
1 August 2019 | Volume 10 | Article 701

ORIGINAL RESEARCH

doi: 10.3389/fgene.2019.00701
published: 08 August 2019

Frontiers in Genetics | www.frontiersin.org

Edited by: 
Robert J. Schaefer,  

University of Minnesota Twin Cities, 
United States

Reviewed by: 
Robert W. Li,  

Agricultural Research Service 
(USDA), United States 

Prakash G. Koringa,  
Anand Agricultural University,  

India

*Correspondence: 
Joana Lima 

Joana.Lima@sruc.ac.uk 
Rainer Roehe 

Rainer.Roehe@sruc.ac.uk

†ORCID: 
Tom Freeman 

orcid.org/0000-0001-5235-8483

Specialty section: 
This article was submitted to 

Livestock Genomics,  
a section of the journal  

Frontiers in Genetics

Received: 07 February 2019
Accepted: 03 July 2019

Published: 08 August 2019

Citation: 
Lima J, Auffret MD, Stewart RD, 

Dewhurst RJ, Duthie C-A, 
Snelling TJ, Walker AW, Freeman TC, 

Watson M and Roehe R (2019) 
Identification of Rumen Microbial 

Genes Involved in Pathways Linked 
to Appetite, Growth, and Feed 
Conversion Efficiency in Cattle.  

Front. Genet. 10:701.  
doi: 10.3389/fgene.2019.00701

Identification of Rumen Microbial 
Genes Involved in Pathways Linked 
to Appetite, Growth, and Feed 
Conversion Efficiency in Cattle
Joana Lima 1*, Marc D. Auffret 1, Robert D. Stewart 2, Richard J. Dewhurst 1, 
Carol-Anne Duthie 1, Timothy J. Snelling 3, Alan W. Walker 3, Tom C. Freeman 2†, 
Mick Watson 2 and Rainer Roehe 1*

1 Beef and Sheep Research Centre, Future Farming Systems Group, Scotland’s Rural College, Edinburgh, United Kingdom,  
2 Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom, 
3 The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom

The rumen microbiome is essential for the biological processes involved in the conversion 
of feed into nutrients that can be utilized by the host animal. In the present research, 
the influence of the rumen microbiome on feed conversion efficiency, growth rate, and 
appetite of beef cattle was investigated using metagenomic data. Our aim was to explore 
the associations between microbial genes and functional pathways, to shed light on the 
influence of bacterial enzyme expression on host phenotypes. Two groups of cattle were 
selected on the basis of their high and low feed conversion ratio. Microbial DNA was 
extracted from rumen samples, and the relative abundances of microbial genes were 
determined via shotgun metagenomic sequencing. Using partial least squares analyses, 
we identified sets of 20, 14, 17, and 18 microbial genes whose relative abundances 
explained 63, 65, 66, and 73% of the variation of feed conversion efficiency, average 
daily weight gain, residual feed intake, and daily feed intake, respectively. The microbial 
genes associated with each of these traits were mostly different, but highly correlated 
traits such as feed conversion ratio and growth rate showed some overlapping genes. 
Consistent with this result, distinct clusters of a coabundance network were enriched 
with microbial genes identified to be related with feed conversion ratio and growth rate or 
daily feed intake and residual feed intake. Microbial genes encoding for proteins related 
to cell wall biosynthesis, hemicellulose, and cellulose degradation and host–microbiome 
crosstalk (e.g., aguA, ptb, K01188, and murD) were associated with feed conversion 
ratio and/or average daily gain. Genes related to vitamin B12 biosynthesis, environmental 
information processing, and bacterial mobility (e.g., cobD, tolC, and fliN) were associated 
with residual feed intake and/or daily feed intake. This research highlights the association 
of the microbiome with feed conversion processes, influencing growth rate and appetite, 
and it emphasizes the opportunity to use relative abundances of microbial genes in the 
prediction of these performance traits, with potential implementation in animal breeding 
programs and dietary interventions.
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INTRODUCTION

The global population is expected to reach 9.8 billion by 2050 
(United Nations–Department of Economic and Social Affairs/
Population Division, 2017), resulting in an escalation of the 
global demand for food and of the need for economically and 
environmentally sustainable livestock production systems 
(Godfray et al., 2010; Gerber et al., 2013). A large portion of 
livestock production is based on ruminants. In 2017, the EU-28 
had a population of 88 million bovine animals, including cattle 
and water buffalo (Eurostat, 2018). Ruminants are particularly 
interesting due to their ability to convert human-indigestible plant 
biomass into high-quality products for human consumption such 
as meat and milk. Ruminants live in a symbiotic relationship with 
their rumen microbiota (comprising bacteria, protozoa, fungi, 
and archaea), which produce enzymes able to digest their food by 
breaking down complex polysaccharides of the plant biomass into 
volatile fatty acids (VFA), microbial proteins, and vitamins (Russell 
and Hespell, 1981; Bergman, 1990; Van Soest, 1994). Thus, the 
rumen microbiota fermentation profile has a significant influence 
on the feed conversion efficiency of the host (Russell, 2001; Li et al., 
2009; Hernandez-Sanabria et al., 2011; Jami et al., 2014; Sasson et 
al., 2017; Meale et al., 2018) and is accountable for up to 70% of the 
host’s daily energy requirements (Bergman, 1990).

