomic analysis at
single-cell level applying the Smart-Seq2 protocol (Picelli et al.,
2014). After sequencing and sample quality control we used 46
low proliferating mammosphere cells (PKH26 high cells), 45 high
proliferating mammosphere cells (PKH26 low cells) and 30 cells
in G1 cell cycle phase cultured in adherent monolayer conditions
(G1 cells) for further analyses.

Next, we identified relevant genes with biological variation
above the technical noise (Brennecke et al., 2013). Briefly,
the technical noise level was assessed from the variation and
expression of ERCC spike-in controls which were added to each
sample before library preparation (Figure 1D). In total, 576 genes
were identified with a variability above this technical noise level
and expressed in at least 5% of all cells.

Identification of a Cancer Stem Cell
Subpopulation
To identify subpopulations of cells we applied parts of the
RaceID algorithm (Grun et al., 2015), which groups cells using
k-means clustering and visualizes the obtained subpopulations
with t-distributed stochastic neighbor embedding (t-SNE). This
approach identified three cell clusters (Figure 2A).

To compare the clustering based on gene expression to the
functional properties assessed based on the culture and staining
procedures, we overlaid the cellular phenotype in the t-SNE
plot (Figure 2B). Cluster A mainly consisted of PKH26 high
cells (76%), 69% of the cluster B cells were PKH26 low cells,
while 73% of the cluster C cells were G1 cells. These results
show that the enriched cellular phenotypes were also reflected at
gene expression level. To further confirm this relationship, we
overlaid the mean expression of cell-cycle related genes in the
t-SNE plot (Figure 2C). High proliferating (PKH26 low cells)
and G1 cells were the cells that expressed cell-cycle related genes
to highest extent.

To define the gradual transition of the cells between different
subpopulations we constructed a pseudotemporal ordering of
all cells using the TSCAN algorithm (Ji and Ji, 2016). This
algorithm orders cells depending on their gradual changes in
the transcriptome profile. The pseudotemporal cell order was
visualized in the t-SNE plot with the previously identified clusters
(Figure 2D). Early ordered cells were more prone to belong
to cluster A whereas cells toward the end mainly belonged to
cluster C. Altogether, these data show that cluster A is the most
CSC-like subpopulation.

Subpopulation-Specific Gene Expression
Profiles
To characterize the three identified subpopulations we defined
differentially expressed genes using the SCDE algorithm
(Kharchenko et al., 2014). Gene lists for all pair-wise comparisons
are shown in Supplementary Table S1. The regulated genes
were compared with the Hallmark, Reactome and KEGG gene
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FIGURE 1 | Functional CSC enrichment and identification of biologically variable genes. (A) Cellular assays. Upper panel: MDA-MB-231 cells were stained with the
PKH26 membrane dye to assess proliferation and then functionally enriched for resistance to anoikis using the non-adherent mammosphere assay. Low and high
proliferating single cells were collected with fluorescence-activated cell sorting (FACS) using the intensity of the incorporated PKH26 dye (PKH26 high cells and
PKH26 low cells, respectively). Lower panel: MDA-MB-231 cells were stained with the DNA-binding dye Vybrant DyeCycle Violet to assess cell-cycle phase. Single
cells were then directly collected from the G1 phase using the intensity of the incorporated dye (G1 cells). (B) FACS of PKH26-stained mammosphere cells. The cells
were sorted into two groups based on their PKH26 intensity, The PKH26 high and PKH26 low cells constituted 3 and 40% of the total cell population, respectively.
The rationale behind this gating strategy was to enrich for the least proliferating cells (PKH26 high cells), while the proliferating cell population (PKH26 low cells)
should reflect a wider variety of dividing cells. (C) FACS of Vybrant DyeCycle Violet-stained cells. Cells from the G1 phase were sorted based on low dye intensity.
(D) Identification of biologically variable genes. The plot shows the level of variation (CV2) against the average expression level of each gene. External ERCC spike-in
controls (black triangles) were added to each cell to assess the technical noise. The noise level (purple curve) was fitted from the ERCC controls. Genes with a CV2

above the noise level and expressed in 5% of the samples (576 genes in total, red data points) were used for downstream analysis.

sets in the Molecular Signatures Database (Supplementary Table
S2; Subramanian et al., 2005). Furthermore, over-representation
of targets for transcription factors was identified using the
same database (Supplementary Table S2). Another difference
between the subpopulations was that the relative amount of total
transcripts was higher in cluster C compared to clusters A and
B (Supplementary Figure S1A). The relative amount of total
transcripts also increased toward the end of the pseudotemporal
ordering (Supplementary Figure S1B).

