
1 July 2019 | Volume 10 | Article 662

ORIGINAL RESEARCH

doi: 10.3389/fgene.2019.00662
published: 19 July 2019

Frontiers in Genetics | www.frontiersin.org

Edited by: 
Dana C. Crawford,  

Case Western Reserve University, 
United States

Reviewed by: 
Daniel Rotroff,  

Cleveland Clinic, United States 
Stephane Wenric,  

Icahn School of  
Medicine at Mount Sinai, United States

*Correspondence: 
Keunsoo Kang 

kangk1204@gmail.com 
Yoon Ho Ko 

koyoonho@catholic.ac.kr

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted to 

Applied Genetic Epidemiology,  
a section of the journal  

Frontiers in Genetics

Received: 22 December 2018
Accepted: 24 June 2019
Published: 19 July 2019

Citation: 
Shin B, Park S, Hong JH, An HJ, 

Chun SH, Kang K, Ahn Y-H, Ko YH 
and Kang K (2019) Cascaded Wx: 

A Novel Prognosis-Related Feature 
Selection Framework in Human Lung 

Adenocarcinoma Transcriptomes. 
Front. Genet. 10:662.  

doi: 10.3389/fgene.2019.00662

Cascaded Wx: A Novel Prognosis-
Related Feature Selection 
Framework in Human Lung 
Adenocarcinoma Transcriptomes
Bonggun Shin 1,2†, Sungsoo Park 2†, Ji Hyung Hong 3, Ho Jung An 3, Sang Hoon Chun 3, 
Kilsoo Kang 2, Young-Ho Ahn 4, Yoon Ho Ko 3,5* and Keunsoo Kang 6*

1 Department of Computer Science, Emory University, Atlanta, GA, United States, 2 Deargen, Inc., Daejeon, South Korea, 
3 Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South 
Korea, 4 Department of Molecular Medicine and Tissue Injury Defense Research Center, Ewha Womans University College 
of Medicine, Seoul, South Korea, 5 Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 
South Korea, 6 Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, South Korea

Artificial neural network-based analysis has recently been used to predict clinical outcomes 
in patients with solid cancers, including lung cancer. However, the majority of algorithms 
were not originally developed to identify genes associated with patients’ prognoses. To 
address this issue, we developed a novel prognosis-related feature selection framework 
called Cascaded Wx (CWx). The CWx framework ranks features according to the survival 
of a given cohort by training neural networks with three different high- and low-risk groups 
in a cascaded fashion. We showed that this approach accurately identified features that 
best identify the patients’ prognoses, compared to other feature selection algorithms, 
including the Cox proportional hazards and Coxnet models, when applied to The 
Cancer Genome Atlas lung adenocarcinoma (LUAD) transcriptome data. The prognostic 
potential of the top 100 genes identified by CWx outperformed or was comparable to 
those identified by the other methods as assessed by the concordance index (c-index). In 
addition, the top 100 genes identified by CWx were found to be associated with the Wnt 
signaling pathway, providing biologically relevant evidence for the value of these genes in 
predicting the prognosis of patients with LUAD. Further analyses of other cancer types 
showed that the genes identified by CWx had the highest prognostic values according to 
the c-index. Collectively, the CWx framework will potentially be of great use to prognosis-
related biomarker discoveries in a variety of diseases.

Keywords: nonsmall cell lung cancer, cascaded Wx, CWx, feature selection, prognosis, machine learning, gene 
expression

INTRODUCTION

Lung cancer is the most commonly diagnosed cancer and the second most common cause of cancer-
related deaths worldwide (Bray et al., 2018). Most lung cancer cases are nonsmall cell lung cancer 
(NSCLC), and lung adenocarcinoma (LUAD) accounts for more than 50% of all NSCLCs. Recently, 
survival rates for LUAD patients have been greatly improved with the development of improved 
treatment approaches, including surgical or radiation techniques, and the introduction of targeted 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00662
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00662&domain=pdf&date_stamp=2019-07-19
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:kangk1204@gmail.com
mailto:koyoonho@catholic.ac.kr
https://doi.org/10.3389/fgene.2019.00662
https://www.frontiersin.org/article/10.3389/fgene.2019.00662/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00662/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00662/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00662/full
https://loop.frontiersin.org/people/754559
https://loop.frontiersin.org/people/718260
https://loop.frontiersin.org/people/29895
https://loop.frontiersin.org/people/718740
https://loop.frontiersin.org/people/294175


Cascaded Wx for Prognosis AnalysisShin et al.