In beef cattle production systems, expenses associated with 
feed account for up to 75% of the total production costs (Moran, 
2005a; Nielsen et al., 2013), which makes the improvement of 
feed conversion efficiency very economically compelling. There is 
consequently great interest in understanding the host–microbial 
symbiotic relationships responsible for the conversion of feed 
into energy, protein, and vitamins usable by the host animal, but 
the mechanisms and degree to which the rumen microbiome 
impacts on animal production, health, and efficiency remain 
undercharacterized (Brulc et al., 2009; Creevey et al., 2014). 
Although the rumen harbors a core microbiome (Jami and Mizrahi, 
2012; Henderson et al., 2015), in agreement with studies performed 
in the human gastrointestinal tract (Tap et al., 2009; Qin et al., 2010), 
the structure, and composition of the rumen microbiome varies 
within and between animals with differing performance traits. 
For example, in lactating dairy cattle, the increased methane yield 
during late lactation in comparison to early lactation within the same 
individual was found to be associated with significant changes in the 
ruminal microbial community structure (Lyons et al., 2018); Myer 
et al. (2015) showed different relative abundances of some microbial 
taxa and operational taxonomic units in animals with different 
average daily gain (ADG); Shabat et al. (2016) focused on residual 
feed intake (RFI) to demonstrate that highly efficient animals had 
a less diverse microbiota, being dominated by specific taxa and 
microbial genes which were involved in simpler metabolic pathway 
networks when compared to their less efficient counterparts. Other 
authors have reported that the rumen microbiome varies more 
between animals than within animals, proposing that the host 
itself and its physiological parameters have a significant influence 
on its own rumen microbiome (Li et al., 2009) and, therefore, on 
the efficiency of feed conversion into energy. In a mouse study, 
Benson et al. (2010) found that there is a well-defined portion of 
the gut microbiota that is subject to host genetic control, proposing 

it to be regarded as a host trait, rather than an environmental trait 
affecting the host. In agreement, in a beef cattle study, Roehe et al. 
(2016) confirmed the host genetic influence on the rumen bacterial 
composition using a genetic model based on sire progeny groups. 
The differences between sire progeny groups in methane emissions 
were in some cases larger than the differences found between diets 
differing largely in plant fiber content, suggesting a substantial host 
genetic influence on the microbial communities.

Selecting animals for breeding based on their ability to harvest 
energy from feed, together with nutritional interventions, could 
be the basis for an effective strategy to produce faster growing and 
more efficient animals (Gerber et al., 2013; Scollan et al., 2018). 
Given that the host has influence over the ruminal microbiome, 
which impacts the animals’ feed conversion efficiency, this 
selection may be further improved by the inclusion of rumen 
metagenomic information into predictive models, as previously 
suggested by Ross et al. (2013). Feed conversion efficiency is very 
often estimated by either feed conversion ratio (FCR) or RFI; 
the latter is independent of growth and maturity patterns and is 
expected to be more sensitive and precise in measurements of feed 
utilization (Arthur and Herd, 2008). The use of microbial genes as 
proxies for feed conversion efficiency traits may be much more 
cost effective, rapid, and less labor intensive than their recording 
(Ross et al., 2013; Roehe et al., 2016). Our earlier research was 
the first proposing that the inclusion of relative abundance of 
microbial genes as proxies for FCR may be favorable, allowing 
their use as selection criteria for breeding animals, by identifying 
49 microbial genes that explained 88.3% of the variation observed 
in FCR (Roehe et al., 2016). To our knowledge, no other studies 
have focused on the relationship between microbial gene 
abundances and RFI, daily feed intake (DFI), and ADG, which 
highlights the importance and novelty of the present work.

This study aimed at validating whether rumen microbial gene 
abundances are suitable proxies for feed conversion efficiency traits 
such as FCR; the analysis was further extended by focusing on RFI. 
Based on the previous evidence of strong interactions between 
the rumen microbiome and the host animal with consequences 
for feed conversion efficiency (Guan et al., 2008; Roehe et al., 
2016; Shabat et al., 2016), we hypothesized that microbial gene 
abundances are linked to the animals’ appetite and, consequently, 
to feed intake. A further aim of this research was to gain insight into 
the association of growth rate with the microbial gene abundances. 
Building on this, we aimed at better understanding the rumen 
microbial functional network associated with feed conversion 
efficiency and its component traits. This research will improve on 
the current knowledge about the impact of the rumen microbiome 
on appetite, growth, and efficiency of feed conversion processes.

MATERIALS AND METHODS

Ethics Statement
This study was conducted at the Beef and Sheep Research Centre, 
SRUC, UK. The study was carried out in accordance with the 
requirements of the UK Animals (Scientific Procedures) Act 
1986. The protocol was approved by the Animal Experiment 
Committee of SRUC. All standard biosecurity and institutional 
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safety procedures were applied during the animal experiment 
and the laboratory analysis.

Animals, Adaptation Period, and 
Measurement of Traits
Two experiments were carried out to determine the effect of 
nitrate or lipid additives within different basal diets on methane 
emissions from beef cattle. The first experiment was conducted in 
2013, and it consisted of a 2 × 2 × 3 factorial design including 84 
steers of two breed types (crossbreed Charolais, CHx and Luing); 
two basal diets, forage (FOR) and concentrate (CONC), which 
consisted respectively of ratios of 520:480 and 84:916 forage to 
concentrate (g/kg dry matter); and three treatments, nitrate and 
lipid feed additives, as well as the control. From these animals, 
24 animals were selected with extreme high and low FCR values 
within breed type and basal diet (two animals per feed additive 
and control). More details related to this experiment can be 
found in Duthie et al. (2015) and Troy et al. (2015). The second 
experiment was a 2 × 4 factorial design experiment, conducted 
in 2014, involving 80 animals. There were two breed types—40 
crossbred Limousin (LIMx) and 40 crossbred Aberdeen Angus 
(AAx)—which were subject to a balanced design consisting of 
four dietary treatments using one basal diet (550:450 forage to 
concentrate ratio g/kg dry matter, FOR) and testing the effects of 

