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Genetic architecture reflects the pattern of effects and interaction of genes underlying 
phenotypic variation. Most mapping and breeding approaches generally consider the 
additive part of variation but offer limited knowledge on the benefits of epistasis which 
explains in part the variation observed in traits. In this study, the cowpea multiparent 
advanced generation inter-cross (MAGIC) population was used to characterize the 
epistatic genetic architecture of flowering time, maturity, and seed size. In addition, 
consideration for epistatic genetic architecture in genomic-enabled breeding (GEB) was 
investigated using parametric, semi-parametric, and non-parametric genomic selection 
(GS) models. Our results showed that large and moderate effect–sized two-way epistatic 
interactions underlie the traits examined. Flowering time QTL colocalized with cowpea 
putative orthologs of Arabidopsis thaliana and Glycine max genes like PHYTOCLOCK1 
(PCL1 [Vigun11g157600]) and PHYTOCHROME A (PHY A [Vigun01g205500]). Flowering 
time adaptation to long and short photoperiod was found to be controlled by distinct 
and common main and epistatic loci. Parametric and semi-parametric GS models 
outperformed non-parametric GS model, while using known quantitative trait nucleotide(s)  
(QTNs) as fixed effects improved prediction accuracy when traits were controlled by large 
effect loci. In general, our study demonstrated that prior understanding of the genetic 
architecture of a trait can help make informed decisions in GEB.

Keywords: cowpea, genetic architecture, epistasis, QTL, genomic-enabled breeding, genomic selection, flowering 
time, photoperiod

INTRODUCTION

Asymmetric transgressive variation in quantitative traits is usually controlled by non-additive gene 
interaction known as epistasis (Rieseberg et al., 1999). Epistasis has been defined as the interaction 
of alleles at multiple loci (Mathew et al., 2018). The joint effect of alleles at these loci may be lower 
or higher than the total effects of the loci (Johnson, 2008). In selfing species, epistasis is common due 
to high level of homozygosity (Volis et al., 2010) and epistatic interactions have been found among 
loci underlying flowering time in barley (Mathew et al., 2018), rice (Chen et al., 2015; Chen et al., 
2018b), and sorghum (Li et al., 2018a). Although, theoretical models and empirical studies involving 
simulations have suggested the significant role for epistasis in breeding (Melchinger et al., 2007; Volis 
et al., 2010; Messina et al., 2011; Howard et al., 2014), empirical evidence from practical breeding 
are limited. In addition, most of the current statistical models cannot efficiently characterize or 
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account for epistasis (Mackay, 2001; Moore and Williams, 2009; 
Sun et al., 2012; Mathew et al., 2018). Common quantitative traits 
mapping approaches are often single-locus analysis techniques. 
These techniques focus on the additive contribution of genomic 
loci (Barton and Keightley, 2002), which only explains a fraction 
of the genetic variation which can lead to missing heritability.

Regardless of the limitations of genomic mapping approaches, 
characterization of the genetic basis of complex agronomic 
traits has been beneficial for breeding purposes. For example, 
markers tagging quantitative trait loci (QTL) have been used in 
marker-assisted selection (MAS) in breeding programs (Zhang 
et al., 2003; Pan et al., 2006; Saghai Maroof et al., 2008; Foolad 
and Panthee, 2012; Massman et al., 2013; Mohamed et al., 2014; 
Zhao et al., 2014). However, the efficiency of QTL-based MAS 
approach in breeding is limited. First, the small sample size of 
bi-parental populations where QTL is detected often results in 
overestimation of the respective QTL effect sizes, a phenomenon 
known as Beavis effect (Utz et al., 2000; Xu, 2003; King and Long, 
2017). Second, linkage mapping is limited in power to detect small 
effect loci; thus, only the available large effect loci are used for 
MAS (Ben-Ari and Lavi, 2012). Third, genetic diversity is limited 
to the two parents forming the bi-parental population; thus, QTL 
may not reflect the entire variation responsible for the trait and 
may not be transferable to other genetic backgrounds (Xu et al., 
2017). Multi-parental populations as nested association mapping 
(NAM) and multiple advanced generation intercross (MAGIC) 
offer increased power, resolution, reliable estimate of QTL effects, 
and increased diversity than bi-parentals. Additionally, the 
MAGIC mapping population presents greater genetic diversity 
than bi-parentals to identify higher-order epistatic interactions 
(Mathew et al., 2018).

Notably, MAS is more efficient with traits controlled by few 
genomic loci than polygenic traits (Bernardo, 2008). In contrast, 
genomic selection (GS) that employs genome wide markers 
has been found to be more suited for complex traits, and also 
having higher response to selection than MAS (Bernardo and 
Yu, 2007; Wong and Bernardo, 2008; Cerrudo et al., 2018). In 
GS, a set of genotyped and phenotyped individuals are first used 
to train a model that estimates the genomic estimated breeding 
values (GEBVs) of un-phenotyped but genotyped individuals 
(Jannink et al., 2010). GS models often vary in performance 
with the genetic architecture of traits. Parametric GS models are 
known to capture additive genetic effects but are not efficient 
with epistatic effects due to the computational burden of high-
order interactions (Moore and Williams, 2009; Howard et al., 
2014). Parametric GS models with incorporated kernels (marker 
based relationship matrix) for epistasis have recently been 
developed (Covarrubias-Pazaran, 2016). Semi-parametric and 
non-parametric GS models capturing epistatic interactions have 
been developed and implemented in plant breeding (Gianola 
et al., 2006; Gianola and de los Campos, 2008; De Los Campos 
et al., 2010). Semi-parametric models as reproducing Kernel 
Hilbert space (RKHS) reduces parametric space dimensions to 
efficiently capture epistatic interactions among markers (Jiang 
and Reif, 2015; de Oliveira Couto et al., 2017). Using simulated 
data, Howard et al. (2014) showed that semi-parametric and non-
parametric GS models can improve prediction accuracies under 

epistatic genetic architectures. In summary, different models may 
fit different genetic architectures. In general, GS has been widely 
studied and applied to major crop species including both cereals 
and legumes while its applications in orphan crop species has 
gained increased attention in recent times.