To further define the CSC-like cells in cluster A we identified
14 genes that were significantly upregulated in this cluster
compared to the other two clusters (Table 1). The average
expression of each gene in the three clusters is illustrated in
Figure 3A and the average expression of all 14 genes along the
pseudotemporal ordering is shown in Figure 3B. To determine
the association between the 14 genes and clinical survival data
for ERα positive and negative tumors we used a Kaplan-Meier
analysis tool based on a collection of publicly available data
(Gyorffy et al., 2010; Table 1 and Supplementary Figure S2).

Furthermore, we performed the same survival analyses in
patients with tumors belonging to different intrinsic subgroups
(basal-like, luminal A, luminal B and HER2-enriched) as well as
in patients with ERα negative tumors with or without systemic
treatment (Supplementary Table S3). The data showed variable
results among different genes and patient groups but three genes,
LGALS3, MYH9, and DSTN, were significantly related to worse
survival in ERα negative tumors.

DISCUSSION

Breast cancer tumors are heterogeneous and harbor CSCs.
Several pathways related to self-renewal are associated to breast
CSCs, including the Wnt, Notch, and Hedgehog pathways (Liu
et al., 2006; Harrison et al., 2010; Khramtsov et al., 2010). These
signaling pathways are also connected to each other, indicating a
complex system for CSC maintenance (Takebe et al., 2011). There
have been attempts of targeting the CSC population through

Frontiers in Genetics | www.frontiersin.org 5 May 2019 | Volume 10 | Article 500

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00500 February 3, 2020 Time: 15:56 # 6

Jonasson et al. Identification of Breast CSC Genes

FIGURE 2 | Identification and characterization of subpopulations. (A) A t-distributed stochastic neighbor embedding (t-SNE) plot visualizing three clusters of cells
identified with k-means based on their gene expression profiles. (B) The same t-SNE plot as in A, with cells colored according to their cellular phenotype, including
low (PKH26 high cells) and high (PKH26 low cells) proliferating mammosphere cells as well as adherent 2D cells in the G1 cell-cycle phase (G1 cells). (C) The same
t-SNE plot as in A, with cells colored according to their average expression of cell-cycle related genes, represented by the genes among the 576 remaining after
filtering that were included in the Reactome cell cycle gene set from the molecular signatures database (343 genes in total). (D) The same t-SNE plot as in A, with
cells colored according to their pseudotemporal ordering from 1 to 121.

FIGURE 3 | Expression of cancer stem cell (CSC) upregulated genes. (A) Average expression of significantly upregulated genes in cluster A compared to clusters B
and C. (B) Average expression of the 14 upregulated genes in cluster A compared to clusters B and C along the pseudotemporal ordering. The colored dots below
the x-axis represent the cluster each cell belongs to.
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TABLE 1 | Genes upregulated in cluster A.

Gene name Log2 fold changea Adj. p-valueb Survival datac Functiond

MALAT1 (non-coding) 0.95 4.8 × 10−9 ERα neg. – ERα pos. – mRNA regulation of genes connected
to cell cycle regulation and cell
migration

LGALS3 1.4 3.8 × 10−6 ERα neg. ↓ ERα pos. ↑ Involved in apoptosis and cell adhesion

NEAT1 (non-coding) 1.9 5.3 × 10−6 ERα neg. – ERα pos. – Paraspeckle formation, mRNA
regulation

CRTC1 4.1 3.0 × 10−4 ERα neg. ↑ ERα pos. – Transcriptional coactivator of CREB1,
involved in several pathways