feed additives nitrate, lipid, or their combination in comparison 
to the control on methane output. Full details of the experiment 
are presented in Duthie et al. (2017). From this experiment, 18 
animals were selected within each combination of breed type and 
diet: nine for the high FCR group and nine for the low FCR group. 
DFI was assessed by measuring dry matter intake (DMI, kg/day), 
which was recorded in both experiments using electronic feeding 
equipment (HOKO, Insentec, Marknesse, The Netherlands). Body 
weight (BW) was measured weekly using a calibrated weight scale 
(before fresh feed was offered). Growth was modeled by linear 
regression of BW against test date to obtain ADG, mid-test BW, 
and mid-test metabolic BW (MBW = BW0.75). FCR was calculated 
as average DMI (kg/day) divided by ADG. RFI was estimated 
as deviation of actual DMI (kg/day) from DMI predicted based 
on linear regression of actual DMI on ADG, mid-MBW, and fat 
depth at 12th/13th rib at the end of the 56-day test (Duthie et al., 
2015; Troy et al., 2015; Duthie et al., 2017).

A flowchart summarizing the methods for generation of data 
and subsequent statistical analyses is presented in Figure 1.

Sampling of Rumen Digesta and Whole 
Metagenomic Sequencing
As described in Duthie et al. (2015) and Auffret et al. (2017), 
animals from both experiments were slaughtered in a commercial 

FIGURE 1 | Flowchart summarizing methods for generation of data and their statistical analyses: This flowchart summarizes how the data were generated and 
which statistical analyses were used to identify the associations between gene abundances and performance traits of animals to understand the rumen microbial 
functional pathways associated with these traits. KEGG, Kyoto Encyclopedia of Genes and Genomes; FCR, feed conversion ratio; ADG, average daily gain; RFI, 
residual feed intake; DFI, daily feed intake; PLS, partial least squares; LDA, linear discriminant analysis.
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abattoir where two samples of rumen digesta (~50 ml) were 
collected immediately after the rumen was opened to be drained. 
The slaughter house sample collection process results in well-
mixed samples of rumen contents. DNA was extracted from 
the rumen samples of 42 animals following the methodology 
described in Rooke et al. (2014). Illumina TruSeq libraries were 
prepared from genomic DNA and sequenced on Illumina HiSeq 
systems 4000 by Edinburgh Genomics (Edinburgh, UK). Paired-
end reads (2 × 150 bp) were generated, resulting in between 8 
and 15 GB per sample (between 40 and 73 million paired reads). 
The raw data can be downloaded from the European Nucleotide 
Archive under accession PRJEB21624.

Identification of the Rumen Microbial 
Gene Abundances
Bioinformatics analysis for identification of rumen microbial 
genes was carried out as previously described by Wallace et al. 
(2015). Briefly, to measure the abundance of known functional 
microbial genes in the rumen samples, reads from whole 
metagenome sequencing were aligned to the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database (Kanehisa and Goto, 
2000) using Novoalign (www.novocraft.com). Parameters were 
adjusted such that all hits were reported that were equal in 
quality to the best hit for each read and allowing up to a 10% 
mismatch across the fragment. The KEGG Orthologue groups 
(KO) of all hits that were equal to the best hit were examined. 
If we were unable to resolve the read to a single KO, the read 
was ignored; otherwise, the read was assigned to the unique KO. 
Read counts were summed and normalized to the total number of 
hits. This mapping of the whole metagenomic data to the KEGG 
database resulted in a dataset comprising of 4,966 KEGG genes. 
Microbial genes were removed from the dataset when they were 
absent from three or more animals and when the mean relative 
abundance was lower than 0.001%, leaving 1,692 microbial genes 
for further analyses.

Statistical Analysis
For each of the 1,692 microbial genes, a linear model was fitted, 
including as fixed effects a combined class variable of breed, diet, 
and year of experiment (six levels) and the FCR groups (high 
FCR, FCR-H and low FCR, FCR-L) using the lm() function in 
R version 3.4.2. The microbial genes which resulted in P ≥ 0.1 
for the differences in FCR groups were not considered in the 
partial least squares analyses (PLS, SAS version 9.3 for Windows, 
SAS Institute Inc., Cary, NC, USA) to avoid excessive noise of 
microbial genes uncorrelated to the traits of interest. In the linear 
model, FCR groups were replaced successively by ADG, RFI, and 
DFI as covariables to identify only potentially relevant microbial 
genes of these traits for further PLS analyses. In addition, genes 
with unknown function were removed from these datasets.

Microbial genes whose relative abundances were significantly 
associated to each trait in the linear models were analyzed 
using a sequential PLS-based methodology. First, PLS models 
were calculated in which the number of latent variables was 
determined by “leave-one-out” cross-validation, and genes with 
lower variable importance in projection (VIP) were removed. 

Second, the sets of genes created in the first step were evaluated 
by PLS models using three latent variables to determine the 
smaller set of genes leading to higher explained variation of both 
independent and dependent variables.

Each set of microbial genes identified in the PLS analyses as 
best predicting the trait was then used in a linear discriminant 
analysis (LDA), performed in R version 3.5.1 (2018-07-02) 
package MASS_7.3-51.4. In these analyses, the categories were 
for FCR those described previously as FCR-H and FCR-L; for 
all other traits, animals were classified as high or low, depending 
on their observations being higher or lower than the median 
(balanced for trial, breed, and diet).