2 July 2019 | Volume 10 | Article 662Frontiers in Genetics | www.frontiersin.org

therapies and immunotherapies tailored to the molecular or 
immunologic characteristics of tumors. However, the survival 
rate is still only about 50% for potentially curatively resected 
LUAD (Xia et al., 2017). To optimize clinical intervention, it 
is important to identify which patients have poor prognoses. 
The prediction of prognosis requires an extensive knowledge 
of various aspects of cancer biology and an understanding of 
relevant clinical information such as TNM stage, histology, and 
genetic mutations (Greaves et al., 2011). Among the clinical 
features, TNM staging is the most successful clinical parameter 
in practice and is widely used to predict patients’ prognoses. 
However, this staging method still has room for improvement in 
the era of genomic sequencing, where abnormalities in multiple 
genes can be detected simultaneously (Roukos, 2010). Among 
the various genome-wide applications, the gene expression 
signature is the most promising approach to the prediction of 
clinical outcomes (van’t Veer et al., 2002; Ramaswamy and Perou, 
2003; Chibon, 2013), as a suite of expressed genes reflects the 
identity of a given cell population. Several gene expression-
based clinical applications such as MammaPrint (Wittner et al., 
2008) and Oncotype DX (Carlson and Roth, 2013) are being 
used in clinical practice. These applications predict patients’ 
prognoses and drug and/or chemotherapy responsiveness by 
examining the expression levels of a defined gene set. Therefore, 
the identification of a particular gene set associated with clinical 
findings is crucial in many disease research studies.

Recent technological advancements in clinical genome sequencing 
using next-generation sequencing (NGS) technologies provide 
opportunities to understand the relationships between gene 
expression and tumor phenotypes (Koboldt et al., 2013). For 
example, several studies classify NSCLC patients into subgroups 
with differing clinical outcomes using gene signatures (Chen 
et al., 2007; Skrzypski et al., 2008; Boutros et al., 2009; Xie 
et al., 2011). However, the results of such studies have been 
unsatisfactory in terms of discrepancies between identified 
gene signatures. The possible reasons for the inconsistent results 
among the studies include the use of small samples compared to 
the number of genes (high-dimensional data), the use of different 
platforms, and the problems with feature preprocessing steps. In 
addition, there are no robust methods for analyzing such high-
dimensional data effectively.

Machine learning (ML) algorithms can be a useful approach to 
the analysis of high volumes of data if a model is well constructed 
with high-quality input data for training. Numerous variations 
of the original ML algorithms have been developed and applied 
to a variety of problems (Litjens et al., 2017; Park et al., 2017; 
Zhang et al., 2017; Esteva et al., 2019). In molecular biology, NGS 
technologies, which revolutionized the profiling approach by 
sequencing huge numbers of given short DNA fragments, have 
been generating enormous amounts of data these days (Goodwin 
et al., 2016). Because of this, there is an urgent need to develop 
ML-based algorithms that can effectively analyze such high 
volumes of genomic data. Support vector machines (SVM; Chang 
and Lin, 2011), k-nearest neighbors (Cover and Hart, 1967), 
multilayer perceptrons (Mateos et al., 2002), decision trees (Chou 
et al., 2013), random forest (RF; Zhang et al., 2016) algorithms, 
logistic regression, and gradient boosting machines (Mall et al., 

2018) are ML algorithms that are frequently used to analyze big 
data. However, these methods were not originally designed to 
extract prognostic features from patients’ data. Recently, several 
ML-based algorithms have been proposed to select a subset of 
key features (genes) for classification (Anaissi et al., 2013; Yao 
et al., 2015; Freres et al., 2016) or to identify prognostic features 
(Wenric and Shemirani, 2018) from high-throughput molecular 
profiling data. There is still room for improvement, however, as 
new deep learning algorithms continue to emerge in the field of 
ML (Devlin et al., 2018; Peters et al., 2018).

To effectively analyze multidimensional datasets, dimension-
reduction algorithms such as feature selection are often required. 
Principal component analysis (PCA; Jolliffe, 2011), nonnegative 
matrix factorization (Lee and Seung, 2001), kernel PCA (Mika et al., 
1999b), graph-based kernel PCA, linear discriminant analysis 
(Mika et al., 1999a), and generalized discriminant analysis (Baudat 
and Anouar, 2000) are algorithms that are widely applied to high-
dimensional biomedical datasets. In addition to these approaches, 
several studies recently used artificial neural networks to predict 
clinical outcomes in lung cancer patients (Jefferson et al., 1997; 
Xie et al., 2014; Hart et al., 2018). However, these approaches do 
not fully take into account available information such as high-
throughput profiling data (e.g., transcriptomes) and/or clinical 
information for feature selection. To address these problems, we 
developed a novel feature selection framework called Cascaded 
Wx (CWx) to enhance the efficiency of feature selection and the 
accuracy of prediction for given patients’ prognosis. Our analyses 
revealed that the CWx framework selected more prognosis-
related features than algorithms in categories such as similarity-
based, sparse learning-based, ML-based, and statistical-based 
models, highlighting the potential value of our proposed 
framework for biomedical data.