ETV1 1.5 2.1 × 10−3 ERα neg. ↑ ERα pos. – Transcription factor of the ETS family,
involved in many biological processes

ARL6IP5 1.3 2.7 × 10−3 ERα neg. – ERα pos. ↑ Expression affected by vitamin A. May
be associated with the cytoskeleton
and glutamate transport

CD81 1.2 9.0 × 10−3 ERα neg. – ERα pos. – Possibly involved in muscle cell fusion
and signal transduction, might be
connected to cell growth

MYH9 1.1 9.5 × 10−3 ERα neg. ↓ ERα pos. – Cytokinesis, cell motility and
maintenance of cell shape

IFITM3 0.91 1.3 × 10−2 ERα neg. – ERα pos. ↑ Interferon-induced membrane protein.
Inhibits entry of viruses

HMGA2 1.2 1.5 × 10−2 ERα neg. – ERα pos. – Transcriptional regulation, involved in
cell cycle regulation

NAB1 2.2 2.2 × 10−2 ERα neg. – ERα pos. ↑ Transcriptional repressor for zinc finger
transcription factors EGR1 and EGR2

MBNL1 1.1 2.2 × 10−2 ERα neg. – ERα pos. ↑ Alternative splicing

DSTN 1.1 2.5 × 10−2 ERα neg. ↓ ERα pos. – Actin depolymerisation

MARCKSL1 1.5 2.7 × 10−2 ERα neg. ↑ ERα pos. – Cell movement and migration

aUpregulation, comparing cluster A to both other clusters. bp-value adjusted for multiple testing by false discovery rate. cCorrelation of gene expression to relapse-
free survival assessed by Kaplan-Meier analysis using http://kmplot.com. Significantly (FDR < 0.05) better (↑) or worse (↓) survival indicated for ERα negative and
positive breast cancer. dFunctions of gene and/or encoded protein. Information from NCBI (NCBI Resource Coordinators, 2016) and/or The UniProt Consortium (2017).

these pathways but this is associated with several challenges
(Takebe et al., 2015) and no such therapy is in clinical use.

To further characterize breast CSCs we performed single-cell
RNA sequencing on cellular populations functionally enriched
for different CSC properties. The mammosphere assay enriches
for cells that are able to self-renew and differentiate and the
intensity of the PKH26 dye allows cells to be selected based
on their proliferation rate (Pece et al., 2010). However, the
mammosphere assay has been shown to select for a larger cell
population than the CSCs only (Pastrana et al., 2011) and PKH26
is a membrane dye whose intensity readout could be affected
by other cellular properties than cell division, such as cell size
(Dolatabadi et al., 2017). For comparison, we included cells
cultured under adherent monolayer conditions, selected from
the G1 cell cycle phase only to minimize the effect of cell cycle
specific gene expression (Whitfield et al., 2002). Our three single-
cell defined subpopulations overlapped to a large extent with our
three predefined groups, i.e., PKH26 high, PKH26 low, and G1
cells. Gene expression analysis showed proliferation to be a strong
dividing factor between clusters and the cell group showing a
decrease in expression of cell-cycle related genes also showed
an over-representation of cells with high PKH26 intensity.
These data support the accuracy of PKH26 in separating cells
based on proliferation rate. In order to study the differentiation
process, we ordered the cells along a pseudotemporal path.

The pseudotemporal ordering fitted well with the clustering,
indicating a gradual transition of cells between different states
along the different subpopulations, proposedly from a more
CSC-like state to a more differentiated state.