The microbial genes identified to be significantly associated 
with each trait were submitted to an extensive review about 
their functionality based on databases such as KEGG (Kanehisa 
Laboratories, 2018), BioCyc (Karp et al., 2017), and UniProt 
(Bateman, 2019) and information from the literature.

Networks
The coabundances between microbial genes were investigated 
in a stepwise network analysis using the Graphia Professional 
software (Kajeka Ltd, Edinburgh; Freeman et al., 2007), in which 
nodes represent microbial genes and edges represent a correlation 
value above a defined value of r. In the first step, the correlation 
threshold of r = 0.45 was selected such that all microbial genes 
(n = 1,692) were included in the network. The microbial genes 
identified by PLS to be associated with a trait of interest were 
then located in the network. Clustering was performed using 
the Markov clustering method (MCL) available in Graphia 
Professional using the default settings (inflation, preinflation, and 
scheme values of 6). All clusters that held at least one microbial 
gene previously identified in the PLS analysis to be associated 
with a trait of interest were identified. These were incorporated 
into a new network generated at correlation threshold of r = 0.80 
containing 1,135 microbial genes. MCL was then performed 
on this network, with inflation and preinflation values of 2 and 
scheme value of 6, reflecting the clustering structure suggested 
in the network itself. Analyses of enrichment of genes identified 
in the PLS as associated to each trait were performed on the 
clusters, and significance was assessed at P < 0.05.

RESULTS

Performance Traits Related With Feed 
Conversion Efficiency
The average FCR values observed for animals selected into FCR-H 
(inefficient) and FCR-L (efficient) groups differed significantly 
by 2.3 kg DFI/kg ADG (Figure 2). When comparing these two 
groups for other traits, the FCR-H group had significantly higher 
values of RFI (0.8 kg) and significantly lower ADG (0.39 kg); in 
the case of DFI, no significant difference was observed between 
the FCR groups.

ADG and FCR had a strong significant negative correlation of 
0.80, suggesting that high growth rate is associated with efficient 
animals, using less feed per kilogram of weight gain. FCR and 
RFI were significantly positively correlated, but at a low level of 
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0.32. DFI was significantly correlated with RFI and ADG at high 
and moderate levels of 0.77 and 0.53, respectively.

Rumen Microbial Genes Associated With 
Feed Conversion Efficiency Traits
The PLS analyses identified sets of 20 and 14 microbial genes whose 
relative abundances explained 63.4 and 65.4% of the variation 
in FCR and ADG, respectively, and sets of 17 and 18 microbial 
genes whose relative abundances explained 65.6 and 72.9% of the 
variation in RFI and DFI, respectively, including the combined fixed 
effect of diet, breed, and year of experiment (Table 1). Without this 
combined fixed effect, the variances explained by microbial genes 
in FCR and ADG decreased to 54.2 and 61.4%, while in RFI and 

DFI, they decreased to 50.8 and 67.7%, respectively. A discriminant 
analysis between groups of high- and low-performing animals, 
using the set of microbial genes identified in the PLS analysis to 
best predict each trait, resulted in prediction accuracies of 90, 79, 
86, and 86% for FCR, ADG, RFI, and DFI (Figure 3).

The Venn diagram presented in Figure 4 illustrates the 
overlap between the sets of genes identified for the prediction 
of each of the four traits. For the prediction of FCR and ADG, 
six microbial genes were simultaneously selected: UDP-N-
acetylmuramoylalanine-D-glutamate ligase, glycine cleavage 
system H protein, translation initiation factor IF-1, N utilization 
substance protein A, DNA-binding protein HU-beta, and 
diphthamide synthase subunit dph2 (murD, gcvH, infA, nusA, 
hupB, and dph2, respectively). Three microbial genes were 

FIGURE 2 | Distribution of variation and range of performance traits: (A) feed conversion ratio, (B) average daily gain, (C) residual feed intake, and (D) daily feed 
intake within feed conversion ratio groups (high and low). The boxplots show the variation and range of each trait within each feed conversion ratio group. FCR, feed 
conversion ratio; AAx, crossbred Aberdeen Angus; CHx, crossbred Charolais; LIMx, crossbred Limousin.
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simultaneously selected for the prediction of traits RFI and 
DFI: glucose-1-phosphate cytidylyltransferase, CDP-glucose 
4,6-dehydratase, and energy-converting hydrogenase B subunit 
D (rfbF, rfbG, and ehbD, respectively). The microbial genes 
identified for the prediction of more than one trait are highlighted 
in the shaded rows in Tables 2–5, in which a more detailed 
information about their function and importance for prediction 
is provided.

Based on the relative abundance of 1,135 microbial genes 
across rumen samples, a coabundance network was developed 
(Figure 5), and clusters were identified. The clustering pattern 
evidences the microbial genes that are more closely connected 
to microbial genes previously identified in the PLS analyses. 
The network cluster to which each microbial gene belongs to 
is presented in Tables 2–5. Cluster 2 was significantly enriched 
for microbial genes predicting DFI and RFI&DFI (RFI and/or 
DFI). Cluster 4 was enriched for microbial genes predicting 
RFI and RFI&DFI. Microbial genes simultaneously predicting 
FCR and ADG were enriched in clusters 20 and 21, while those 
predicting FCR&ADG (FCR and/or ADG) were enriched in 
clusters 21 and 25. ADG-predicting microbial genes were 
enriched in clusters 21 and 25, whereas FCR-predicting genes 
were only enriched in cluster 25. Other genes previously 
identified in the PLS analysis were scattered across the graph.