MATERIALS AND METHODS

Data Acquisition
Gene expression data (mRNASeq) from 507 LUAD, 495  lung 
squamous cell carcinoma (LUSC), 1,091 breast invasive carcinoma  
(BRCA), 405 bladder urothelial carcinoma (BLCA), and 97 rectum 
adenocarcinoma (READ) patients were obtained from The Cancer  
Genome Atlas (TCGA) via the firehose browser (https://
gdac.broadinstitute.org/). The data were generated by the 
Illumina HiSeq instrument (labeled as illuminahiseqrnaseqv2-
RSEMgenesnormalized). We extracted gene features (X), survival 
values (S), and censoring information (C), which can be formally 
represented as X ∈ Rn×d, S ∈ Rn, and C ∈ Rn, respectively; n is the 
number of patients and d is the feature dimensionality. If Ci = 0 
(uncensored patients), the survival time interval represents the 
time between the start of observing the patient status and the 
event (date of death) time. If a patient datum is right censored 
(Ci = 1), the survival time interval represents the time elapsed 
between the start of observing the patient status and the end of 
the study. These data should not be included when training a 
survival model, because they can be regarded as missing data. 
More details are discussed in the survival evaluation model 
section. Of the 507 LUAD patients, there were 183 uncensored 
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(death event occurred) samples and 324 right-censored samples. 
For other cancer types, there were 283, 940, 227, and 79 right-
censored samples for LUSC, BRCA, BLCA, and READ, respectively. 
Each sample contained read counts (expression levels) of 20,501 
genes. These count-based values were abundant for a few specific 
transcripts (highly expressed genes), a factor that prevents a 
model from finding a good pattern. To mitigate this problem, we 
used a log transformation:

 X Xij
new

ij= +log2 1( ), 

for i ∈ n and j ∈ d. A constant, 1, was added to the read count 
value of each gene before applying the logarithm function to 
avoid problems with zeros. Min-max normalization was then 
applied to the log-transformed data.

Development of a Novel Prognosis-Related 
Feature Selection Framework: CWx
The proposed method was based on the Wx algorithm 
(Park et al., 2017), which identifies key genes discriminating 
between different groups, such as normal vs. cancer, based on 
transcriptome (RNAseq) data. The top features were selected 
using the following discriminating power (DP) equation:

 
DP W X W Xj normal j normal cancer j cancer= −ˆ ˆ

, ,  

Wnormal and Wcancer represent trained weights linked to the 
normal and cancer output of the softmax, respectively. ˆ

,X j normal  
is the average of the feature j for the class, “normal,” and likewise, 
ˆ

,X j cancer  is the average of feature j for the class, “cancer.” As this 
method was designed to be applied to a classification problem, we 
cannot apply it to the survival analysis as is. Therefore, in this study, 
we propose a novel prognosis-related feature selection algorithm, 
CWx, which identifies prognosis-associated features (genes) 

from a large amount of patient transcriptome data, together with 
clinical information. The basic concept of the CWx algorithm is to 
improve learning performance by reducing the number of samples 
(patients) and the number of features (genes) over the course 
of three steps (Figure 1). In the first step, patients were divided 
into high- and low-risk cohorts according to whether they have 
survived for 3 years. For example, 115 deceased patients within 
3 years in a training set formed one group (28.4%; high risk), 
whereas 104 patients who lived more than 3 years formed another 
group (25.7%; low risk). The remaining patients (186, 45.9%) 
were right censored, meaning that there was no information as 
to whether these patients were deceased within 3 years. These 
right-censored patients were excluded in the training stage. The 
second and third steps are similar to the first step with different 
cutoffs (2 versus 4 years and 1 versus 5 years, respectively). As 
with the strategy of reducing the number of samples, the number 
of features (genes) was also reduced by a quarter in each step. One 
quarter of the features was selected according to the importance 
determined by our previous Wx feature selection algorithm (Park 
et al., 2017). A total of 19,960 genes were used as input features 
after removing genes with no variance. The final output is a set 
of genes ranked by prognostic weights, estimated in a manner 
similar to the Wx algorithm (Park et al., 2017). The code for the 
CWx algorithm is available on the GitHub website (https://github.
com/deargen/DearCascadedWx).