Cowpea (Vigna unguiculata L. Walp) is a widely adapted 
warm-season orphan herbaceous leguminous annual crop and 
an important source of protein in developing countries (Muchero 
et al., 2009; Varshney et al., 2012; Boukar et al., 2018; Huynh 
et al., 2018). Due to its flexibility as a “hungry season crop” 
(Langyintuo et al., 2003), cowpea is part of the rural families’ 
coping strategies to mitigate the effect of changing climatic 
conditions. Cowpea’s nitrogen fixing and drought tolerance 
capabilities make it a valuable crop for low-input and smallholder 
farming systems (Hall et al., 2003; Boukar et al., 2018). Breeding 
efforts using classical approaches have been made to improve 
cowpea’s tolerance to both biotic (disease and pest) and abiotic 
(drought and heat) stressors (Hall et al., 2003; Hall, 2004). 
Advances in applications of next-generation sequencing (NGS) 
and development of genomic resources (consensus map, draft 
genome, and multi-parent population) in cowpea have provided 
the opportunity for the exploration for GEB (Muchero et al., 
2009; Boukar et al., 2018; Huynh et al., 2018). MAS and GS have 
improved genetic gain in soybean (Glycine max) (Jarquin et al., 
2016; Kurek, 2018; Matei et al., 2018), common bean (Phaseolus 
vulgaris) (Schneider et al., 1997; Yu et al., 2000; Wen et al., 2019), 
chickpea (Roorkiwal et al., 2016; Li et al., 2018b), pigeonpea 
(Varshney et al., 2010; Pazhamala et al., 2015), and lentil (Haile 
et al., 2019). However, cowpea still lags behind major legumes in 
the area of GEB applications. GEB has the potential to expedite 
cowpea breeding to ensure food security in developing countries 
where national breeding programs still depend on labor-intensive 
and time-consuming classical breeding approaches.

In this study, we used the cowpea MAGIC population to first 
characterize the genetic architecture (main effect and epistatic 
effect loci) of flowering time, maturity, and seed size, and second, 
to evaluate considerations for genetic architecture in genomic-
enabled breeding using parametric, semi-parametric, and 
non-parametric GS models and MAS. Our results showed that 
flowering time and maturity under short day are both controlled 
by moderate effect loci, while flowering time under long day and 
seed size are controlled by large and moderate effect loci. Also, 
accounting for large effect loci as fixed effects in parametric GS 
model improved prediction accuracy.

EXPERIMENTAL PROCEDURES

Plant Genetic Resource and Phenotypic 
Evaluation
This study was performed using publicly available cowpea 
MAGIC population’s phenotypic and genotypic data (Huynh 
et  al., 2018). The MAGIC population was derived from an 
intercross between eight founders. The F1s were derived from 
eight-way intercross between the founders and were subsequently 
selfed through single-seed descent for eight generations. The F8 
RILs were later genotyped with 51,128 SNPs using the Illumina 
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Cowpea Consortium Array. A core set of 305 MAGIC RILs were 
selected and phenotyped (Huynh et al., 2018). The RILs were 
evaluated under two irrigation regimes.

In this study, the flowering time (FLT), maturity (MAT), 
and seed size (SS) data were analyzed for environment-by-
environment correlations and best linear unbiased predictions 
(BLUPs). The traits analyzed in this study are: FTFILD (FLT 
under full irrigation and long day), FTRILD (FLT under restricted 
irrigation and long day), FTFISD (FLT under full irrigation and 
short day), FTRISD (FLT under restricted irrigation and short 
day), FLT_BLUP (BLUP of FLT across environments), MFISD 
(MAT under full irrigation and short day), MRISD (MAT under 
restricted irrigation and short day), MAT_BLUP (BLUP of MAT 
across environments), SSFISD (SS under full irrigation and short 
day), SSRISD (SS under restricted irrigation and short day), and 
SS_BLUP(BLUP of SS across environments). In addition, using 
both genomic and phenotypic data, narrow sense heritability was 
estimated using rrBLUP package in R (Endelman, 2011).

QTL and Epistasis Mapping
QTL mapping was performed for all traits using the stepwise 
regression model implemented in TASSEL 5.0 standalone version 
(Bradbury et al., 2007). The approach implements both forward 
inclusion and backward elimination steps. The model accounts 
for major effect loci and reduces collinearity among markers. 
The model was designed for multi-parental populations, and 
no family term was used in the model since MAGIC population 
development involved several steps of intercross that reshuffles 
the genome and minimizes phenotype-genotype covariance. A 
total of 32,130 SNPs across 305 RILs were used in the analysis.  
A permutation of 1,000 was used in the analysis.

To characterize the epistatic genetic architecture underlying 
FLT, MAT, and SS, the Stepwise Procedure for constructing an 
Additive and Epistatic Multi-Locus model (SPAEML; Chen et al., 
2018a) epistasis pipeline implemented in TASSEL 5.0 was used 
to perform epistasis mapping for phenotypic traits (FTFILD, 
FTRILD, FTFISD, FTRISD, FT_BLUP, MFISD, MRISD, MT_
BLUP, SSFISD, SSRISD, and SS_BLUP). One critical advantage of 
SPAEML that led to its consideration for this study is its ability to 
correctly distinguish between additive and epistatic loci. SPAEML 
source code is available at https://bitbucket.org/wdmetcalf/
tassel-5-threaded-model-fitter. The minor allele frequency of 
each marker was estimated using a custom R script from http://
evachan.org/rscripts.html. The additive effect of the marker was 
estimated as the difference between the mean phenotypic value 
of two homozygous classes of the alleles of a marker divided by 
two. The proportion of phenotypic variation explained (PVE) by 
each marker was estimated by multiplying the R2 obtained from 
fitting a regression between the marker and the trait of interest by 
100. The regression model for estimating PVE is:

 yij = +µ γ + εi ij  [1]

where yij is the phenotype, μ is the overall mean, γi is the term 
for associated marker/SNP, and εij is the residual term. This was 
implemented using the lm function in R.

