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Aim: To analyze the influence of genetics and interactions with environmental factors on 
adiposity outcomes [waist circumference reduction (WCR) and total body fat loss (TFATL)] 
in response to energy-restricted diets in subjects with excessive body weight.

Materials and Methods: Two hypocaloric diets (30% energy restriction) were prescribed 
to overweight/obese subjects during 16 weeks, which had different targeted macronutrient 
distribution: a low-fat (LF) diet (22% energy from lipids) and a moderately high-protein 
(MHP) diet (30% energy from proteins). At the end of the trial, a total of 201 participants 
(LF diet = 105; MHP diet = 96) who presented good/regular dietary adherence were 
genotyped for 95 single nucleotide polymorphisms (SNPs) previously associated with 
weight loss through next-generation sequencing from oral samples. Four unweighted 
(uGRS) and four weighted (wGRS) genetic risk scores were computed using statistically 
relevant SNPs for each outcome by diet. Predictions of WCR and TFATL by diet were 
modeled through recognized multiple linear regression models including genetic (single 
SNPs, uGRS, and wGRS), phenotypic (age, sex, and WC, or TFAT at baseline), and 
environment variables (physical activity level and energy intake at baselines) as well as 
eventual interactions between genes and environmental factors.

Results: Overall, 26 different SNPs were associated with differential adiposity outcomes, 
9 with WCR and 17 with TFATL, most of which were specific for each dietary intervention. 
In addition to conventional predictors (age, sex, lifestyle, and adiposity status at baseline), 
the calculated uGRS/wGRS and interactions with environmental factors were major 
contributors of adiposity responses. Thus, variances in TFATL-LF diet, TFATL-MHP diet, 
WCR-LF diet, and WCR-MHP diet were predicted by approximately 38% (optimism-
corrected adj. R2 = 0.3792), 32% (optimism-corrected adj. R2 = 0.3208), 22% (optimism-
corrected adj. R2 = 0.2208), and 21% (optimism-corrected adj. R2 = 0.2081), respectively.
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INTRODUCTION

Overweight and obesity are physiopathological conditions 
characterized by excessive body fat mass that may have 
adverse effects on health status (World Health Organization 
(WHO), 2018). Increased fat accumulation, especially in the 
intra-abdominal region, is generally associated with a cluster 
of metabolic disorders including glucose intolerance, insulin 
resistance, chronic low-grade inflammation, dyslipidemia, and 
high blood pressure (Tchernof and Després, 2013). Indeed, waist 
circumference (WC) as a measure of abdominal obesity has been 
commonly used to assess cardiometabolic risk, being commonly 
included within the diagnostic criteria to identify individuals 
with features of the metabolic syndrome (Kaur, 2014). On the 
other hand, total body fat is an important marker of adiposity-
related alterations in both sexes (World Health Organization 
(WHO), 2018).

Overall, the combination of excessive calorie consumption 
and sedentary behaviors is considered the main driver of the rapid 
acceleration of the obesity epidemic worldwide (Romieu et al., 
2017). Therefore, comprehensive lifestyle modification programs 
promoting a negative energy balance through improvements in 
diet features and physical activity represent a first line of therapy 
for obesity management in primary health centers (Wadden 
et al., 2012). Thus, many energy-restricted diets with different 
macronutrient distribution (proteins, carbohydrates, and lipids) 
have been evaluated to achieve sustainable weight loss and positive 
changes in metabolic alterations in subjects with overweight or 
obesity (Abete et al., 2010). However, heterogeneous responses 
to dietary interventions are well documented, ranging from 
resistance to reduce body fat mass to unsuccessful long-term 
weight loss maintenance (Blomain et al., 2013; Ramos-Lopez 
et al., 2017).

To date, several trials have reported some factors modulating 
body weight loss including age, sex, initial body weight, and 
level of physical activity at baseline (Greenberg et al., 2009; 
Delahanty et al., 2013; Look AHEAD Research Group, 2014; 

Bray et al., 2017). In addition, emerging evidence suggests that 
genetic factors affecting appetite, energy utilization, and fat 
deposition may partially explain the inter-individual variability 
in weight loss (Goni et al., 2016). Certainly, a number of single 
nucleotide polymorphisms (SNPs) have been associated with 
diverse adiposity outcomes in response to energy-restricted 
diets varying in macronutrient distribution (Martínez and 
Milagro, 2015). More importantly, potential interactions 
between gene and environmental factors have been shown to 
modulate changes in body composition and fat distribution after 
following specific lifestyle programs (Heianza and Qi, 2017). 
Together, these scientific insights show the need to personalize 
dietary treatments in order to optimize weight management 
goals (Phillips, 2013). The aim of this study was to analyze 
the influence of genetics and interactions with environmental 
factors in two different adiposity outcomes (WC and total fat 
mass) in response to energy-restricted diets in subjects with 
excessive body weight.