Survival Evaluation Model
The survival evaluation model used in this paper is the Faraggi–
Simon method (Faraggi and Simon, 1995), which is a nonlinear 
proportional hazards model. This model incorporates a negative 
log-partial likelihood as a cost function, which can be represented 
as follows:

 
log ( ) ( , ) log ( , )

::
L f X e xi

f
j

j S Si C j ii

θ θ θ= −



∈ ≥∑

=00
∑ , 

FIGURE 1 | An example of CWx’s feature selection procedure. Input samples (patients) are reduced through three cascaded steps using different criteria. 
Three-year, 2 versus 4-year, and 1- versus 5-year cutoffs for categorizing samples into either high- or low-risk groups are used at first, second, and third steps, 
respectively. Input features (genes) are also reduced by a quarter in each step. Finally, the prognostic potential of features can be estimated according to the weights 
calculated from the trained neural network.
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where f(Xk, θ) is a log-hazard rate parameterized by the weights 
of the network, θ. In this study, a single-layer feed-forward neural 
network was used as a nonlinear function, f. We used 100 epochs 
for training and 20 epochs for early stopping, with the adaptive 
moment estimation optimizer (Kingma and Ba, 2014). The batch 
size was equal to the number of whole training data samples, 
because the negative log likelihood cost function calculates the 
likelihood of the whole dataset at once. We selected the best 
learning rate based on the best concordance index (c-index) on 
the validation set, which was 20% of the training dataset.

Evaluation Metrics
A stratified fivefold cross-validation method was used to check 
general model behaviors. For each selected test subset, the other 
four subsets were used as the training set. Therefore, the overall 
result was the average of the five subresults. The performance of 
the algorithms was evaluated using the log-rank test (Altman, 
1990) as well as Harrell’s c-index, a nonparametric statistic 
that measures concordance between predicted risk and actual 
survival (Harrell et al., 1982).

Merging Selected Features
Because we used the fivefold cross-validation method, which 
produces five different lists (sublists) of feature (gene) rankings, 
these gene lists were merged to generate a representative gene list 
for each method. The summation of a given set of five sublists 
was conducted as formulated below:

 
Gene Ranking Po N Rj jk

k
int = −

=∑ [ ]
1

5

, 

where j ∈ d, N is the total number of features and Rjk is the 
ranking of gene j in kth fold. The final representative gene list 
was determined by sorting the gene ranking points in descending 
order.

Feature Selection Methods
Feature selection is a common approach in computer science to 
reduce dimensionality. This approach is extremely useful when 
it comes to genomic datasets, which typically contain more than 
20,000 features (genes). We used the following feature selection 
methods for comparisons.

Cox Proportional Hazards (CoxPH)
The CoxPH model (Cox, 1972) is a regression model designed 
for survival analysis with respect to patients’ features. This model 
is one of the most widely used methods in survival analysis. The 
Cox model is formulated as the risk function:

 η η β( , ) ( )t X t e
T X= ⋅0 , 

where the risk of an event at the survival time t ⋅ η0(t) is the 
baseline hazard, β ∈ Rp is the coefficient to be learned, a measure 
of the impact of features, and X ∈ Rp is the input feature.

Coxnet
We used Coxnet, a Cox regression model with an Elastic-Net penalty 
(Zou and Hastie, 2005), as another comparative method. Elastic-
Net was chosen as one of the algorithms as it effectively incorporates 
L1 and L2 penalties into its cost function to select a parsimonious 
feature set. Although the algorithm automatically sets the number 
of features selected, it provides a good baseline for survival 
analysis with a succinct set of features. We use the Python package 
glmnet (Simon et al., 2011) as an Elastic-Net implementation. The 
regularization term of Elastic-Net is represented as follows:

 
P i

i

p

i
i

p

α λ β λ α β α β( , ) ( )= + −










= =
∑ ∑1

2
1

1

2

1  

The parameter λ controls the level of the regularization, and 
α weights LASSO higher when it approaches one, and Ridge 
regression when it approaches zero. This yields the benefit of 
discrete feature selection from LASSO and the ability to handle 
correlated features from Ridge regression. The Python package 
lifelines (version 0.14.1) was used.

ML-Based Models
One of the major categories of feature selection methods is based 
on generic ML models, such as RF (Breiman, 2001), SVM (Cortes 
and Vapnik, 1995), connection weight (Olden et al., 2004), and 
extreme gradient boosting (XGBoost; Chen and Guestrin, 2016). 
The feature selection process of these methods is first applying 
the model to a problem and then analyzing the trained model to 
select a salient group of features. For these methods, the Python 
package scikit-learn (version 0.19.1) was used.