A set of a priori genes (n = 100; Data S1) was put together from 
Arabidopsis thaliana and G. max FLT and SS genes obtained from 
literature and https://www.mpipz.mpg.de/14637/Arabidopsis_
flowering_genes. The cowpea orthologs of these genes were 
obtained by blasting the A. thaliana and G. max sequence of the 
a priori genes on the new Vigna genome assembly v.1 on Phytozome 
(Goodstein et al., 2012). The corresponding cowpea gene with the 
highest score was selected as a putative ortholog. Colocalizations 
between the cowpea putative orthologs and associated markers 
were identified using a custom R script. Only significant marker 
and a priori genes at the same genetic position were reported.

Marker-Assisted Selection Pipeline
In order to evaluate the performance of MAS in cowpea, a custom 
pipeline was developed in R. Using subbagging approach, 80% of 
the 305 RILs randomly sampled without replacement was used 
as the training population, followed by performing a multi-locus 
GWAS (multi-locus mixed model, MLMM) (Segura et al., 2012) 
on both genomic and phenotypic data of the training population. 
The MLMM approach implements stepwise regression involving 
both forward and backward regressions. This model accounts for 
major effect loci and reduces the effect of allelic heterogeneity. 
A  K-only model that accounts for a random polygenic term 
(kinship relationship matrix) was used in the MLMM model. No 
term for population structure was used in the model since MAGIC 
population development involved several steps of intercross 
that reshuffles the genome and minimizes phenotype-genotype 
covariance. A total of 32,130 SNPs across 305 RILs were used in the 
GWAS analysis and coded as −1 and 1 for homozygous markers/
SNPs and 0 for heterozygous SNPs. Bonferroni correction with 
α = 0.05 was used to determine the cut-off threshold for each trait 
association (α/total number of markers = 1.6 e-06).

 y S= + ∝ + +X Zu eβ  [2]

where y is the vector of phenotypic data, β is a vector of fixed 
effects other than SNPs, ∝ is the vector of SNP effects, u is a 
vector of polygenic background effects, and e is the vector of 
residual effects. X, S, and Z are incident matrices of 1s and 0s 
relating y to β, ∝, and u (Yu et al., 2006).

Afterwards, the top three most significant associations were 
then selected from the genomic data of the training population 
to train a regression model by fitting the SNPs as predictors 
in a regression model with the phenotypic information as the 
response variable. This training model was later used alongside 
the predict function in R to predict the phenotypic information 
of the validation population (20% that remained after sub-setting 
the training population). The prediction accuracy of MAS was 
obtained as the correlation between this predicted phenotypic 
information and the observed phenotypic information for the 
validation data.

Genomic Selection Pipeline
In order to evaluate the performance of using known 
marker/SNP as fixed effects in GS models and to compare 
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the performance of parametric, semi-parametric, and non-
parametric GS models, a custom GS pipeline was developed in 
R. The GS pipeline was made up of four GS models, which were 
named as FxRRBLUP (ridge regression BLUP where markers 
were fitted as both fixed and random effects; parametric), 
RRBLUP (RRBLUP where markers were only fitted as random 
effects; parametric), reproducing Kernel Hilbert space (RKHS; 
semi-parametric), and support vector regression (SVR; non-
parametric). First, using subagging approach, 80% of the 
RILs were randomly sampled without replacement (training 
population) followed by running MLMM GWAS and selecting 
the three most significant associations, which were used as 
fixed effects in the FxRRBLUP. These three SNPs were removed 
from the rest of SNPs that were fitted as random effects in the 
FxRRBLUP model. Using a high number of SNPs as fixed 
effects have been found to increase bias (Rice and Lipka, 2019), 
as a result, three QTNs were fitted as fixed effects. The RRBLUP, 
RKHS, and SVR models were fitted simultaneously in the 
same cycle as FxRRBLUP to ensure unbiased comparison of 
GS models. Likewise, in order to ensure unbiased comparison 
between GS and MAS approaches, similar seed numbers 
were used for the subagging sampling of training populations 
across 100 cycles for GS and MAS. The validation set was 
composed of the remaining 20% of the RILs after sampling the 
80% (training set). Prediction accuracy in GS was estimated 
as the  Pearson correlation between measured phenotype 
and GEBVs of the validation population. Also, for FLT, each 
environment was used as a training population to predict the 
other three environments.

Ridge Regression BLUP (RRBLUP)
The two RRBLUP models (with and without fixed-effect term) 
can be described as;

 
y Z e= + +

=∑µ m m
m

p
u

1
 [3]

 
y = + X Z eµ αk k

k

q

m m
m

p
u+ +

= =∑ ∑1 1
 [4]

where y is the vector (n x 1) of observations (phenotypic data), 
μ is the vector of the general mean, q is the number of selected 
significant associated markers (q = 3), Xk is the kth column of 
the design matrix X, α is the fixed additive effect associated 
with markers k … q, u random effects term, with E(um) = 0, 
Var um um

( ) = σ 2  (variance of marker effect), p is the marker 
number (p > n), Zm is the mth column of the design matrix Z, 
and u is the vector of random marker effects associated with 
markers m … p. In the model, u random effects term, with 
E(um) = 0, Var um um

( ) = σ 2  (variance of marker effect), Var(e) = 
σ2 (residual variance), Cov(u, e) = 0, and the ridge parameter λ 

equals 
σ

σ
e

u

2

2  (Meuwissen et al., 2001; Endelman, 2011; Howard 

et al., 2014). In this study, RRBLUP with and without fixed effects 
were implemented using the mixed.solve function in rrBLUP R 
package (Endelman, 2011).