MATERIALS AND METHODS

Participants
The current randomized clinical trial (Obekit, reg. no. 
NCT02737267, clinicaltrials.gov) enrolled overweight or obese 
(BMI 25–40 kg/m2) Spanish adults of self-reported Caucasian 
ancestry who were recruited at the metabolic unit of the Center 
for Nutrition Research of the University of Navarra. Major 
exclusion criteria were a clinical history of cardiovascular disease 
and type 1 diabetes; type 2 diabetic patients treated with insulin; 
pregnant or lactating women; individuals reporting weight 
change (>3 kg) within the 3 months before the study; use of 
medication that affects body weight composition; and unstable 
dose of medication for hyperlipidemia and hypertension 
treatments. Subjects drinking a relevant amount of alcohol (>40 g 
of ethanol/day in men and >20 g of ethanol/day in women) were 
excluded from the trial. A scheme showing the study design 
and flow of participants throughout the trial according to the 
2010 CONSORT requirements is presented (Supplementary 
Figure  1). The study protocol was approved by the Research 
Ethics Committee of the University of Navarra (Ref. 132/2015). 
The research was performed in accordance with the ethical 
principles of the 2013 Declaration of Helsinki (World Medical 
Association, 2013). Participants voluntarily provided a written 
informed consent after they were informed about details and 
procedures of the protocol.

Conclusions: Different genetic variants and interactions with environmental factors 
modulate the differential individual responses to MHP and LF dietary interventions. These 
insights and models may help to optimize personalized nutritional strategies for modeling 
the prevention and management of excessive adiposity through precision nutrition 
approaches taking into account not only genetic information but also the lifestyle/clinical 
factors that interplay in addition to age and sex.

Keywords: obesity, genetics, genetic risk score, weight loss, precision nutrition, high-protein diet, low-fat diet

Abbreviations: BMI, body mass index; BSM, bootstrapping stepwise method; 
BSRP, best subset regression procedure; DBP, diastolic blood pressure; HDL-c, 
high-density lipoprotein cholesterol; LARS, least-angle regression; LDL-c, low-
density lipoprotein cholesterol; LF, low fat; METs, metabolic equivalents; MHP, 
moderately high protein; SBP, systolic blood pressure; SNPs, single nucleotide 
polymorphisms; TC, total cholesterol; TFAT, total body fat; TFATL, total body fat 
loss; TG, triglycerides; TyG index, triglyceride-glucose index; uGRS, unweighted 
genetic risk score; VFAT, visceral fat; WC, waist circumference; WCR, waist 
circumference reduction; wGRS, weighted genetic risk score.
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Anthropometric and Blood Pressure 
Measurements
Body weight (kg), height (cm), and WC (cm) were measured 
following validated methods (Lopez-Legarrea et al., 2013). 
Body mass index (BMI) was calculated as the ratio between 
body weight and squared meters (kg/m2). Dual-energy X-ray 
absorptiometry was applied to estimate total body fat (TFAT, %) 
and visceral fat (VFAT, kg) contents following the company 
instructions (DEXA, Lunar Prodigy, software version 6.0, 
Madison, WI, USA). Blood pressure was determined using an 
automated sphygmomanometer according to the standardized 
criteria of the World Health Organization and the International 
Society of Hypertension (Whitworth and Chalmers, 2004).

Blood Tests
Fasting blood samples were drawn by venipuncture and 
centrifuged for serum extraction. Blood tests including glucose 
(mg/dl), total cholesterol (TC, mg/dl), high-density lipoprotein 
cholesterol (HDL-c, mg/dl), and triglycerides (TG, mg/dl) were 
determined in an automatic analyzer (Pentra C200, HORIBA 
Medical) using appropriate commercial kits. The triglyceride-
glucose (TyG) index was estimated applying the following 
formula: TyG index = (ln [fasting triglycerides (mg/dl) × fasting 
plasma glucose (mg/dl)/2]) as described elsewhere (Navarro-
González et al., 2016).

Dietary Intake and Physical Activity 
Assessments
Food consumption during the year before the study was evaluated 
using a validated 137-item food frequency questionnaire 
(Martin-Moreno et al., 1993; de la Fuente-Arrillaga et al., 
2010; Fernández-Ballart et al., 2010). Total energy (kcal) and 
macronutrient intakes (%) were obtained from standard Spanish 
food composition tables (Moreiras et al., 2013). Physical activity 
at baseline was estimated using a previously validated 17-item 
questionnaire (Martínez-González et al., 2005). The level of 
physical activity was expressed in metabolic equivalents (METs), 
as detailed elsewhere (Basterra-Gortari et al., 2009).

Dietary Interventions
Individualized energy requirements for each participant in the trial 
were estimated considering the resting energy expenditure and 
the physical activity level (Mifflin et al., 1990). Two hypocaloric 
diets (30% energy restriction) were prescribed during 16 weeks, 
which had different target macronutrient distribution based on 
previous trials (Handjieva-Darlenska et al., 2012; de la Iglesia 
et al., 2014). A low-fat (LF) diet provided 60% of total energy (E) 
from carbohydrates, 18% E from proteins, and 22% E from lipids 
following the NUGENOB trial criteria (Handjieva-Darlenska 
et al., 2012). On the other hand, a moderately high-protein (MHP) 
diet supplied 40% E from carbohydrates, 30% E from proteins, 
and 30% E from lipids according to the RESMENA trial criteria 
(de la Iglesia et al., 2014). No initial prescribed diets had less than 
1,200 kcal/day. Both LF and MHP diets were designed on the basis 
of a food exchange system, where participants received detailed 

information from trained dietitians concerning portion sizes, 
feeding schedules, and cooking techniques, as described elsewhere 
(Goni et al., 2016).

Subjects were randomly assigned to one of the two diets 
through a specific algorithm designed for the study by MATLAB 
(http://www.mathworks.com) using stratifications according 
to sex, age groups (<45 and ≥45 years), and BMI (overweight, 
BMI 25–29.9 kg/m2; and obesity, BMI 30–40 kg/m2). Dietary 
adherence was evaluated based on expert dietitian’s criteria using 
the following scale: 3 = “very good adherence” (the participant 
strictly followed the diet at all times); 2 = “good adherence” (the 
participant occasionally exceeded from recommendations); 1 = 
“regular adherence” (the participant followed the diet across 
weekdays but not during weekend); and 0 = “poor adherence” 
(the participant does not follow the diet at any time).