Similarity-Based Feature Selection
One group of feature selection methods is designed to preserve 
sample similarity. These approaches implicitly select partial features 
that maintain similarity. However, the similarity-based feature 
selection algorithms can be subcategorized, as they have different 
goals. ReliefF (Kononenko, 1994) and the Fisher score (Duda et al., 
2012) focus on separability, whereas Trace ratio (Nie et al., 2008) 
targets locality. The Python package skfeature-chappers (version 
1.0.3) was used to run the algorithms.

Sparse Learning-Based Feature Selection
Like Elastic-Net, sparse learning-based feature selection methods 
incorporate both L1 and L2 regularizers. The difference between 
this group and Coxnet is the cost function. The cost function 
of Coxnet is the proportional hazards function, whereas the 
sparse learning-based feature selection methods are based on the 
classification problem. There are several variants of these methods 
with minor modifications, such as robust feature selection (RFS; 
Nie et al., 2008) and LLL21 (Liu et al., 2009). The RFS and LLL21 
algorithms were compared to the proposed method. The Python 
package skfeature-chappers (version 1.0.3) was used.

Statistical-Based Feature Selection
The last group we used for comparison is based on statistics, 
where each feature is selected according to various standardized 
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test statistics. For example, Fscore, Tscore, and DESeq2 use 
analysis of variance (ANOVA) of scores, t-scores, and a negative 
binomial distribution (Love et al., 2014), respectively. In this 
paper, we only included Fscore and DESeq2 results, as Tscore 
identified only a limited number of genes. The Python package 
skfeature-chappers (version 1.0.3) and the R package DESeq2 
(version 1.22.2) were used, respectively.

Overview of the Evaluation Pipeline
To evaluate the performance of CWx with other feature selection 
algorithms, we used transcriptome data obtained from TCGA. 

Log transformation, a widely used method to reduce skewness, 
was applied, and then the data were further normalized using 
min-max normalization (Figure 2). The data were divided into 
five subgroups without intersection for fivefold cross-validation. 
The fivefold cross-validation was performed using the top genes 
identified by a given feature selection algorithm, and performance 
was evaluated by averaging the reported performance measures 
(c-index; Figure 2A). Because the number of samples was small, 
we performed fivefold cross-validation for both a feature selector 
and a survival model to avoid (un)lucky peaks, as shown in 
Figure 2. For each split, we held out one subset as a test dataset 
(light reds in Figure 2B), whereas other remaining subsets 

FIGURE 2 | Overview of the evaluation pipeline. (A) Overview of data preprocessing, normalization, and evaluation pipeline. (B) Process of fivefold cross-validation 
for training models and evaluating trained models. c-index was used as the performance measurement.
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(light blues in Figure 2B) were used for training both a feature 
selector and a survival model. For the survival model, we used 
conventional negative log likelihood. The Kaplan–Meier survival 
plot with the log-rank test and c-index was also used to evaluate 
the genes identified by each algorithm.

RESULTS

Comparison of Feature Selection 
Algorithms for Prognosis Prediction
To compare the prognosis-related gene selection performance of 
CWx with the current state-of-the-art feature selection algorithms, 
we used TCGA transcriptome data (expression levels of 20,501 
genes) of LUAD (n = 507) together with clinical information. The 
dataset contained 324 censored and 183 events (deceased). Patients 
were categorized into either the high-risk group or the low-risk 
survival group according to a 3-year survival outcome (censored or 
deceased), making this a binary classification problem. We compared 
the proposed algorithm, CWx, to the following supervised feature 
selection algorithms from five different categories: i) ML-based 
models: RF (Breiman, 2001), SVM (Cortes and Vapnik, 1995), 
XGBoost (Chen and Guestrin, 2016), and connection weight 
(Olden et al., 2004); ii) similarity-based models: Fisher score 
(Duda et al., 2012), ReliefF (Kononenko, 1994), and Trace ratio 
(Nie et al., 2008); iii) sparse learning-based models: multitask 
feature learning via efficient l2,1-norm minimization (LLL21; Liu 
et al., 2009) and RFS (Nie et al., 2010); iv) statistical-based models: 
Fscore and DESeq2 (Love et al., 2014); and v) others: CoxPH (Cox, 
1972). The information theoretical-based algorithms such as max-
relevance min-redundancy (Peng et al., 2005), conditional mutual 
info maximization (Fleuret, 2004), and conditional infomax feature 
extraction (Lin and Tang, 2006) were excluded for evaluation due 
to the small numbers of features identified by the algorithms (<100 
features). These algorithms calculate a score for each given feature, 
so the performance of each cancer prognosis prediction can 
be estimated by comparing the highest-scoring features selected 
by each algorithm. The Python package “skfeature-chappers” 
(version 1.0.3; https://pypi.org/project/skfeature-chappers/) was 

