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In most animal species including humans, mitochondrial genome (mtDNA) is inherited strictly
uniparentally from the mother (Ladoukakis and Zouros, 2017). Specific molecular mechanisms
have been found to ensure elimination of paternal (sperm) mitochondria from early embryos in
species as diverse as the nematode, the fruit fly and the mouse (Rojansky et al., 2016; Sato and Sato,
2017). The precise mechanism responsible for elimination of paternal mitochondria in humans
remains to be elucidated. Nonetheless, paternal contribution of mtDNA to the fertilized egg would
be negligible, as mtDNA molecules in the oocyte outnumber those in a sperm by over four orders
of magnitude (Pyle et al., 2015). Earlier reports claiming paternal mtDNA contribution in humans
via identification of paternal haplotype in an individual or via inference of mtDNA recombination
signatures from population data are scarce and remain uncorroborated independently (Awadalla
et al., 1999; Kivisild et al., 2000; Schwartz and Vissing, 2002; Taylor et al., 2003). Even extreme-depth
sequencing of human trios failed to provide evidence of paternal mtDNA leakage (Pyle et al., 2015).

In a recent issue of PNAS, Luo et al. (2018) presented evidence for biparental inheritance of
mtDNA in three unrelated human pedigrees. High-depth sequencing of whole mtDNA from blood
was performed on 17 family members spanning three generations. Thirteen individuals displayed
a high level of mtDNA heteroplasmy (ranging from 24 to 76%), indicative of the presence of two
mtDNA haplotypes. To exclude the possibility of sample mix-up and/or contamination, mtDNA
was re-sequenced by two different CLIA-accredited laboratories on newly obtained blood samples.

Paternal inheritance ofmtDNAwas observed in 4 out of 6 tested offspring of three heteroplasmic
fathers (one in each pedigree). The offspring were heteroplasmic for one of the paternal haplotypes
in addition to the maternally inherited mtDNA haplotype: 1 out of 2 children of II:4 in Family
A, 1 out of 2 children of II:3 in Family B, and both children of II:3 in Family C. The haplotype
transmitted by the heteroplasmic fathers was deduced to have come from the deceased paternal
ancestor of generation I of each family. Heteroplasmic mothers were expected, by default, to
transmit both haplotypes to their children, which was confirmed by sequencing children of two
of the heteroplasmic mothers. All 3 children of mother III:6 in Family A were heteroplasmic, while
only 1 out of 2 children of mother III:6 in Family C was tested and found to be heteroplasmic
(Luo et al., 2018).

Repeated paternal transmission of mitochondria at a high level of heteroplasmy in the offspring
cannot be explained by known genetic mechanisms. Luo et al. suggest the presence of an autosomal
dominant mutation in a gene responsible for the elimination of paternal mitochondria. They
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further speculate that the same mutation would not only
compromise the elimination of paternal mitochondria but also
lead to selective replication of a specific paternally transmitted
mtDNA haplotype across several generations.

Subsequent commentary and letter pointed out that Luo
et al. have not entirely ruled out the possibility of nuclear
origin of sequenced mtDNA, but did not provide a clear
and testable alternative hypothesis to explain the data (Lutz-
Bonengel and Parson, 2019; McWilliams and Suomalainen,
2019; Vissing, 2019). Hereby we postulate that observations
of Luo et al. are consistent with presence of a multicopy
mtDNA concatemer that is integrated into the nuclear
genome (“Mega-NUMT”) and segregates in an autosomal
dominant manner regardless of its parental origin, not
depending on the transmission and selective amplification
of paternal mitochondria.

Our hypothesis is plausible because:
1. In each family, it is always the same mtDNA haplotype that

segregates across generations and contributes to the observed
mtDNA heteroplasmy. A nuclear mtDNA concatemer would
be expected to segregate in an apparently autosomal dominant
fashion, an inheritance pattern that is compatible with the
family data presented in the study.