Reproducing Kernel Hilbert Space (RKHS)
Semi-parametric models are known to capture interactions 
among loci. The semi-parametric GS approach used in this study 
was implemented as Bayesian RKHS in BLGR package in R 
(Perez, 2014), and described as follows:

 y = u1µ ε+ +  [5]

where y is the vector of phenotype, 1 is a vector of 1’s, μ is the 
mean, u is vector of random effects ~MVN (0, Kh uσ 2 ), and ε is 
the random residual vector ~ MVN (0, Iσ ε

2 ). In Bayesian RKHS, 
the priors p(μ, u, ε) are proportional to the product of density 
functions MVN (0, Kh uσ 2 ) and MVN (0, Iσ ε

2 ). The kernel 
entries matrix (Kh) with a Gaussian kernel uses the squared 
Euclidean distance between marker genotypes to estimate the 
degree of relatedness between individuals, and a smoothing 
parameter (h) multiplies each entry in Kh by a constant. In the 
implementation of RKHS, a default smoothing parameter h of 
0.5 was used alongside 1,000 burns and 2,500 iterations.

Support Vector Regression (SVR)
Support vector regression method (Vapnik, 1995; Maenhout 
et al., 2007; Long et al., 2011) was used to implement non-
parametric GS approach in this study. The aim of the SVR 
method is to minimize prediction error by implementing models 
that minimizes large residuals (Long et al., 2011). Thus, it is also 
referred to as the “ε-intensive” method. It was implemented in 
this study using the normal radial function kernel (rbfdot) in the 
ksvm function of kernlab R package (Karatzoglou et al., 2004).

Parameters Evaluated in GS and MAS
Additional parameters were estimated to further evaluate the 
performance of GS and MAS models. A regression model was 
fitted between observed phenotypic information and GEBV of 
the validation set to obtain both intercept and slope for both 
GS and MAS in each cycle of prediction. The estimates of the 
intercept and slope of the regression of the observed phenotypic 
information on GEBVs are valuable since their deviations from 
expected values can provide insight into deficiencies in the GS 
and MAS models (Daetwyler et al., 2013). The bias estimate 
(slope and intercept) signifies how the range of values in 
measured and predicted traits differ from each other. In addition, 
the coincidence index between the observed and GEBVs for 
both GS and MAS models was evaluated. The coincidence index 
(Fernandes et al., 2018) evaluates the proportion of individuals 
with highest trait values (20%) that overlapped between the 
measured phenotypes and predicted phenotypic trait values for 
the validation population.

RESULTS

Phenotypic and Genotypic Variation  
in Cowpea
Results showed variation between number of days to 50% 
flowering under long-day photoperiod and short-day 
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photoperiod. Days to FLT were higher for RILs under long 
day than short day (Figure 1). Results showed positive high 
correlations between environments for each trait (Tables S1 
and S2). Furthermore, genomic heritability were moderate for 
the traits ranging between 0.41 under long-day photoperiod to 
0.48 for FLT under short-day photoperiod, 0.21 under restricted 
irrigation to 0.30 under full irrigation for MAT, and 0.39 under 
restricted irrigation to 0.47 under full irrigation for SS (Tables S1 
and S2).

Genetic Architecture of Traits
Main Effect QTL
The cowpea multi-parental advanced generation intercross 
(MAGIC) population facilitated the characterization of the 
genetic architecture of FLT, MAT, and SS. In this study, QTL 
associated with FLT, MAT, and SS were identified using stepwise 
regression analysis (Table S3, Data S2). Results showed that 
32 QTL (22 unique) in total were associated with FLT traits 
(FT_BLUP [eight QTLs, explaining 73.2% of phenotypic 
variation (PV)], FTFILD [five QTL, explaining 66.2% of PV], 
FTRILD [five QTL explaining 48.6% of PV], FTFISD [eight 
QTL explaining 52.1% of PV], and FTRISD [six QTL explaining 
43.9% of PV]). Each of the total QTL associated with FLT traits 
explained between 2 and 28% of the phenotypic variation. QTL 
qVu9:23.36, qVu9:24.77, and qVu9:22.65 (MAF = 0.29, 0.28, and 
0.49) explained the largest proportion of variation (28%, 24%, 
and 19%) with additive effects of 7, 7, and 6 days, respectively. 
The minor allele frequency (MAF) of the FLT QTL ranges from 
0.13 to 0.50. For MAT traits, 13 QTL (11 unique QTL) in total 
were identified with five QTL (explaining 35.9% of PV) for 
MAT_BLUP, four QTL (explaining 24.5% of PV) for MFISD, and 
four QTL (explaining 27.9% of PV) for MRISD. All MAT trait 

QTL explained between 4.5 to 10% of phenotypic variation and 
MAF ranges from 0.15 to 0.49.

Furthermore, for SS traits, 10 QTL (seven unique QTL) in 
total were identified with three QTL (explaining 39.3% of PV) 
for SS_BLUP, three QTL (explaining 41% of PV) for SSFISD, and 
four QTL (explaining 39.4% of PV) for SSRISD. QTL qVu8:74.21, 
qVu8:74.29, and qVu8:76.81 associated with SSFISD, SS_BLUP, 
and SSRISD explained the largest PV (29%, 25%, and 20%). All SS 
trait QTL explained between 3 and 29% of PV and with MAF range 
between 0.21 and 0.49. A pleiotropic QTL qVu8:74.21 (MAF = 
0.24) was associated with both MRISD and SSRISD (explained 5% 
and 29% of PV, respectively). In summary, QTL effects range from 
small to large for all traits in this study (Figure 2).