used for the feature selection algorithms, and the top 100 features, 
as ranked by the feature importance score (or feature coefficient) 
calculated by each algorithm, were used for the comparisons. The 
importance assigned to features by ML algorithms, which were 
not originally intended for feature selection, was determined by 
estimating the importance for XGBoost and RF and by assessing 
a coefficient for SVM. The “xgboost” Python package (version 
0.71) was used to apply the XGBclassifer” function, and the “scikit-
learn” Python package (version 0.19.1) was used to apply the “SVC” 
(SVM) and “RandomForestClassifer” functions. We also compared 
CWx to CoxPH and Coxnet as baseline methods for prognosis 
prediction. Feature selection criteria for CoxPH and Coxnet were P 
value and beta coefficients, respectively. Because Coxnet produced 
less than 50 genes, we could not calculate the c-index of the top 
100 genes for Coxnet. We therefore used the results from Coxnet, 
with all known genes used after model learning, as the baseline 
performance for comparison. The results indicated that CWx was 
superior to the other methods in terms of c-index when comparing 
the top genes (cumulative) from 1 to 100 in LUAD samples (Figure 3 
and Table 1). We also evaluated the algorithms with the log-rank 

FIGURE 3 | Comparison of feature selection algorithms with cumulative top k genes. Violin plot shows the c-indexes of the top genes (cumulative from 1 to 100 
in lung adenocarcinoma (LUAD) samples; n = 100) identified by each algorithm (left). White circles indicate the medians; box limits inside the polygons indicate the 
25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; polygons represent 
density estimates of data and extend to extreme values. Asterisks (*P < 0.05 and ***P < 0.001) indicate the results of one-way ANOVA (P < 0.0001) with post hoc 
test (pairwise t test with Bonferroni–Holm correction). x- and y-axes indicate the number of cumulative top genes and c-index, respectively (right).

TABLE 1 | Summary of c-indexes for lung adenocarcinoma (LUAD) patients 
using top genes.

Top 5 Top 10 Top 50 Top 100

CWx 0.5670 0.5786 0.5971 0.5932
CoxPH 0.5077 0.5072 0.5709 0.5709 
DESeq2 0.5943 0.6148 0.5813 0.5727 
XGBoost 0.5833 0.5687 0.5719 0.5849 
RF 0.5541 0.5593 0.5752 0.5741 
SVM 0.5121 0.5230 0.5054 0.5415 
Fscore 0.4981 0.5161 0.5641 0.5805 
ReliefF 0.5215 0.5377 0.5569 0.5704 
Trace ratio 0.5502 0.5624 0.5616 0.5539 
Fisher score 0.5756 0.5814 0.5903 0.5742 
RFS 0.5639 0.5111 0.5650 0.5546 
LLL21 0.4927 0.4915 0.5470 0.5614 
Connection weight 0.5319 0.5424 0.5882 0.5917

The red and bolded texts represent the first and second highest scores in each category, 
respectively.
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test using the top k genes. CWx showed the most significant P value 
(9.6E-8) when the top 5 genes were used followed by RFS, Fisher 
score, and Fscore (Table 2). However, RFS was the best performer 
in the other three comparisons using top 10, top 50, and top 100 
genes. Next, we further evaluated the algorithms’ performance with 
different cancer datasets such as LUSC, BRCA, BLCA, and READ. 
The results showed that CWx was the best performer in BRCA and 
READ. In contrast, Trace ratio and RF were the top performers 
in LUSC and BLCA, respectively, followed by CWx in both 
cancer types (Figure S1 and Table 3). Overall, the comparisons 
demonstrated that the CWx framework was superior in identifying 
prognosis-related genes in cancer transcriptome data.