2. Sequencing methods used in the study do not differentiate
between nuclear and mitochondrial origin of DNA templates.
The DNA samples analyzed by the authors contained both
mitochondrial and nuclear genomes. The long-range PCR
amplification employed by the authors would successfully
amplify from both genomes, resulting in sequence reads from
both themtDNAmolecules as well as the postulated full length
mtDNA concatemer (Figure 1).

3. Observed level of heteroplasmy is compatible with a multicopy
mtDNA concatemer (Mega-NUMT). Considering 100 mtDNA
copies per blood cell [average number of mtDNA in
blood among control individuals ranged from 50 to 136
in different reports (Mengel-From et al., 2014; Memon
et al., 2017; Svendsen et al., 2019)], 75% of apparent
mtDNA heteroplasmy could be imitated by a concatemer

FIGURE 1 | Amplification of mtDNA by long range PCR. (A) Amplification on a circular mitochondrial chromosome. mtDNA is shown in magenta, with the H-strand

origin (OH) indicated by an arrowhead. Two long-range PCR primer pairs are shown as red and blue arrows, with corresponding amplicons in dashed red and blue

lines. (B) No double-stranded amplification product would be generated from partial or single-copy NUMTs dispersed in the nuclear genome. Autosomal DNA is

shown in black. Dotted lines indicate failure to amplify. (C) Amplification of full-length mtDNA sequences on a linear two-copy head-to-tail concatemer integrated into

an autosome. Note that the amplicons in (A) and (C) are identical, making it impossible to differentiate between the long range PCR products obtained on a circular

mitochondrial chromosome and a nuclear mtDNA concatemer.

of 300 mtDNA copies. Therefore, concatemers of 100–
300 copies of mtDNA (or 1.5–6Mb in size) would be
sufficient to explain the levels of heteroplasmy observed by
Luo et al. (2018).

4. Nuclear transfer of mitochondrial DNA is a well-established
phenomenon in eukaryotes and is an ongoing evolutionary
process.Human genome contains>700 fixed NUMTs (nuclear
sequences of mitochondrial origin) with new insertions
contributing to human variation (Hazkani-Covo et al., 2010;
Calabrese et al., 2012; Dayama et al., 2014).

Several additional indirect lines of evidence support our
hypothesis. Instances of multimeric NUMTs have been reported
previously: a partial 7.9-kb mtDNA segment of 38–76 tandem
copies is present in the nuclear genomes of domestic cats (Lopez
et al., 1994), while complex NUMTs patterns are common in
plants (Hazkani-Covo et al., 2010). The latter is believed to be
the result of the concatemerization of organelle (mitochondrial
and plastid) DNA prior to nuclear integration (Richly and
Leister, 2004). Moreover, catenated mtDNA structures have been
reported in normal human cardiac tissue (Pohjoismäki et al.,
2009), and mtDNA concatemers that were presumed to be a
product of rolling circle amplification have been observed in
human fibroblasts exposed to reactive oxygen species (Ling et al.,
2016). These observations suggest that mtDNA concatamers
do occur, and their integration into the nuclear genome is
possible. While a concatemer of 100+ copies could be considered
unusually large, concatemers of such size range have been
observed in animal transgenesis experiments (Garrick et al., 1998;
McGrail et al., 2011; Yong et al., 2015).

Our hypothesis can be readily tested using methods that
differentiate between mtDNA sequences of nuclear and
mitochondrial origin. One way would be to separate cytoplasmic
(mitochondria-containing) and nuclear fractions prior to
DNA extraction, PCR amplification and sequencing. Also,
we would expect that due to differences between nuclear
and mitochondrial transcription machinery the “nuclear”
mtDNA haplotype would be underrepresented in total
cellular RNA, as detectable by RT-PCR or RNA-Seq. Finally, a
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multicopy concatemer may be detectable by fluorescence in situ
hybridization (FISH) as previously reported for identification
of concatemeric transgenes in mouse cells (Schubert and
Schmidtke, 2010).

While the scenario we propose is hypothetical, it is not as
paradigm-changing as the high-level, selective inheritance of
paternal mitochondria would be. It should therefore be formally
ruled out before asserting the biological and evolutionary impact
of paternal inheritance of mitochondrial genome.
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