Two-Way Epistatic Interaction QTL
Currently, there is limited knowledge about what role epistasis plays 
in phenotypic variation in cowpea. Our results identified epistatic 
loci underlying FLT, MAT, and SS (Table S4, Data S3). For FLT 
traits, there were 42 two-way epistatic interactions at 84 epistatic 
loci (only 65 loci were unique). Among these are; 20 epistatic loci 
for FLT_BLUP, 18 epistatic or FTFILD, 12 epistatic loci for FTRILD, 
14 epistatic loci for FTFISD, and 20 epistatic loci for FTRISD. Some 
large effect loci were involved in epistatic interactions in FLT; 
examples include, QTL qVu9:25.39 (MAF = 0.28, FT_BLUP PVE 
= 23.5%, FTFILD PVE = 24.5%, FTRILD PVE = 26%) and QTL 
qVu9:3.46 (MAF = 0.35, FLT_BLUP PVE = 13.5%, FTRILD PVE 
= 14.1%). For MAT, there were 17 pairwise epistatic interactions 
across 34 loci (of which 30 were unique). Among the MAT QTL, 
qVu9:8.37 had the largest effect explaining ~9% of the phenotypic 
variation. One epistatic interaction overlapped with both FTRISD, 
MRISD, and MT_BLUP (qVu2:48.05+ qVu9:8.37, MAF = 0.30, 
and 0.39, respectively). For SS, there were 13 interactions at 26 
loci (19 were unique). Only one QTL (qVu8:74.29, MAF = 0.25) 
had interactions with multiple QTL. The largest effect epistatic 
QTL associated with the three SS traits (SS_BLUP, SSFISD, and 
SSRISD) is qVu8:74.29 (MAF0.25). Some QTL were found to 
overlap among main effect QTL and epistatic effect QTL for FLT 
(nine QTL), MAT (three QTL), and SS (three QTL) (Figure S1).

Main Effect and Epistatic QTL Colocalized with  
A priori Genes
Gene functions can be conserved across species (Huang et al., 
2017). In this study, a set of a priori genes was compiled from both 
A. thaliana and G. max. Both main effect QTL and epistatic QTL 
colocalized with putative cowpea orthologs of A. thaliana and G. 
max FLT and SS genes (Figures 3–6, Figures S2–S11, Data S4) at 
the same genetic position. However, two genes (TOE2 and AHK2) 
did not colocalize with the QTL at the same genetic position but 
were reported due to their proximity and biological relevance. 
A putative cowpea ortholog (Vigun09g050600) of A.   thaliana 
circadian clock gene phytochrome E (PHYE; AT4G18130) 
(Aukerman and Sakai, 2003) colocalized with FTFILD QTL 
(qVu9:22.65; PVE = 19.5%; main effect QTL) at the same genetic 
position. Also, a putative cowpea ortholog (Vigun07g241700) 
of A. thaliana circadian clock gene TIME FOR COFFEE (TIC; 
AT3G22380) (Hall et al., 2003) colocalized at the same genetic 
position with FTFISD QTL (qVu7:86.92; PVE = 2.6%; main 

FIGURE 1 | The reaction norm plot for flowering time variation under long-
day and short-day periods. Evaluation environments are represented on the 
x-axis (full irrigation and long day [FILD], full irrigation and short day [FISD], 
restricted irrigation and long day [RILD], and restricted irrigation and short 
day [RISD]). The number of days to 50% flowering is represented on the 
y-axis.
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effect QTL). The cowpea FLT gene (VuFT; Vigun06g014600; 
CowpeaMine v.06) colocalized with an epistatic QTL (qVu6:0.68; 
PVE = 3.5%) associated with FLT_BLUP and FTRILD at the 
same genetic position. The cowpea ortholog (Vigun11g157600) 
of A. thaliana circadian clock gene PHYTOCLOCK1 (PCL1; 
AT3G46640) (Hazen et al., 2005) colocalized with an epistatic 
QTL (qVu11:50.94; PVE = 8–10%) associated with both FTFILD 
and FTRILD at the same genetic position.

A putative cowpea ortholog (Vigun11g148700) of A. thaliana 
photoperiod gene TARGET OF EAT2 (TOE2; AT5G60120) 
(Mathieu et al., 2009) was found at a proximity of 0.6cM from a 
QTL (qVu11:49.06; PVE = 7–11%; main effect QTL) associated 
with FTFILD, FTRILD, and FLT_BLUP. Some of the a priori genes 
colocalized with some QTL that are both main effect and epistatic 
QTL. For instance, the cowpea ortholog (Vigun01g205500) of G. 
max FLT gene phytochrome A (PHYA; Glyma19g41210) (Tardivel 
et al., 2014) colocalized with a FTFILD QTL (qVu1:66.57; 
PVE = 5.3%; both main effect and epistatic QTL) at the same 
genetic position (Data S4). Lastly, a putative cowpea ortholog 
(Vigun08g217000) of A. thaliana histidine kinase2 gene (AHK2; 
AT5G35750) (Orozco-Arroyo et al., 2015) was found at a proximity 
of about 1–2cM from three QTL (qVu8:74.29, qVu8:74.21, 
qVu8:76.81; PVE = 25%, 29.3%, and 20%, respectively; main effect 
and epistatic QTL) associated with SS traits SS_BLUP, SSFISD, and 
SSRISD). In addition, some a priori genes were associated with 
multiple traits. The putative cowpea ortholog (Vigun05g024400) 
of A. thaliana circadian clock gene CONSTANS (CO; AT5G15840) 

(Wenkel et al., 2006) colocalized at the same genetic position with 
a QTL (qVu5:8.5; PVE = 6–8%; both main effect and epistatic 
QTL) associated with FLT and MAT traits (FLT_BLUP, FTFISD, 
FTRILD, FTRISD, MAT_BLUP, and MFISD). The putative cowpea 
ortholog (Vigun09g025800) of A. thaliana circadian clock gene 
ZEITLUPE (ZTL; AT5G57360) (Somers et al., 2000) colocalized at 
the same genetic position with a QTL (qVu9:8.37; PVE = 9–11%; 
both main effect and epistatic QTL) associated with FLT and MAT 
traits (FTFISD, FTRISD, and MRISD).