In addition, the real macronutrient distribution of both 
MHP and LF diets was monitored using a 3-day weighed food 
record (including two weekdays and one weekday), which was 
applied at two times (8th and 16th weeks) during the period 
of the nutritional intervention. Moreover, dietitians conducted 
personal motivational telephone calls in order to increase the 
adherence to the dietary advice.

Genotyping
Oral epithelium samples were collected with a liquid-based 
kit (ORAcollect-DNA, OCR-100, DNA Genotek Inc, Ottawa, 
Canada). Genomic DNA was isolated using the Maxwell® 16 
Buccal Swab LEV DNA Purification Kit (Promega Corp, Madison, 
WI, USA). A total of 95 SNPs related to weight loss, maintenance, 
and regains after multiple dietary prescriptions were selected 
through an exhaustive bibliographical review following the 
PRISMA criteria, as previously reported (Ramos-Lopez et al., 
2018). The search included all available genome-wide association 
studies concerning obesity, weight loss, and energy metabolism. 
Genotyping was performed by targeted next-generation 
sequencing in the Ion Torrent PGM™ equipment (Thermo Fisher 
Scientific Inc, Waltham, MA, USA) using a pre-designed panel, 
as described elsewhere (Ramos-Lopez et al., 2018). The genomic 
characteristics of the 95 SNPs including minor allele frequencies 
and Hardy–Weinberg equilibrium have been recently reported 
(Ramos-Lopez et al., 2018).

Statistical Analyses
Distribution of study variables (normality) was screened by the 
Kolmogorov–Smirnov test. Quantitative variables were expressed 
as means ± standard deviations, whereas categorical variables 
were presented as numbers and percentages. Principal variables 
including waist circumference reduction (WCR) and total body 
fat loss (TFATL) were normally distributed (P > 0.05). The sample 
size of the trial was estimated at 200 individuals (α = 0.05 and 
statistical power of 80%), assuming a mean difference in weight 
loss of 2 kg ± 3.5 kg. However, considering a potential dropout rate 
of 30%, it was considered necessary to recruit about 260 subjects. 
Statistical differences in anthropometric and biochemical changes 
after dietary intervention by sex and age were estimated using 
Student’s t-tests. Multiple linear regression models were used to 
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predict WCR and TFATL changes in each dietary group through 
three accepted statistical approaches: least-angle regression 
(LARS) as previously described (Efron et al., 2004); best subset 
regression procedure (BSRP) as currently theorized (Lindsey and 
Sheather, 2010); and the bootstrapping stepwise method (BSM) as 
reported elsewhere (Austin and Tu, 2004).

The selection of SNPs to be incorporated into the models 
was performed according to the following steps. First, ANOVA 
tests were carried out to identify SNPs statistically or marginally 
associated with WCR and TFATL in each diet. Second, post 
hoc tests (Bonferroni’s and Dunnett’s T3) were run to define 
differences among genotypes in order to be differentially coded 
in “low risk = 0” and “high risk = 1” groups. A low-risk genotype 
was defined as the one that was related to higher values of WCR 
and TFATL (best response), whereas a high-risk genotype was 
that associated with lower values of WCR and TFATL (worst 
response). Genotypes with similar effects (P > 0.05) were clustered 
in a single category. In a third step, Student’s t-tests were further 
applied to confirm statistical differences between the categorized 
genotype groups (low risk vs. high risk), selecting those SNPs 
showing at least a marginal statistical trend (P < 0.10). SNPs with 
a low prevalence (<10%) in either genotype category (low risk vs. 
high risk) were excluded from the regression models.

To evaluate the combined effects of the previously selected 
SNPs on WCR and TFATL by MHP and LF dietary groups, 
four unweighted and four weighted genetic risk scores (GRSs) 
by main outcomes and diets (WCR-MHP diet; WCR-LF diet; 
TFATL-MHP diet; and TFATL-LF diet) were constructed 
through additive models, as described elsewhere (Hung et al., 
2015). Briefly, the unweighted GRS (uGRS) was calculated by 
summation of the number of high-risk genotypes at each locus. 
Thus, each unit increase in the uGRS corresponded to one 
additional risk genotype. Instead, the weighted GRS (wGRS) was 
computed by multiplying the number of high-risk genotypes at 
each locus for the corresponding effect sizes (β-coefficients), in 
cm (WCR) or % (TFATL), and then summing the products. Both 
derived scores were based on the assumption that all SNPs of 
interest have independent effects and contribute in an additive 
manner on WCR and TFATL (Lin et al., 2009).

Both uGRS and wGRS were used as continuous variables in the 
multiple linear regression models. In addition to genetic variants, 
other conventional factors of personalization were evaluated 
including age, sex, and the following variables at baseline: 
physical activity (METs), energy intake (kcal), WC (cm), and 
TFAT (%). Eventual interactions of genes with environmental 
factors as well as with age and sex were evaluated by multivariate 
regression analyses.

Candidate models were tested to residual’s homoscedasticity 
(Ou et al., 2015). Also, multicollinearity between predictive 
variables was evaluated (Iacobucci et al., 2017). Furthermore, 
a correction for optimistic prediction and overfitting was 
performed according to Harrell’s bootstrapping algorithm 
(Harrell et al., 1996), which is based on using bootstrapped 
datasets to internally validate the multiple linear regression 
models as well as to repeatedly quantify the degree of overfitting 
in the model-building process. This method allows to select 
the best model showing the highest optimism-corrected adj. 