Most microbial genes identified exclusively for the prediction 
of FCR are related to carbohydrate metabolism and transport: 

fructuronate reductase, galactokinase, alpha-glucuronidase, beta-
glucuronidase, beta-glucosidase, phosphate butyryltransferase 
P, UDP-N-acetylglucosamine acyltransferase, gluconate 
5-dehydrogenase, and lactate permease (respectively uxuB, galK, 
aguA, uidA, K01188, ptb, lpxA, idnO, and lctP) were proportionally 
more abundant in efficient animals (lower FCR, Supplementary 
Figure S1A). The microbial gene lactoylglutathione lyase (glo1) 
is also associated with carbohydrate metabolism and identified 
for predicting FCR, but it had higher relative abundance in less 
efficient animals (higher FCR). Microbial genes galK and xylE 
(i.e., MFS transporter, SP family, xylose:H+ symporter) were 
both located in cluster 5, but this cluster was not significantly 
enriched for microbial genes associated to FCR. On the other 
hand, cluster 25 was enriched due to the presence of microbial 
genes uxuB and lpxA.

Microbial genes associated with amino acid metabolism 
and transport pathways were identified for the prediction of 
ADG and found to be relatively more abundant in animals with 
higher ADG (see Supplementary Figure S1B), e.g., aspartate-
semialdehyde dehydrogenase and phenylacetate-CoA ligase (asd 
and paak, respectively). Some housekeeping genes were also 
identified for this set, including large subunit ribosomal protein 
L17 and L36, F-type H+-transporting ATPase subunit delta 
and FKBP-type peptidyl-prolyl cis-trans isomerase slyD (rplQ 
and rpmJ, atpH, and slyD). Genes rplQ, atpH, and slyD were 
relatively more abundant in animals with higher ADG, and rpmJ 
was relatively more abundant in animals with lower ADG. The 
microbial gene N-acetylmuramoyl-L-alanine amidase (amiABC) 
was identified for prediction of ADG, being negatively correlated 
with the trait.

All microbial genes simultaneously identified for predicting 
FCR and ADG showed a negative correlation to FCR and a 
positive correlation to ADG. These included housekeeping genes 
(infA, hupB, and dph2), a gene related to carbohydrate metabolism 
(gcvH), murD, which was associated with peptidoglycan 
metabolism and D-glutamine and D-glutamate metabolism, and 
nusA, associated with transcription regulation. Cluster 21 was 
enriched in ADG- and FCR&ADG-predicting microbial genes 
due to the presence of atpH, rplQ (ADG), and infA (FCR&ADG).

Five microbial genes identified for the prediction of RFI were 
associated with environmental sensing, bacterial chemotaxis, 
and motility: sensor kinase cheA, response regulator cheY, methyl 
accepting chemotaxis protein, flagellar motor switch protein 
fliN/fliY, and flagellar hook protein flgE (cheA, cheY, mcp, fliN, 
and flgE, respectively) were found to be relatively more abundant 
in more efficient animals, i.e., lower RFI. Other microbial 
genes associated with RFI are involved in the biosynthesis of 
cofactors and vitamins, particularly vitamin B12 production, 
for example, cobalt transport protein, threonine-phosphate 
decarboxylase, and precorrin-6Y C5,15-methyltransferase 
(decarboxylating), which correspond respectively to cbiN, cobD, 
and cobL (Supplementary Figure S1C). Finally, three genes 
that encode proteins related to carbohydrate transport and 
metabolism were relatively more abundant in more efficient 
animals (i.e., lower RFI): the simple sugar transport system 
permease protein, oxaloacetate decarboxylase, alpha subunit, 
and aldehyde:ferredoxin oxidoreductase (respectively ABC.

TABLE 1 | Percentage of variation in each trait explained by the microbial 
genes identified in the partial least squares (PLS). 

Percent variation accounted for by partial least 
squares factors

Model effects Dependent variables

Trait No. 
factors

Current Total Current Total

FCR 1 41.59 41.59 35.46 35.46
2 6.35 47.94 21.19 56.65

3 7.57 55.51 6.72 63.37

ADG 1 39.42 39.42 49.26 49.26
2 9.60 49.02 11.47 60.73

3 7.97 56.99 4.67 65.40

RFI 1 24.04 24.04 44.32 44.32
2 13.95 37.99 16.80 61.12

3 16.72 54.71 4.52 65.63

DFI 1 28.98 28.98 44.94 44.94
2 21.25 50.23 19.94 64.88

3 7.86 58.09 8.05 72.93

The number of factors refers to the number of latent variables in which the total 
number of microbial genes (independent variables) were projected in the PLS 
procedure, and each factor accounts for a portion of the total explained variation. 
The “Model Effects” columns refer to the percent variability of the independent 
variables matrix that relates to the respective percent variability presented in the 
“Dependent Variables” columns. The “Current” columns present values for each 
extracted factor individually, and the “Total” columns present the subtotal variation. 
The cells colored in gray contain the values of percent variation explained by the 
three latent variables for each trait. FCR, feed conversion ratio; ADG, average daily 
gain; RFI, residual feed intake; DFI, daily feed intake.
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SS.P, oadA, and aor). Cluster 4 was significantly enriched in 
microbial genes associated with RFI due to the presence of 
microbial genes cobD, cobL, mcp, and oadA, and serine-type 
D-Ala-D-Ala carboxypeptidase (penicillin-binding protein 5/6), 
inner membrane protein, and Cd2+/Zn2+-exporting ATPase 
(respectively, dacC, ybrG, and zntA).