GS and MAS for Flowering Time
Prior knowledge about the genetic architecture of a trait can 
help make informed decisions in breeding. Comparing the 
performance of GS and MAS models for FLT within each 
daylength results showed that, under long day length (FTFILD 
and FTRILD), FxRRBLUP (mean prediction accuracy [mPA] = 
0.68, 0.68; mean coincidence index [mCI] = 0.49, 0.40) and MAS 
(mPA = 0.64, 0.61; mCI = 0.45, 0.37) outperformed RRBLUP 
(mPA = 0.55, 0.58; mCI = 0.37, 0.35), RKHS (mPA = 0.55, 0.58; 
mCI = 0.37, 0.36), and SVR (mPA = 0.54, 0.50; mCI = 0.35, 0.28) 
(Figures 7 and 8, Tables S3 and 4). For FLT under long day, 
coincidence index values were higher under full irrigation than 
under restricted irrigation. For FLT under short day (FTFISD and 
FTRISD), all GS models outperformed MAS (mPA = 0.33, 0.25; 
mCI = 0.30, 0.26). Among the GS models, RKHS and RRBLUP 
had the highest prediction accuracies. However, the coincidence 

FIGURE 2 | Distribution of effect size of quantitative traits loci (QTL) associated with traits in the cowpea MAGIC population. Box plots of the distribution of 
proportion of variation explained (PVE) by quantitative traits loci (QTL) associated with best linear unbiased predictions (BLUP) of flowering time across environments 
(FLT_BLUP), flowering time under full irrigation and long day (FTFILD), flowering time under restricted irrigation and long day (FTRILD), flowering time under full 
irrigation and short day (FTFISD), flowering time under restricted irrigation and short day (FTRISD), BLUP of maturity across environments (MAT_BLUP) maturity 
under full irrigation and short day (MFISD), maturity under restricted irrigation and short day (MRISD), BLUP of seed size across environments (SS_BLUP) seed size 
under full irrigation and short day (SSFISD), and seed size under restricted irrigation and short day (SSRISD).
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index of FxRRBLUP was higher than the rest of the GS models 
for FTRISD. In general, the mean of the slope and intercept for 
the GS models except SVR were usually close to the expected 
(1 and 0) (Figures S12–S13). MAS also deviated away from the 
expected slope and intercept (1 and 0) more than the FxRRBLUP, 
RKHS, and RRBLUP for FTRISD (Figures S12–S13). To 
evaluate the effect of photoperiod and irrigation regime on the 
performance of training population, each environment (day 
length and irrigation regime combination) was used as a training 
population to predict the rest in a di-allele manner. Results 
showed that prediction accuracy between environments in the 
same photoperiod was higher than environments in different 
photoperiod (Figure S14). Also, when training populations 
were under full irrigation, their prediction accuracies were 

higher than when training populations were under restricted 
irrigation (Figure S14). For FT_BLUP, GS models outperformed 
MAS except SVR which had the same mPA (0.59) as MAS while 
FxRRBLUP had the highest mPA and mCI among the GS 
models (Figures S15 and 16). Overall, Table S7 showed that 
FxRRBLUP had the best performance in six out of the eight traits 
by environment combination.

GS and MAS for Maturity and Seed Size
For MAT (MT_BLUP, MFISD, and MRISD), RKHS and RRBLUP 
had better performance (Figures 7 and 8; Tables S4 and S5) than 
the rest of the models including MAS. All models deviated from 
the expected slope and intercept estimates, but RRBLUP had 

FIGURE 3 | Main QTL plot for flowering time traits in the cowpea MAGIC population. QTL plots for flowering time under full irrigation and long day (FTFILD), flowering 
time under restricted irrigation and long day (FTRILD), flowering time under full irrigation and short day (FTFISD), flowering time under restricted irrigation and short 
day (FTRISD), and BLUPs of environments (FLT_BLUP). The chromosome numbers are located on the x-axis and the negative log of the P-values on the y-axis. The 
genetic position of the colocalization between QTL and a priori genes are indicated by broken vertical lines. The texts displayed on the vertical broken lines are the 
names of a priori genes (blue for genes associated with multiple environments or traits, and black for genes associated with single environments or trait).
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the least deviation for MRISD. For SS, FxRRBLUP had the best 
performance followed by MAS compared to the rest of the GS 
models (RKHS, RRBLUP, and SVR) (Figures 7 and 8; Tables  S5 
and S6). GS and MAS models had varying levels of deviation 
from the expected estimates of slope and intercept. RKHS and 
RRBLUP were closer to the expected than FxRRBLUP and MAS 
(Figures S12–S13) while SVR had the highest deviation.

DISCUSSION

Epistasis Plays Important Roles in 
Determining the Genetic Architecture 
of Agronomic Traits in Cowpea
Multi-parental populations have demonstrated ability to 
facilitate robust characterization of genetic architecture in 
terms of genetic effect size, pleiotropy, and epistasis (Buckler 
et al., 2009; Brown et al., 2011; Peiffer et al., 2014; Bouchet 
et al., 2017; Mathew et al., 2018). Using the cowpea MAGIC 
population, this study showed that both additive main QTL and 
additive × additive epistatic QTL with large and (or) moderate 
effects underlie FLT, MAT, and SS in cowpea. Although we 
identified two-way epistatic interactions, results showed that 
some loci were involved in interactions with more than one 
independent loci (Figures 4 and 5 and Figures S4–11). This 
implies the possibility of three-way epistatic interactions 
underlying some of the traits. Our inability to identify and 
discuss three-way epistatic interactions is due to the mapping 
approach used, which only mapped two-way epistatic 

FIGURE 4 | Epistatic QTL for FLT_BLUP for MAGIC population. 
Chromosomes are shown in shades of gray, two-way interacting loci are 
connected with black solid lines, and colocalized a priori genes are texts 
between chromosomes and genetic map.

FIGURE 5 | Epistatic QTL for MAT_BLUP in MAGIC population. 
Chromosomes are shown in shades of gray, two-way interacting loci are 
connected with black solid lines, and colocalized a priori genes are texts 
between chromosomes and genetic map.