R2 value. Moreover, squared partial correlations (PC2) were used 
to estimate the individual contribution of each predictor to 
the adiposity variability in response to diet. Statistical analyses 
were performed in the statistical program STATA 12 (StataCorp 
LLC, College Station, TX, USA; www.stata.com). Statistical 
significance was set at P < 0.05.

RESULTS

At the end of the trial, a total of 232 participants completed 
the nutritional intervention; however, those who presented 
poor dietary adherence (failure to follow the diet at any time) 
according to expert dietitian’s criteria (score = 0, see dietary 
interventions in the Materials and Methods section) were 
excluded (n = 31) from the statistical analyses (Supplementary 
Figure 1). Thus, 201 individuals (LF diet = 105 and MHP 
diet = 96) were further characterized at baseline and compared 
between MHP and LF diets (Table 1). The analysis of the 
macronutrient composition of the programmed diets revealed 
statistically significant differences in the distribution of proteins 
and fats (Supplementary Table 1).

According to the BMI classification of the World Health 
Organization, 35% of subjects were overweight (n = 70), 
whereas 65% (n = 131) presented grade I and grade II obesity. 
At baseline, no statistically significant differences in all 
anthropometric and biochemical variables between MHP and 
LF dietary groups were found. Instead, individuals randomized 
to the MHP regime had higher initial consumptions of protein 
and fat as well as a lower intake of carbohydrates than those 
assigned to the LF diet (Table 1).

TABLE 1 | Anthropometric, biochemical, and dietary characteristics of the 
study participants at baseline according to assigned dietary groups.

Variable MHP LF P value

n 96 105 –
Weight (kg) 86.8 ± 13.9 88.8 ± 12.2 0.288
BMI (kg/m2) 31.2 ± 3.1 32.2 ± 3.7 0.052
TFAT (%) 41.9 ± 5.5 41.9 ± 6.7 0.991
VFAT (kg) 1.39 ± 0.86 1.46 ± 0.81 0.551
WC (cm) 101.7 ± 10.7 102.8 ± 9.8 0.445
SBP (mmHg) 129.4 ± 19.6 128.1 ± 16.1 0.620
DBP (mmHg) 78.7 ± 11.1 80.0 ± 10.8 0.404
Glucose (mg/dL) 95.4 ± 9.7 95.8 ± 10.9 0.775
TC (mg/dL) 214.6 ± 37.4 217.8 ± 39.9 0.547
HDL-c (mg/dL) 54.1 ± 12.7 56.2 ± 13.3 0.252
TG (mg/dL) 100.7 ± 51.6 103.0 ± 57.9 0.768
TyG index 4.53 ± 0.24 4.54 ± 0.25 0.833
Energy (kcal/day) 2,933 ± 778 3,032 ± 1,029 0.447
Carbohydrate (%E/day) 40.2 ± 6.5 40.8 ± 6.6 0.528
Protein (%E/day) 16.7 ± 2.7 17.0 ± 3.0 0.471
Fat (%E/day) 41.2 ± 6.0 40.2 ± 5.7 0.239
Physical activity (METs) 23.7 ± 20.0 24.6 ± 18.2 0.740

Variables are expressed as means ± standard deviations. MHP, moderately high protein; 
LF, low fat; BMI, body mass index; TFAT, total body fat loss; VFAT, visceral fat; WCR, waist 
circumference reduction; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
TC, total cholesterol; HDL-c, high-density lipoprotein cholesterol; TG, triglycerides; 
TyG index, triglyceride-glucose index.
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Comparisons of responses between the baseline and the 
end of both dietary interventions for all the phenotypes are 
presented (Supplementary Table 2). After energy restriction, 
both MHP and LF diets induced statistically significant 
decreases in adiposity, body composition, blood pressure, and 
lipid profiles (Supplementary Table 2). The average changes 
in main outcomes (WCR and TFATL) and other variables 
by diet are also reported (Table 2). Of note, no significant 
differences between MHP and LF diets for WCR (−8.9 vs. 
−9.7 cm, respectively, P = 0.231) and TFATL (−4.4 vs. −4.3 
cm, respectively, P = 0.852) as well as for the rest of evaluated 
markers were found.

Mean values of the WCR and TFATL by genotypes of the 95 
SNPs are reported (Supplementary Tables 3a, b, respectively). 
Overall, 26 different SNPs were associated with adiposity 
outcomes, 9 with WCR, and 17 with TFATL, most of which 
were specific for each dietary intervention (Figure 1). Six 
SNPs—rs2605100 (LYPLAL1), rs662799 (APOA5), rs1685325 
(UCP3), rs1558902 (FTO), rs1121980 (FTO), and rs3813929 
(HTR2C)—specifically accounted for differences in WCR within 
the MHP diet. On the other hand, in the LF diet, WCR diverged 
by genotypes of three genetic variants: rs10838738 (MTCH2), 
rs17069904 (TNFRSF11A), and rs11091046 (AGTR2). No 
common SNPs related to WCR variability between diets were 
found. In addition, 10 SNPs were particularly associated with 
TFATL in the MHP diet: rs2605100 (LYPLAL1), rs3123554 
(CNR2), rs1801282 (PPARG), rs7903146 (TCF7L2), rs12255372 
(TCF7L2), rs6265 (BDNF), rs11030104 (BDNF), rs10767664 
(BDNF), rs659366 (UCP2), and rs2734827 (UCP3). In the LF diet, 
TFATL differed according to the following six SNPs: rs484066 
(ABCB11), rs660339 (UCP2), rs1805081 (NPC1), rs17069904 
(TNFRSF11A), rs2287019 (QPCTL), and rs11091046 (AGTR2). 
Only SNP rs3813929 (HTR2C) was commonly associated with 
TFATL in both diets.