The set of microbial genes identified for prediction of DFI 
included four microbial genes, proportionally more abundant in 
animals with higher DFI, which encoded proteins associated with 
environmental sensing, i.e., nitrogen regulatory protein P-II 1, outer 
membrane channel protein TolC, and preprotein translocase subunit 
YajC (glnB, tolC, and yajC, respectively). Nitrate reductase 1, alpha 
subunit (narG) was related to denitrification, releasing nitrite, and 
it was found to be relatively more abundant in animals with lower 
DFI (Supplementary Figure S1D). DNA-directed RNA polymerase 
subunit beta (rpoB, proportional higher abundance in animals 
with lower DFI), ribosomal large subunit pseudouridine synthase 
B, exodeoxyribonuclease VII small subunit, ribonuclease III, N 
utilization substance protein B, and integration host factor subunit 
alpha (respectively rluB, xseB, rnc, nusB, and ihfA, proportionally 
more abundant in animals with higher DFI) are housekeeping 
genes identified in this work for the prediction of DFI. Cluster 2 was 
significantly enriched with microbial genes associated with DFI due 
to the presence of glnB, infA, mrdA, nusB, rdgB, rluB, tolC, and xseB.

RFI- and DFI-predicting genes include glucose-1-phosphate 
cytidylyltransferase, CDP-glucose 4,6-dehydratase (respectively 
rfbF and rfbG, related to amino sugar and nucleotide sugar 
metabolism), and energy-converting hydrogenase B subunit D 
(ehbD, housekeeping). These three genes were proportionally 
more abundant in less efficient animals (higher RFI associated 
with increased DFI).

DISCUSSION

Rumen Microbial Gene Abundances 
Associated With Efficiency Traits
Our research indicates that there is a substantial link between 
rumen microbial gene abundances and appetite (measured as feed 
intake), growth rate, and feed conversion efficiency (Figure 6). 
The relative abundances of 20 and 17 microbial genes accounted 
for substantial variation (>60%) in FCR and RFI, respectively. 
The discriminant analyses of high- and low-performing animals 
indicated that accurate classification (>85% correct assignment 
of FCR and RFI categories) could be achieved using the 
microbial genes identified in the PLS for the prediction of the 
traits. Roehe et al. (2016) also found an association of microbial 
gene abundances with FCR, but their results were based on a 
smaller number of animals selected for their extreme values in 

FIGURE 3 | Linear discriminant analysis density plots: Microbial genes identified in the PLS analyses to be significantly associated with the trait were used in a linear 
discriminant analysis of high- and low-performing animals. The density plots represent the predicted categories for each trait. The accuracy value represents the 
percentage of animals that were correctly assigned to their category. FCR, feed conversion ratio; ADG, average daily gain; RFI, residual feed intake; DFI, daily feed 
intake; LD1, linear discriminant 1.
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methane emissions. In the present study, animals were selected 
based on their extreme FCR values, yielding a statistically more 
powerful estimate of this trait. Whereas FCR is calculated as a 
ratio between DFI and ADG and is therefore highly affected by 
growth rate and body composition, RFI is independent of these 
traits (Berry and Crowley, 2013). The low phenotypic correlation 
(r = 0.32) between FCR and RFI suggests that these traits capture 
substantially distinct characteristics.

For ADG and DFI, the relative abundances of 14 and 18 
microbial genes, respectively, also explained substantial variation 
(>65%), and the discriminant analyses of high- and low-
performing animals resulted in high prediction accuracies of 79 
and 86%, respectively. These component traits were moderately 
correlated, agreeing with the report by Berry and Crowley (2013) 
of a large independent variation of feed intake and weight gain.

The animals’ appetite, feeding behaviour, and gastrointestinal 
motility (among other traits) are thought to be regulated by 
several mechanisms, including a communication between the 
rumen microbiome and the brain, through the gut–liver–brain 
axis (vagus nerve). This communication has been proposed to 
be mediated by multiple mechanisms, such as insulin/glucagon 
homeostasis, oxidation of acetyl coenzyme A, and release of 
VFA by the rumen microbiota (like propionate, associated 
with hypophagic behavior in ruminants, or butyrate and 

acetate, associated with motility of the gastrointestinal tract 
in monogastric animals; Sakata and Tamate, 1979; Cherbut, 
2003; Oba and Allen, 2003; Arora et al., 2011; Maldini and 
Allen, 2018). Given the predictability of performance traits 
using relative abundances of rumen microbial genes observed 
in the present research (particularly that of DFI) and the high 
impact of the rumen microbiome on feed intake regulation 
(as discussed in the literature), we hypothesize that rumen 
microbial genes are closely involved in the metabolic pathways 
that regulate feed intake.

Differential Microbial Gene Sets Predicting 
Distinct Trait Complexes
The coabundance microbial gene network (Figure 5) identified 
two separate trait complexes. While microbial genes identified 
for the prediction of FCR were grouped with ADG-predicting 
genes, microbial genes identified for the prediction of RFI were 
grouped with DFI-predicting genes, as revealed by differential 
enrichment in separate clusters (Supplementary Figure S2). 
For example, beta-glucosidase is encoded by microbial genes 
bglX and K01188, which were associated to different traits (DFI 
and FCR, respectively). This type of differential clustering was 
previously observed for microbial genes associated with methane 