Functional Analysis of Prognosis-Related 
Genes
We compared the top 100 gene sets identified by each algorithm to 
ensure that there were core gene signatures in LUAD. Interestingly, 
there was little overlap even between the fivefolds (groups) that were 
used for cross-validation by each algorithm (Figure S2). DESeq2 
showed the highest overlap (10.0%), whereas CWx had 2.4% of 

overlap observed between the fivefolds. XGBoost, RF, RFS, and 
connection weight showed no overlap between the fivefolds. The 
result is likely to be due to a relatively small number of samples 
for training and/or algorithmic differences. Next, we performed 
Gene Ontology (GO) analysis to identify the biological pathways 
associated with the top 100 genes. This analysis revealed that the gene 
set identified by CWx was associated with the Wnt signaling pathway 
(Figure 4), one of the key pathways regulating development, and 
closely associated with many cancers. The gene sets identified by the 
other algorithms were related to different pathways such as “positive 
regulation of JNK cascade” (CoxPH), “central carbon metabolism 
in cancer” (Fisher score and Fscore), “O-glycan biosynthesis, mucin 
type core” (LLL21, RF, and XGBoost), “mitotic nuclear division” 
(Trace ratio), “regulation of gene silencing” (RFS), and “GPCR 
ligand binding” (SVM). Differences between the gene sets identified 
by the different algorithms, and their associated biological pathways, 
need to be further investigated in future studies.

Evaluation of the Cascaded Framework 
for the Prognosis Analysis of LUAD 
Patients
The above comparison was conducted by comparing the CWx 
framework to various ML algorithms, which do not incorporate 
the cascaded framework. We wondered whether the incorporation 
of the cascade framework could also improve the performance 
of the other ML algorithms for prognosis analysis. To this end, 
we applied the cascade framework to the Fisher score, RF, Trace 
ratio, SVM, and RFS algorithms and compared them to CWx. 
The evaluation revealed that the cascade framework significantly 
improved the feature selection performance for SVM, Fisher score, 
Trace ratio, and Wx (our previous feature selection algorithm) 
compared to the algorithms without the framework (Figure 5), 
although the CWx model still showed the best performance in 
terms of c-index. Interestingly, the cascaded framework failed to 
improve performance for both RFS and RF.

DISCUSSION

Lung cancer is one of the leading causes of cancer-related deaths 
worldwide. The identification of prognostic biomarkers is a primary 
goal of lung cancer studies. In this study, we developed a neural 
network-based prognosis-related feature selection framework to 
improve the performance of current prognosis prediction models. 
Our proposed CWx framework identifies prognosis-related features 
through a cascaded approach, as shown in Figure 1. Our evaluation 
using 507 TCGA LUAD transcriptomes revealed that the prognosis-
related gene set identified by CWx either outperformed or matched 
the performance of the gene sets extracted by the other classifiers 
using a stratification of samples into low- and high-risk categories 
according to the c-index. This finding means that the prognosis-
related gene set found by CWx is one of the best candidate gene sets 
to predict patients’ prognoses. This feature reduction framework is 
a very important technology in the era of NGS, in which expression 
values for tens of thousands of genes are routinely calculated.

TABLE 2 | Summary of log-rank p values for 3-year survival of LUAD patients 
using top genes.

Top 5 Top 10  Top 50 Top 100

CWx 9.60E-08 2.10E-09 1.20E-12 9.00E-27
CoxPH 2.00E-02 1.60E-03 7.60E-14 7.10E-19
DESeq2 9.00E-03 2.00E-04 1.00E-14 7.30E-20
XGBoost 2.90E-04 1.70E-05 4.40E-13 1.70E-17
RF 3.40E-03 3.00E-04 1.10E-15 3.00E-20
SVM 7.30E-04 2.00E-05 1.20E-27 5.80E-41
Fscore 1.20E-05 1.10E-08 5.10E-19 1.60E-25
ReliefF 1.40E-04 2.20E-06 3.90E-18 2.90E-27
Trace ratio 1.10E-05 1.90E-08 1.30E-18 5.10E-25
Fisher score 1.20E-05 1.10E-08 5.10E-19 1.60E-25
RFS 3.50E-06 1.20E-11 4.40E-40 4.20E-50
LLL21 1.50E-02 1.20E-02 3.30E-13 2.20E-16
Connection weight 1.20E-02 2.00E-03 1.50E-14 1.20E-27

The red and bolded texts represent the first and second highest scores in each category, 
respectively.

TABLE 3 | Average c-index (top genes range from 1 to 100; n = 100) of five 
different cancer cohorts.