The genotype codifications of the 26 relevant SNPs concerning 
WCR and TFATL changes according to dietary groups are 
presented (Tables 3A, B, respectively), which were further used 
to construct the corresponding four uGRS and four wGRS. Thus, 
the number of SNPs used for each GRS was as follows: WCR-
MHP diet (n = 6), WCR-LF diet (n = 3), TFATL-MHP diet 
(n = 11), and TFAT-LF diet (n = 7), as reported in Tables 3A, B. 
The ranges of uGRS were WCR-MHP diet (0–6), WCR-LF diet 
(0–3), TFATL-MHP diet (0–11), and TFATL-LF diet (0–7). 
Regarding wGRS, the following ranges were calculated: WCR-
MHP diet (−1.43 to 11.68), WCR-LF diet (0–6.83), TFATL-MHP 
diet (1.05–8.17), and TFATL-LF diet (0–7.51).

WCR and TFATL predictions by diet were evaluated through 
multiple linear regression models using genetic (single SNPs, 
uGRS, and wGRS), phenotypic (age, sex, and WC or TFAT at 
baseline), and environment variables (physical activity level 
and energy intake at baseline) as well as potential interactions 
between genes and environmental factors. The statistical data of 
all candidate models are reported (Supplementary Tables 4a–4d), 
and the best models are summarized (Table 4). In general, higher 
optimism-corrected adj. R2 values were obtained in models 
using uGRS or wGRS than in those incorporating single SNPs 
in addition to other environment and phenotypic variables. For 
example, the predictive values of models evaluating SNPs to 
explain WCR variance in the MHP diet ranked from 6 to 10%, 
which increased to 21% (optimism-corrected adj. R2 = 0.2081) 
with wGRS, baseline WC, and age (Supplementary Table 4a). 
Similarly, single SNPs predicted 10–21% of TFATL variance in 
the MHP diet, whose performance improved to 32% (optimism-
corrected adj. R2 = 0.3208) when introducing wGRS, baseline 
TFAT, and age (Supplementary Table 4b). Also, uGRS and 
statistical interaction with physical activity as well as sex, physical 
activity, and energy intake at baseline were major contributors of 
WCR variance in the LF diet (about 22%, optimism-corrected 
adj. R2 = 0.2208) compared with SNPs (13–17%, Supplementary 
Table 4c). Instead, SNPs accounted to only 22–29% of TFATL 
variance in the LF diet, whereas wGRS, TFAT, and energy intake 
at baseline, as well as interactions of wGRS with energy and 
TFAT, explained this trait in approximately 38% (optimism-
corrected adj. R2 = 0.3792, Supplementary Table 4d).

The individual contributions of each predictor into the 
models by adiposity outcome and diets are reported (Table 4). 
Interestingly, the calculated uGRS and wGRS were the greatest 
contributors of WCR-MHP diet, WCR-LF diet, and TFATL-
MHP diet, with about 22% (PC2 = 0.222), 17% (PC2 = 0.174), and 
28% (PC2 = 0.276), respectively. Meanwhile, TFAT and energy 
intake at baselines as well as the corresponding wGRS had a 
higher impact in TFATL-LF diet, with approximately 6% (PC2 = 
0.060), 5.3% (PC2 = 0.053), and 5.1% (PC2 = 0.051), respectively.

Estimation curves of gene–environment interactions 
concerning WCR and TFATL predictions in the LF diet are 
plotted (Figures 2A–C). It is observed how the slopes of the 
studied variables (METs for WCR and baseline energy intake 
and baseline TFAT for TFATL) radically change depending on 
the value of the genetic score. Thus, in subjects carrying a high 
genetic risk (uGRS = 3), performing more physical activity 
(METs) was associated with greater WCR after the intervention 

TABLE 2 | Anthropometric and biochemical outcomes in response to MHP 
and LF diets at the end of the nutritional intervention period.

Variable MHP LF P value

n 96 105 –
Main findings
∆ TFATL (%) −4.4 ± 0.3 −4.3 ± 0.3 0.852
∆ WCR (cm) −8.9 ± 0.5 −9.7 ± 0.5 0.231
Other findings
∆ Weight (kg) −8.5 ± 0.4 −9.1 ± 0.4 0.235
∆ BMI (kg/m2) −3.1 ± 0.1 −3.3 ± 0.1 0.253
∆ VFAT (kg) −0.5 ± 0.03 −0.5 ± 0.02 0.502
∆ SBP (mmHg) −12.4 ± 1.2 −10.9 ± 1.1 0.370
∆ DBP (mmHg) −4.2 ± 1.0 −4.5 ± 1.0 0.856
∆ Glucose (mg/dL) −4.2 ± 0.8 −4.5 ± 0.8 0.768
∆ TC (mg/dL) −18.2 ± 2.6 −22.7 ± 2.5 0.210
∆ HDL-c (mg/dL) −3.0 ± 0.8 −5.1 ± 0.7 0.052
∆ TG (mg/dL) −19.2 ± 3.7 −14.2 ± 3.6 0.331
∆ TyG index −0.12 ± 0.19 −0.09 ± 0.18 0.231

Variables are expressed as means ± standard deviations. MHP, moderately high 
protein; LF, low fat; BMI, body mass index; TFATL, total body fat loss; VFAT, visceral 
fat; WCR, waist circumference reduction; SBP, systolic blood pressure; DBP, diastolic 
blood pressure; TC, total cholesterol; HDL-c, high-density lipoprotein cholesterol; 
TG, triglycerides; TyG index, triglyceride-glucose index.
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FIGURE 1 | Venn diagram showing the number of SNPs associated with adiposity and body composition outcomes compared by diets. WCR, waist circumference 
reduction; TFATL, total body fat loss; MHP, moderately high protein; LF, low fat.