To determine the cellular functions of identified cell clusters
we defined enriched gene sets (Supplementary Table S2). As
expected, when comparing cluster A with cluster B this analysis
generated overrepresentation of gene sets related to cell cycle,
confirming the use of label-retention PKH26 dye assay. Also,
enriched transcription factor sequence motifs included several
targets of E2Fs, known cell-cycle regulators (Morgan, 2007) as
well as NFY, shown to interact with E2Fs but also involved
in stem cell self-renewal (Zhu et al., 2004, 2005; Blum et al.,
2009). When comparing cluster B to cluster C, overrepresented
gene sets included several processes related to CSCs, such as
epithelial to mesenchymal transition (Mani et al., 2008; Morel
et al., 2008), hypoxia (Schwab et al., 2012; Harrison et al., 2013)
and apoptosis (Madjd et al., 2009; Kruyt and Schuringa, 2010).
Also, gene sets related to protein and RNA metabolism were
upregulated. Among the transcription factor targets, CREB and
ATF were highly represented, which are involved in diverse
physiological processes, including proliferation, survival (Mayr
and Montminy, 2001) and differentiation (Masson et al., 1993;
Kingsley-Kallesen et al., 1999). Finally, the cellular functions
describing the differences between clusters A and C reflected a

Frontiers in Genetics | www.frontiersin.org 7 May 2019 | Volume 10 | Article 500

http://kmplot.com
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00500 February 3, 2020 Time: 15:56 # 8

Jonasson et al. Identification of Breast CSC Genes

combination of functions describing differences of the other two
cluster comparisons, including cell-cycle regulation, stem-cell
properties and differentiation. Additionally, among transcription
factor targets, AP1 was enriched, a transcription factor complex
consisting of members of the JUN, FOS and ATF families that
has been found to be connected to proliferation, invasion and
apoptosis (Chen et al., 1996; Eferl and Wagner, 2003; Milde-
Langosch et al., 2004). Global changes in RNA and protein have
been seen when comparing stem cells to more differentiated
cell types. Our results showed an increase in total amount of
transcripts in cluster C, in line with earlier studies reporting
decreased amount of total RNA in stem cells (Sampath et al.,
2008; Sanchez et al., 2016).

We propose that cluster A contains the most CSC-like cells
and that, for this cluster, upregulated genes are potential CSC
biomarkers (Table 1). Among these genes, two were non-
coding, MALAT1 and NEAT1, of which both are connected
to CSC properties in several cancer types, including breast
cancer (Arun et al., 2016; Jen et al., 2017; Li et al., 2017).
The coding genes are also related to CSC properties but
also other cellular functions. For example, non-muscle myosin
IIA, encoded by MYH9, is involved in cell motility and
has been shown to be involved in migration of MDA-MB-
231 cells (Betapudi et al., 2006; Dulyaninova et al., 2007).
MYH9 also interacts with Galectin-3, encoded by LGALS3,
in bone metastasis (Nakajima et al., 2016). Galectin-3 is
connected to several tumor properties (Newlaczyl and Yu,
2011), including chemoresistance and stem cell properties
in breast cancer (Newlaczyl and Yu, 2011; Guha et al.,
2014). Furthermore, HMGA2 is involved in metastasis through
epithelial to mesenchymal transition (Thuault et al., 2006;
Morishita et al., 2013). We also determined the connection
between the expressions of these genes to clinical outcome using
publicly available data. The varying relationships between gene
and patient selection was not surprising, since it is well known
that breast cancer subgroups, like ERα positive and negative
breast cancer, often display divergent expression pattern (Reis-
Filho and Pusztai, 2011). The three genes; LGALS3, MYH9, and
DSTN, that were significantly associated with worse relapse-free
survival in ERα negative breast cancers are of extra interest for
future studies. Two of those genes, LGALS3 and DSTN, were
significantly related to worse survival specifically in patients
that had not received systemic treatment, whereas the opposite
were true for MYH9. Additionally, NEAT1 was connected to
worse survival in systemically treated ERα negative patients,
although the analysis was performed in a smaller patient cohort
(Supplementary Table S3). Looking into the intrinsic subgroups,
two of the above-mentioned genes, LGALS3 and DSTN, were
significantly associated to worse survival in several subgroups

including the basal group, in which also NAB1 was connected
to worse survival.

CONCLUSION

In conclusion, we have identified potential breast cancer
biomarkers related to CSC properties, especially associated with
ERα negative breast cancer, using functional cellular assays
combined with single-cell gene expression profiling. Further
experimental validation, using more cell lines as well as other
model systems, is needed to confirm their cellular functions and
potential clinical use.
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