FIGURE 6 | Epistatic QTL for MAT_BLUP in MAGIC population. 
Chromosomes are shown in shades of gray, two-way interacting loci are 
connected with black solid lines, and colocalized a priori genes are texts 
between chromosomes and genetic map.
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interactions. Three-way epistatic interactions have been found 
to underlie FLT in the selfing crop specie barley (Mathew 
et al., 2018). Furthermore, overlaps between main and epistatic 
loci (Figure S2) indicate these to be main effect loci that are 
involved in epistatic interactions with other loci. However, one 
caveat that may also be responsible for some of the QTL among 
the overlaps is the false positive rate of SPEAML. The SPEAML 
software used for epistasis mapping showed high false positive 
rate with a sample size of 300 individuals (Chen et al., 2018a). 
It is possible that some of the overlapped QTL are main QTL 
that were miscategorized as epistatic loci by SPEAML since our 
cowpea MAGIC population had 305 RILs.

Distinct and Common Genetic Regulators 
Underlie Flowering Time
FLT is an important adaptive trait in breeding. Photoperiod 
impacted days to FLT as observed from the reaction norm plot 
for cowpea MAGIC FLT data which showed drastic reductions 
in days to flowering for RILs under short day compared to 
long days (Figure 1). Our mapping results (main effect and 
epistatic) showed that both unique and common loci underlie 
FLT variation under long and short photoperiod (Figure 1;  

Figures S4–S8). Epistatic loci underlie FLT in both selfing 
(Komeda, 2004; Juenger et al., 2005; Huang et al., 2013; Chen 
et al., 2018b; Li et al., 2018a; Mathew et al., 2018) and outcrossing 
(Buckler et al., 2009; Durand et al., 2012) species. In addition, 
the effect size of FLT loci differs between selfing and out crossing 
species as QTL effect sizes are large in the former (Lin et al., 
1995; Maurer et al., 2015) and small in the later (Buckler et al., 
2009). In the present study, the large effects (up to 25% PVE and 
additive effect of 7 days) of FLT loci were only identified under 
long-day photoperiod and not under short-day photoperiod 
(Figure 2, Tables S3 and S4). The loci detected under short-
day photoperiod were of moderate effects (PVE = 1–10% and 
maximum additive effect size of 2 days). The large effect size 
attributed to some of the loci that are unique to FLT adaptation 
under long photoperiod suggests the possible effect of recent 
selection ate these loci (Orr, 1998; Orr, 1999; Brown et al., 2011; 
Dittmar et al., 2016).

Conserved genetic pathways often underlie traits in plant 
species (Liu et al., 2013; Huang et al., 2017). Examination of 
colocalizations between a priori genes and QTL in this study 
identified putative cowpea orthologs of A. thaliana and G. max 
FLT that may underlie phenotypic variation in cowpea. FLT 
is affected by photoperiodicity and regulated by a network of 

FIGURE 7 | Comparison of prediction accuracy across GS and MAS models. Boxplots in each panel showed the distribution of prediction accuracy values 
across 100 cycles for FxRRBLUP (ridge regression best linear unbiased prediction: parametric model with fixed effects), RKHS (reproducing Kernel Hilbert space; 
semi-parametric model), RRBLUP (ridge regression best linear unbiased prediction: parametric model with no fixed effects), SVR (support vector regression: non-
parametric model), and MAS (marker-assisted selection) for flowering time under full irrigation and long day (FTFILD), flowering time under restricted irrigation and 
long day (FTRILD), flowering time under full irrigation and short day (FTFISD), flowering time under restricted irrigation and short day (FTRISD), maturity under full 
irrigation and short day (MFISD), maturity under restricted irrigation and short day (MRISD), seed size under full irrigation and short day (SSFISD), and seed size 
under restricted irrigation and short day (SSRISD).
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genes (Sasaki et al., 2018) involved in floral initiation, circadian 
clock regulation, and photoreception (Lin, 2002). In addition, 
certain a priori genes were unique to either FLT under long 
day or short day. For instance, cowpea putative orthologs 
of photoreceptors (PHY A [Vigun01g205500] and PHY E 
[Vigun09g050600]) and circadian clock gene PHYTOCLOCK1 
(PCL1 [Vigun11g157600]) colocalized with only QTL associated 
with FLT under long day, while cowpea putative orthologs of 
circadian clock genes (Time for Coffee [TIC (Vigun07g241700)] 
and Zeitlupe [ZTL]) colocalized with only QTL associated with 
FLT under short day. However, the cowpea putative ortholog 
of photoperiod gene CONSTANS (CO [Vigun05g024400]) 
colocalized with QTL associated with FLT under both long 
and short days. Thus, our study suggests that distinct and 
common genetic regulators control FLT adaptation to both 
long- and short-day photoperiod in cowpea. Further studies 
utilizing functional approaches will be helpful to decipher gene 
regulation patterns under both long- and short-photoperiod  
in cowpea.

Genetic Basis of Maturity and Seed Size
In this study, the genetic basis of MAT and SS were evaluated 
under short-day photoperiod only. Our study demonstrated that 

MAT under short day is controlled by moderate and small effect 
main and epistatic loci. MAT QTL were found to colocalize with 
cowpea putative orthologs of Arabidopsis circadian clock and 
photoperiod (ZTL [ZEITLUPE], CO [CONSTANS]) genes. One 
pleiotropic QTL (qVu9:8.37 colocalized with ZTL [ZEITLUPE]) 
was found to be associated with both MAT and FLT under 
restricted irrigation and short-day photoperiod. Pleiotropic 
QTL between MAT and FLT were also reported in soybean 
(Kong et al., 2018). This suggest a possible genetic basis for the 
positive relationship found between MAT and FLT in prior 
studies (Huynh et al., 2018; Owusu et al., 2018). A major large 
effect locus explaining up to 29% of the phenotypic variation 
was found to be associated with SS. This QTL was found at 
about 2cM from the cowpea ortholog of Arabidopsis AHK2 SS 
gene. Further studies, using mapping panels with more diverse 
founders and more a priori genes will be required to identify 
further genes underlying natural variations in MAT and  
SS in cowpea.