TABLE 3A | Genotype codifications of SNPs selected to construct genetic risk scores concerning WCR changes by dietary groups.

MHP diet Genotypes n Means ± SD P value

Low risk High risk Low risk High risk Low risk High risk

rs2605100 (LYPLAL1) GG AA + AG 47 49 −9.8 ± 3.9 −8.0 ± 4.9 0.046
rs662799 (APOA5) AA GA 83 13 −9.2 ± 4.1 −6.8 ± 6.4 0.067
rs1685325 (UCP3) TC + CC TT 70 26 −9.4 ± 4.4 −7.5 ± 4.3 0.055
rs1558902 (FTO) AA TT + TA 16 80 −10.8 ± 4.9 −8.5 ± 4.3 0.067
rs1121980 (FTO) GG + AA GA 61 35 −9.7 ± 4.5 −7.4 ± 4.2 0.014
rs3813929 (HTR2C) CC + TT CT 80 16 −9.4 ± 4.5 −6.1 ± 3.2 0.007
LF diet
rs10838738 (MTCH2) AA AG + GG 39 66 −10.7 ± 4.6 −8.8 ± 3.8 0.028
rs17069904 (TNFRSF11A) GA + AA GG 19 86 −11.6 ± 5.1 −9.1 ± 3.9 0.017
rs11091046 (AGTR2) AA AC + CC 27 78 −11.6 ± 4.8 −8.8 ± 3.8 0.004

Comparison of means between non-risk and risk genotypes by Student’s t-tests. Variables are expressed as number of cases or means ± SD. WCR, waist circumference reduction; 
MHP, moderately high protein; LF, low fat. Bold numbers indicate statistical significance.
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(Figure 2A). Similarly, in participants who had a high genetic risk 
(wGRS = 6), greater baseline TFAT was related to higher TFATL 
(Figure 2B). Instead, in carriers of a low genetic risk (wGRS = 0), 
greater energy consumption was associated with higher TFATL 
(Figure 2C) at the end of the trial.

DISCUSSION

To date, different diets varying in macronutrient composition 
have been prescribed for weight control (Abete et al., 2010). 
In the current investigation, both MHP and LF diets induced 

statistically significant fat mass losses and blood marker 
reductions between baseline and after the interventions. Of note, 
no relevant differences in adiposity and metabolic outcomes 
between diets were found, which suggest that their effectiveness 
for the treatment of obesity was independent of the macronutrient 
content and was more driven by energy restriction.

Increasing evidence suggests that heterogeneity in individual 
responses to various energy-restricted diets in subjects 
with obesity is partially related to particular genetic profiles 
(Martínez and Milagro, 2015). In the present research, a total 
of 26 polymorphisms were independently associated with 
differential responses on WCR or TFATL according to the dietary 

TABLE 3B | Genotype codifications of SNPs selected to construct genetic risk scores concerning TFATL changes by dietary groups. 

MHP diet Genotypes n Means ± SD P value

Low risk High risk Low risk High risk Low risk High risk

rs2605100 (LYPLAL1) GG AA + AG 47 49 −4.9 ± 2.7 −3.8 ± 2.8 0.050
rs3123554 (CNR2) AA + AG GG 71 25 −4.7 ± 2.9 −3.5 ± 2.2 0.080
rs1801282 (PPARG) CG CC 12 84 −5.7 ± 3.7 −4.2 ± 2.6 0.075
rs7903146 (TCF7L2) TT CC + CT 16 80 −5.6 ± 2.4 −4.1 ± 2.8 0.049
rs12255372 (TCF7L2) GT + TT GG 65 31 −4.7 ± 2.9 −3.7 ± 2.5 0.089
rs6265 (BDNF) CT + TT CC 33 63 −5.3 ± 3.2 −3.9 ± 2.5 0.023
rs11030104 (BDNF) AG + GG AA 37 59 −5.2 ± 3.1 −3.8 ± 2.4 0.013
rs10767664 (BDNF) TA TT + AA 29 67 −5.7 ± 3.3 −3.8 ± 2.4 0.002
rs659366 (UCP2) CC CT + TT 48 48 −4.9 ± 3.0 −3.8 ± 2.5 0.071
rs2734827 (UCP3) GG GA + AA 46 50 −4.9 ± 3.0 −3.8 ± 2.5 0.056
rs3813929 (HTR2C) CC + TT CT 80 16 −4.6 ± 2.8 −3.1 ± 2.6 0.041
LF diet
rs484066 (ABCB11) TT AA + AT 49 56 −4.8 ± 3.0 −3.9 ± 2.3 0.099
rs660339 (UCP2) GA GG + AA 54 51 −4.8 ± 2.7 −3.7 ± 2.5 0.024
rs1805081 (NPC1) TT + TC CC 87 18 −4.5 ± 2.8 −3.2 ± 1.6 0.095
rs17069904 (TNFRSF11A) GA + AA GG 19 86 −5.5 ± 3.5 −4.0 ± 2.4 0.053
rs2287019 (QPCTL) CT CC + TT 30 75 −4.8 ± 2.7 −4.1 ± 2.6 0.086
rs3813929 (HTR2C) CC + TT CT 87 18 −4.7 ± 2.7 −2.6 ± 1.7 0.007
rs11091046 (AGTR2) AA + CC AC 60 45 −5.0 ± 2.8 −3.4 ± 2.2 0.003