LUAD LUSC BRCA BLCA READ

CWx 0.5918 0.5558 0.6331 0.6060 0.7482
CoxPH 0.5553 0.5476 0.5513 0.5914 0.6401 
DESeq2 0.5824 0.5258 0.5465 0.5398 0.5582 
XGBoost 0.5736 0.5223 0.6099 0.5976 0.6379 
RF 0.5735 0.5546 0.5774 0.6114 0.7392
SVM 0.5164 0.5306 0.5520 0.5378 0.4478 
Fscore 0.5602 0.5477 0.5702 0.5552 0.5316 
ReliefF 0.5544 0.5423 0.5820 0.5641 0.5501 
Trace ratio 0.5622 0.5611 0.6100 0.5732 0.6338 
Fisher score 0.5802 0.5433 0.6187 0.6058 0.7099 
RFS 0.5541 0.5453 0.5794 0.5676 0.5308 
LLL21 0.5358 0.5324 0.5198 0.5808 0.5956 
Connection weight 0.5720 0.5482 0.5350 0.6040 0.6353 

The red and bolded texts represent the first and second highest scores in each category, 
respectively.
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The CWx framework was designed to select the optimal 
gene set  associated with patients’ prognoses using the survival 
information of a given cohort and changing the separation criteria 
between high- and low-risk groups through a three-step cascade 
method. Therefore, the CWx algorithm can be applied to the 
identification of prognosis-related genes associated with a range of 
diseases, not only LUAD (Figure S1). In addition, CWx has a linear 
execution time to complete the feature selection steps depending 
on the number of samples. Some information theoretical-based 
feature selection algorithms take longer to finish the feature 
selection procedure. In contrast, one of the disadvantages of CWx 
is that it can only handle right-censored data within 3 years due 
to the binary classification of patients into either high- or low-risk 
groups. However, all of the supervised feature selection algorithms 
have this problem when applied to survival analysis. One possible 

solution to this issue is to select features directly from a given 
neural network training model using a negative log-likelihood cost 
function that can handle the whole sample for survival analysis.

One of the key pathways related to the prognosis of LUAD 
patients identified by the CWx framework was the Wnt signaling 
pathway. A recent study has shown that two distinct subpopulations 
of cells, one with high Wnt signaling activity and another forming 
a niche that provides the Wnt ligand, are activated in LUAD. 
In addition, in vitro and in vivo studies have suggested that Wnt 
responsiveness contributes to the survival of cancer cells and the 
maintenance of a stem cell-like niche cell phenotype (Tammela 
et al., 2017). Interestingly, several prognosis-related genes identified 
by the CWx framework have been previously reported in LUAD 
studies. For example, glycogen synthase kinase 3 is a central regulator 
of cellular metabolism, development, and growth and is frequently 

FIGURE 4 | Gene ontology (GO) analysis of top 100 genes. GO analysis was performed using Metascape (http://metascape.org/gp/index.html) with top 100 genes 
(default parameters were used). The significance of a given GO term is represented by gray (significant) or white (nonsignificant) bars with a P cutoff value of 0.0001.
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elevated in NSCLC, supporting tumor cell proliferation (Vincent 
et al., 2014). Several SRY-related HMG box (SOX) genes, such as 
SOX2, SOX4, SOX7, SOX9, SOX11, and SOX17, have been known 
to be expressed in the developing lung, and it has been suggested 
that they are involved in the abnormalities of lung morphogenesis 
and function. Of these SOX genes, SOX9 is frequently up-regulated 
in LUAD (Maeda et al., 2007). SOX9 affects the expression of 
the cell cycle regulators p21 and cyclin-dependent kinase 4 and 
thus contributes to an increase in lung cancer growth potential 
(Jiang et al., 2010). Transducin-like enhancer of split 1 (TLE1) is 
a transcriptional corepressor that interacts with a variety of DNA-
binding transcription factors and has been implicated in many 
signaling pathways such as the Notch, Wnt, and nuclear factor-κB 
signaling pathways. In cancer, TLE1 has oncogenic functions in lung 
cancer (Allen et al., 2006) and synovial sarcoma (Seo et al., 2011) in 
addition to tumor-suppressing activity in hematologic malignancies 
(Fraga et al., 2008). In an in vitro study of a LUAD cell line, TLE1 was 
shown to potentiate the epithelial-to-mesenchymal transition in part 
through the suppression of the tumor suppressor gene E-cadherin. 
It also provides a mechanism underlying the oncogenic activity of 
TLE1 in lung cancer (Yao et al., 2014). Collectively, these findings 
support the hypothesis that the prognosis-related genes discovered 
by CWx are highly likely to be useful as prognostic biomarkers for 
LUAD given further experimental and clinical validation.

In summary, we have developed a novel prognosis-related 
feature selection framework called CWx. Intriguingly, the top 

100 gene set identified by the algorithm was related to the Wnt 
signaling pathway, which has been reported to be associated with 
the prognosis of LUAD (Xu et al., 2017; Han et al., 2018). Further 
experimental and clinical validation is required to demonstrate 
the prognostic potential of the top 100 genes identified by CWx.
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post hoc test (pairwise t test with Bonferroni–Holm correction). x- and y-axes indicate the number of cumulative top genes and c-index, respectively (right).
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