FIGURE 4 | Overlap analysis of identified microbial genes: The image illustrates the number of microbial genes identified in the partial least squares analysis as  
fitted for prediction of each animal performance trait exclusively, and the number of microbial genes simultaneously predicted for multiple traits: six microbial genes 
were simultaneously identified for prediction of FCR (feed conversion ratio) and ADG (average daily gain), and three for both RFI (residual feed intake) and  
DFI (daily feed intake).
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emissions and FCR by Roehe et al. (2016). The trait complexes 
associated with feed conversion efficiency were further 
evidenced when analyzing the overlapping genes identified for 
the prediction of each trait (Figure 4 and shaded rows in Tables 
2–5), i.e., six microbial genes were identified for the prediction 
of both FCR and ADG and three genes for the prediction of both 
RFI and DFI. In agreement, strong correlations were observed 

for each pair of traits, as shown previously in the literature with 
the literature (Arthur and Herd, 2008; Herd et al., 2014). These 
results suggest that different microbial genes can be used to 
predict each trait. Furthermore, microbial genes overlapping for 
the prediction of more than one trait might be useful for the 
interpretation of biological processes explaining the correlation 
between phenotypes.

TABLE 2 | Summary of microbial genes identified for the prediction of FCR. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K03783 Purine-nucleoside 
phosphorylase

punA 2Metabolic pathways; biosynthesis of secondary 
metabolites; purine metabolism; pyrimidine 
metabolism; nicotinate and nicotinamide 
metabolism

0.0107 −0.2755 1.22 1

K08138 MFS transporter, SP family, 
xylose:H+ symporter

xylE 3Carbohydrate transport and metabolism, amino 
acid transport and metabolism, Inorganic ion 
transport and metabolism

0.0404 0.1135 1.09 05

K00046 Gluconate 5-dehydrogenase idnO 4L-idonate degradation 0.0845 0.0166 1.08 11
K00040 Fructuronate reductase uxuB 2Metabolic pathways; pentose and glucuronate 

interconversions
0.0847 0.0503 1.01 25

K01759 Lactoylglutathione lyase glo1 2Pyruvate metabolism 0.0021 0.1547 1.01 09
K00849 Galactokinase galK 2Metabolic pathways; galactose metabolism; 

amino sugar and nucleotide sugar metabolism
0.0631 0.0675 1.00 05

K01195 Beta-glucuronidase uidA 2Metabolic pathways; biosynthesis of secondary 
metabolites; pentose and glucuronate 
interconversions; glycosaminoglycan degradation; 
porphyrin and chlorophyll metabolism; flavone 
and flavonol biosynthesis; drug metabolism—
other enzymes; lysosome

0.0127 −0.1174 0.99 07

K14220 tRNA Asn tRNA-Asn 2Aminoacyl-tRNA biosynthesis 0.0155 0.0139 0.96 NC
K00677 UDP-N-acetylglucosamine 

acyltransferase
lpxA 2Metabolic pathways; lipopolysaccharide 

biosynthesis; cationic antimicrobial peptide 
(CAMP) resistance

0.0403 −0.0186 0.91 25

K01188 Beta-glucosidase beta-
glucosidase

2Metabolic pathways; biosynthesis of secondary 
metabolites; cyanoamino acid metabolism; 
starch and sucrose metabolism; phenylpropanoid 
biosynthesis

0.0398 −0.0210 0.90 1

K07214 Enterochelin esterase and 
related enzymes

fes 3Inorganic ion transport and metabolism 0.0475 −0.1511 0.90 1

K03303 Lactate permease lctP 5Lactate transmembrane transporter activity 0.0195 −0.0271 0.88 28
K00634 Phosphate butyryltransferase ptb 2Metabolic pathways; butanoate metabolism 0.0075 −0.0079 0.85 1

K01235 Alpha-glucuronidase aguA 3Carbohydrate transport and metabolism 0.0104 −0.0626 0.80 NC

K07561 diphthamide synthase subunit 
DPH2

dph2 3Translation, ribosomal structure and biogenesis 0.0030 −0.3881 1.86 01

K01925 UDP-N-
acetylmuramoylalanine–D-
glutamate ligase

murD 2Metabolic pathways; D-Glutamine and 
D-glutamate metabolism; peptidoglycan 
biosynthesis

0.0620 −0.0857 0.99 1

K02437 Glycine cleavage system H 
protein

gcvH 2Metabolic pathways; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; glyoxylate and 
dicarboxylate metabolism; carbon metabolism

0.0069 −0.0167 0.93 1

K03530 DNA-binding protein HU-beta hupB 3DNA binding protein: replication, recombination, 
and repair

0.0331 −0.0892 0.89 19

K02600 N utilization substance protein 
A

nusA 3Transcription 0.1126 −0.0655 0.89 1

K02518 Translation initiation factor IF-1 infA 3Translation, ribosomal structure and biogenesis 0.0346 0.0170 0.88 21

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 63.4% of the variation in FCR (feed 
conversion ratio). Rows colored in gray correspond to genes simultaneously identified for both FCR and ADG (average daily gain) prediction.
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Metabolic Pathways of Microbial Genes 
Associated With Efficiency Traits
Our results indicate that most proteins encoded by microbial 
genes identified for the prediction of FCR were generally involved 
in carbohydrates metabolism and transport. For example, aguA 
and K01188 are involved in biomass conversion, through the 
degradation of hemicelluloses and lignocelluloses and lactate 
biosynthesis (Cairns and Esen, 2010; Lee et al., 2012; Michlmayr 
and Kneifel, 2014; Li, 2015). Microbial genes xylE, aguA, and 
uidA are involved in xylan degradation, the main component of 
hemicellulose (Lee et al., 2012; Fliegerova et al., 2015). Xylose 
needs to be taken up by a transporter (putatively associated 

with xylE) before it is metabolized, and it has been recognized 
as a rate-controlling step in bacterial metabolism (Chaillou and 
Pouwels, 1999). Furthermore, microbial genes such as uidA 
[previously identified by Roehe et al. (2016)], directly involved in 
carbohydrate metabolism pathways like pentose and glucuronate 
interconversions and galactose metabolism, are coupled with 
NAD or NADP oxidoreduction, important for regulating the flux 
of carbon and energy sources in microorganisms (Spaans et al., 
2015). In addition, punA (i.e., purine-nucleoside phosphorylase) 
is involved in the metabolism of nucleotides, nicotinate and 
nicotinamide (vitamin B3), which also contain NAD and NADP, 
and is therefore important in carbohydrate, protein, and lipid 