Comparison of means between non-risk and risk genotypes by Student’s t-tests. Variables are expressed as number of cases or means ± SD. TFATL, total body fat loss; MHP, moderately 
high protein; LF, low fat. Bold numbers indicate statistical significance.

TABLE 4 | Best multiple linear regression models using genetic, phenotypic, and environment information to explain WCR and TFATL outcomes as dependent variables 
by dietary groups.

Predictors WCR TFATL

MHP PC2 LF PC2 MHP PC2 LF PC2

Age (years) −0.052 0.014 – – −0.043 0.037 – –
Sex – – 1.636 0.031 – – – –
Baseline WC (cm) −0.067 0.025 – – – – – –
Baseline TFAT (%) – – – – 0.125 0.082 0.194 0.060
Baseline physical activity (METs) – – 0.182 0.078 – – – –
Baseline energy intake (100 kcal) – – −0.083 0.052 – – −0.107 0.053
uGRS – – 3.250 0.174 – – – –
wGRS 0.959 0.222 – – 0.915 0.276 2.490 0.051
uGRS × baseline physical activity (METs) – – −0.081 0.088 – – – –
wGRS × baseline energy intake – – – – – – 0.020 0.029
wGRS × baseline TFAT – – – – – – −0.052 0.048
Constant −3.304 – −15.425 – −12.092 – −12.130 –

Data are expressed as β values and squared partial correlations (PC2). Hyphens represent “not significant” or “not applicable” variables within each model. NS, not significant; NA, not 
applicable; METs, metabolic equivalents; uGRS, unweighted genetic risk score; wGRS, weighted genetic risk score; WCR, waist circumference reduction; TFATL, total body fat loss; 
MHP, moderately high protein; LF, low fat.
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prescriptions. Interestingly, most SNPs were specific for MHP 
or LF diets, which suggest that the genetic effect on adiposity 
outcomes is dependent on interactions with the macronutrient 
distribution. Only the rs3813929 (HTR2C) genetic variant had a 
similar effect on TFATL in both MHP and LF diets. Concerning 
WCR in the MHP diet, SNPs were located in genes related to lipid 
metabolism (LYPLAL1 and APOA5); thermogenesis (UCP3); 
regulation of fat mass, adipogenesis, and energy homeostasis 
(FTO); and neurotransmitter release (HTR2C). Meanwhile, 
SNPs in genes implicated in mitochondrial membrane transport 
(MTCH2) and inflammation (TNFRSF11A) influenced WCR 
in the LF diet. Regarding TFATL in the MHP diet, SNPs were 
mapped to genes involved in lipid metabolism (LYPLAL1 and 
PPARG), appetite (CNR2), Wnt signaling pathway (TCF7L2), 
neuronal cell differentiation (BDNF), thermogenesis (UCP2 
and UCP3), and neurotransmitter release (HTR2C). Instead, 
TFATL in the LF diet was modulated by SNPs in genes linked 
to bile secretion (ABCB11), thermogenesis (UCP2), cholesterol 
transport (NPC1), inflammation (TNFRSF11A), biosynthesis 
of pyroglutamyl peptides (QPCTL), angiotensin receptor 
(AGTR2), and neurotransmitter release (HTR2C). (https://www.
genecards.org/).

Because the magnitude of associations between individual 
SNPs and metabolic traits is generally modest, multiple genetic 
testing based on the combination of several loci into a GRS is 
a common statistical method to correct the analytical value of 
single   enetic variants (Janssens et al., 2006; Moonesinghe et al., 
2010). In this trial, the predictive accuracy of all regression 
models  substantially improved when combining all risk 
genotypes into a GRS instead of analyzing each single SNP 

separately. Accordingly, effect size estimations revealed that the 
calculated uGRS and wGRS were the greatest contributors (17–
28%) to explain the variance in most phenotypes (WCR-MHP 
diet, WCR-LF diet, and TFATL-MHP diet), except for TFATL-LF 
diet, where TFAT and energy intake at baselines had a higher 
impact in this feature.

To date, few studies have evaluated the effect of GRS on diet-
induced weight/body fat loss. According to our results, greater 
body fat loss was reported in carriers of an obesity GRS related 
to high sensitivity to changes in dietary habits or exercise in a 
large Korean cohort (Cha et al., 2018). Within the Look AHEAD 
(Action for Health in Diabetes) clinical trial, the highest GRS for 
diabetes susceptibility was associated with a greater WCR after 
1 year of intensive lifestyle advice combining dietary fat restriction 
and increased physical activity, although the variance in change 
attributable to the GRS was small, ranging from 6.2% to 7.3% (Peter 
et al., 2012). Similarly, modest benefits in weight loss were found 
among participants with high GRS for coronary artery disease 
receiving standard of care based on diet plus exercise (Knowles 
et al., 2017). On the other hand, no relationships were found 
between a GRS constructed from genetic variants associating 
with BMI and changes in body weight during a 5-year follow-up 
intervention focused on changing habits of smoking, physical 
activity, dietary intake, and alcohol use in a Danish population 
(Sandholt et al., 2014). Also, diabetes GRS counseling did not 
significantly modify mean weight loss in overweight individuals 
following a 12-week group session program to improve diet 
quality and physical activity level (Grant et al., 2013).