Genetic Architecture Influenced GS and 
MAS Performance
GS models differ in their efficiency to capture complex cryptic 
interactions among genetic markers (de Oliveira Couto et al., 2017). 

FIGURE 8 | Comparison of coincidence index across GS and MAS models. Boxplots in each panel showed the distribution of coincidence index values across 
100 cycles for FxRRBLUP (ridge regression best linear unbiased prediction: parametric model with fixed effects), RKHS (reproducing Kernel Hilbert space; semi-
parametric model), RRBLUP (ridge regression best linear unbiased prediction: parametric model with no fixed effects), SVR (support vector regression: non-
parametric model), and MAS (marker-assisted selection) for flowering time under full irrigation and long day (FTFILD), flowering time under restricted irrigation and 
long day (FTRILD), flowering time under full irrigation and short day (FTFISD), flowering time under restricted irrigation and short day (FTRISD), maturity under full 
irrigation and short day (MFISD), maturity under restricted irrigation and short day (MRISD), seed size under full irrigation and short day (SSFISD), and seed size 
under restricted irrigation and short day (SSRISD).
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The traits evaluated in this study are controlled by both 
main effect and epistatic loci. In this study, comparison 
among the GS models showed that parametric and semi-
parametric GS models outperformed non-parametric GS 
model for all traits. SVR, a non-parametric model, had the 
least prediction accuracy and coincidence index and also 
had the highest bias (Figures S12 and S13). Previous studies 
have shown that semi-parametric and non-parametric 
models increased prediction accuracy under epistatic genetic 
architecture (Howard et al., 2014; Jacquin et al., 2016). In this 
study, none of semi-parametric and non-parametric models 
outperformed parametric models (Figures 6 and 7). Some 
of the studies comparing the performance of parametric, 
semi-parametric, and non-parametric GS models were based 
on simulations of traits controlled solely by epistatic genetic 
architectures. Therefore, the performance of the models under 
simulated combined genetic effects (additive + epistasis) is 
not well understood. The comparable performance of RKHS 
to RRBLUP (parametric model) in this study in terms of 
prediction accuracy, coincidence index, and bias estimates 
attests to RKHS ability to capture both additive and epistatic 
interactions (Gianola et al., 2006; Gianola and Van Kaam, 
2008; De Los Campos et al., 2010; Gota and Gianola, 2014) for 
both prediction accuracy and selection of top performing lines. 
The performance of GS models is often indistinguishable, and 
RRBLUP has been recommended as an efficient parametric 
GS model (Heslot et al., 2012; Lipka et al., 2015). SVR had the 
worst performance with extremely high bias estimates.

Understanding the genetic architecture of agronomic traits 
can help improve accuracy of genomic predictions (Hayes et al., 
2010; Swami, 2010). Our study demonstrated that the effect size 
of QTL associated with a trait played a role in the performance 
of GS and MAS models. For instance, for traits controlled by 
both large and moderate effect loci (FTFILD, FTRILD, SSFISD, 
and SSRISD), parametric model with known loci as fixed effect 
(FxRRBLUP) followed by MAS outperformed the rest of the 
GS models (RRBLUP, RKHS, and SVR). The use of known 
markers as fixed effects has been shown to increase prediction 
accuracy (Bernardo, 2014; Spindel et al., 2016) in parametric 
GS models. For traits that were controlled by moderate effect 
loci (FTFISD, FTRISD, MFISD, and MTRISD), our results 
showed that the two parametric GS models (FxRRBLUP and 
RRBLUP) and semi-parametric (RKHS) had similar prediction 
accuracy; however, FxRRBLUP had higher bias than RRBLUP 
and RKHS (Figure S12–S13). Furthermore, the performance 
of MAS in comparison to GS models in this study supported 
the fact that large effect loci are important influencers of MAS 
(Bernardo, 2008). For small breeding programs in developing 
countries, MAS might be a prudent choice over GS for traits 
controlled by large effects loci in cowpea since GS will require 
genotyping of more markers than MAS. The large effect loci 
identified in this study can be transferred to different breeding 
populations because they were identified in a MAGIC 
population with wide genetic background (Descalsota et al., 
2018; Huynh et al., 2018). Our study thus demonstrates that 
prior knowledge of the genetic architecture of a trait can 

help make informed decision about the best GEB method  
to employ in breeding.

In summary, using the cowpea MAGIC population, our 
study identified both main QTL and two-way epistatic loci 
underlying FLT, MAT, and SS. These traits are oligogenic in 
genetic architecture with QTL effects ranging from small to large 
sizes. The effect size of the markers/QTL reported in this study 
may be upwardly biased due to the small size (n = 305) of the 
cowpea MAGIC population. Thus, studies with higher sample 
sizes (n > 1,000) will prove more accurate (Xu, 2003; King and 
Long, 2017). The identified QTL and their colocalized a priori 
genes will serve as stepping stone for future studies considering 
the molecular characterization of the genes underlying FLT, 
MAT, and SS in cowpea. Further, we demonstrated that prior 
knowledge of the genetic architecture of a trait can help make 
informed decision in GEB. Due to variations observed across 
photoperiod/environments for FLT, we will recommend 
the development of photoperiod insensitive lines in cowpea 
breeding. Also, given that some QTL were identified in specific 
environments, considerations should be given to field evaluation 
of mapping populations under contrasting environments that are 
representative of natural populations’ environmental conditions. 
In addition, the cowpea MAGIC population may not capture all 
the genetic variation available in cowpea for FLT, MAT, and SS 
because only eight founders were used for its development. Thus, 
some of our markers may not be well diagnostic in breeding 
populations that do not share close ancestry with the cowpea 
MAGIC founders. Despite this limitation, this study still provides 
technical details that can be part of considerations for GS and 
MAS in cowpea breeding.
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