Potential interactions between genetic and environmental 
factors also influence adiposity and body composition outcomes 

FIGURE 2 | Estimations curves of gene–environment interactions concerning WCR and TFATL predictions in the LF diet. (A) Interaction between baseline physical 
activity and uGRS in relation to WCR. (B) Interaction between baseline TFAT and wGRS regarding TFATL. (C) Interaction between baseline energy intake and wGRS 
concerning TFATL. WCR, waist circumference reduction; TFATL, total body fat loss; uGRS, unweighted genetic risk score; wGRS, weighted genetic risk score.
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and need to be specifically considered (Qi, 2014). In this study, 
a statistically significant interaction between GRS and the level 
of physical activity at baseline was found concerning WCR only 
in the LF diet. Moreover, GRS interplayed with baseline energy 
intake and TFAT in relation to TFATL in this same dietary group. 
In a block-randomized clinical trial, significant interactions 
between resistance exercise and a GRS for obesity on weight 
and body fat reductions were found, where the putative effect 
of exercise in changes in body composition was greater among 
women with a lower GRS (Klimentidis et al., 2015). Conversely, 
body weight changes were influenced by dietary habits and 
physical activity over a 5-year follow-up lifestyle intervention, 
but independently of a GRS for high BMI (Sandholt et al., 2014). 
Given the little scientific evidence so far, further investigation 
is needed to analyze the role of multiple environment variables 
modulating the genetic contribution to individual dietary 
responses and to precision nutrition management (Ramos-
Lopez et al., 2017).

Other relevant findings from this research were the involvement 
of some personalized phenotypic variables (age, sex, and the 
individual baseline anthropometric values) impacting WCR or 
TFATL outcomes. Thus, age influenced WCR and TFATL in the 
MHP diet, but not in the LF regime. Instead, exclusively, WCR 
in the LF diet was modulated by sex. Also, WC at baseline only 
contributed to explain WCR variance in the MHP diet, whereas 
baseline TFAT has an effect in TFATL in both dietary groups. The 
results suggest the need to consider age, sex, and body fat status 
to individualize dietary prescriptions in addition to the genetic 
background within tailored precision nutrition.

Similar results have been found in other clinical trials 
consisting of long-term lifestyle interventions based on 
hypocaloric LF diets and increased physical activity. For 
instance, findings from the Look AHEAD study (Look AHEAD 
Research Group, 2014), the Preventing Overweight Using 
Novel Dietary Strategies (POUNDS Lost) trial (Bray et al., 
2017), and the Diabetes Prevention Program (DPP) approach 
(Delahanty et al., 2013) revealed that sex (men) and older age 
are generally associated with more successful end-of-study 
weight loss. In line with the results obtained in this research 
regarding TFATL, other trials such as the dietary intervention 
randomized controlled (DIRECT) trial (Greenberg et al., 
2009) and the Sibutramine Trial of Obesity Reduction and 
Maintenance (STORM) study (Hansen et al., 2001) as well as a 
systematic review of clinical studies (Finkler et al., 2012) have 
also reported that higher initial body weight predicts greater 
rate of weight loss.

An important strength of this investigation was the 
construction of integrative models to cover genetic (multiple 
SNPs), phenotypic (age, sex, and initial anthropometric 
values), and environmental factors (energy intake and 
physical activity), as well as potential gene–environment 
interactions affecting diet-induced changes in two adiposity 
markers (WC and total fat mass). The contribution of all 
these factors to modulate adiposity outcomes under energy 
restriction ranging from 21% to up to 38% raises the need 
to be taken into account not only to predict the resistance/
responsiveness to weight loss but also to personalize dietary 

recommendations for obesity management through a 
precision nutrition approach (Ramos-Lopez et al., 2017). In 
any case, this approach can be considered an early effort to 
personalize diets, which may change with scientific advances 
concerning gene–environment interactions. Additionally, 
because this study enrolled just European individuals, the 
possible role of population stratification in our results was 
minimized. Moreover, that fact that no differences between 
diets were found concerning anthropometric and metabolic 
markers at baseline suggests an adequate randomization 
process in this trial. On the other hand, the drawbacks of 
this research comprised the use of only two energy-restricted 
diets for weight loss, a relatively small sample analyzed, and 
a short time of follow-up. Thus, clinical trials including a 
larger number of subjects, additional diets with distinct 
macronutrient composition, and long times of follow-up are 
convenient. Furthermore, interactions of SNPs with other 
biological factors affecting body weight homeostasis such 
as microbiota composition, epigenetic phenomena, and 
metabolomic profiles need to be explored (Goni et al., 2016).

This investigation can be considered as a pioneer model study, 
where the interactions of genes and diet were analyzed in order 
to customize dietary prescriptions to produce more personalized 
benefits; however, scientific advances should complement the 
current instrument.

In conclusion, the interplay between different genetic 
variants and interactions with environmental factors modulate 
the individual responses to MHP and LF dietary interventions. 
These approaches are useful to optimize personalized nutritional 
strategies for the prevention and management of excessive 
adiposity through precision nutrition taking into account not 
only the genetic background but also lifestyle/clinical factors in 
addition to age and sex.
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