TABLE 3 | Summary of microbial genes identified for the prediction of ADG. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K01448 N-acetylmuramoyl-L-
alanine amidase

amiABC 2Cationic antimicrobial peptide (CAMP) resistance 0.0236 −0.1937 1.22 06

K00133 Aspartate-semialdehyde 
dehydrogenase

asd 2Metabolic pathways; microbial metabolism in 
diverse environments; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; monobactam 
biosynthesis; cysteine and methionine metabolism; 
lysine biosynthesis; 2-oxocarboxylic acid metabolism; 
biosynthesis of amino acids

0.1197 −0.0684 1.20 NC

K01912 Phenylacetate-CoA 
ligase

paaK 2Microbial metabolism in diverse environments; 
phenylalanine metabolism; biofilm formation—Vibrio 
cholerae

0.1543 −0.0980 1.16 16

K02919 Large subunit ribosomal 
protein L36

rpmJ 2Ribosome 0.0261 −0.1884 1.04 NC

K02879 Large subunit ribosomal 
protein L17

rplQ 2Ribosome 0.0773 0.0746 1.00 21

K02113 F-type H+-transporting 
ATPase subunit delta

atpH 2Metabolic pathways; oxidative phosphorylation; 
photosynthesis

0.0292 −0.0486 1.00 21

K00283 Glycine dehydrogenase 
subunit 2

gcvPB 2Metabolic pathways; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; glyoxylate and 
dicarboxylate metabolism; carbon metabolism

0.0284 0.0502 0.99 25

K03775 FKBP-type peptidyl-
prolyl cis-trans 
isomerase SlyD

slyD 5Posttranslational modification, protein turnover, 
chaperones

0.0139 0.0672 0.93 22

K07561 Diphthamide synthase 
subunit DPH2

dph2 5Translation, ribosomal structure, and biogenesis 0.0030 0.2310 1.20 01

K01925 UDP-N-
acetylmuramoylalanine–
D-glutamate ligase

murD 2Metabolic pathways; D-glutamine and D-glutamate 
metabolism; peptidoglycan biosynthesis

0.0620 0.1155 1.15 1

K02437 Glycine cleavage system 
H protein

gcvH 2Metabolic pathways; biosynthesis of secondary 
metabolites; biosynthesis of antibiotics; glycine, 
serine and threonine metabolism; glyoxylate and 
dicarboxylate metabolism; carbon metabolism

0.0069 0.1209 1.08 1

K03530 DNA-binding protein 
HU-beta

hupB 5DNA binding protein: replication, recombination, and 
repair

0.0331 0.1062 1.07 19

K02600 N utilization substance 
protein A

nusA 5Transcription 0.1126 0.0726 1.02 1

K02518 Translation initiation 
factor IF-1

infA 5Translation, ribosomal structure, and biogenesis 0.0346 0.0646 0.98 21

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 65.4% of the variation in ADG 
(average daily gain). Rows colored in gray correspond to genes simultaneously identified for both FCR (feed conversion ratio) and ADG prediction.
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metabolism reactions. Positive effects of vitamin B3 have been 
previously observed in healthy rumen microbiomes in beef and 
dairy cattle (Aschemann et al., 2012; Luo et al., 2017). Microbial 
genes uidA and punA were more abundant in efficient animals.

Proteins encoded by lctP, K01188, and ptb, involved in lactate 
transport and cellulose and butyrate metabolism, respectively, 
could be involved in host–microbiome crosstalk mechanisms 
in cattle due to their participation in metabolic pathways that 
involve the release of H+, such as lactate metabolism, potentially 
reducing microbial fiber-degrading activity and consequently 
slowing digestion and rumen emptying rate, causing a decrease in 
appetite (Moran, 2005b). Furthermore, beta-glucosidase is widely 
present in lactic acid bacteria and is thought to interact with the 
human host (Michlmayr and Kneifel, 2014). Butyrate has been 
shown in rats to directly activate the intestinal gluconeogenesis 
genes in enterocytes via an increase in cationic antimicrobial 
peptides (cAMP, De Vadder et al., 2014). In contrast, glo1 (more 
abundant in FCR-H) is involved in methylglyoxal degradation, 

which is a highly toxic substance that decreases bacterial cell 
viability, and is produced by bacteria when there is carbohydrate 
excess and nitrogen limitation (Russell, 1993). Therefore, glo1 is 
a strong candidate biomarker of rumen microbiome difference in 
less efficient animals (i.e., FCR-H).

The microbial gene with highest impact in prediction of ADG 
was amiABC, which is mainly involved in the peptidoglycan 
turnover through cleavage of glyosidic bonds and release of 
amino acids and cAMP resistance (Uehara and Park, 2008; 
Uehara et al., 2010). Some bacteria (mostly pathogenic) have 
evolved mechanisms of resistance, such as decreased affinity to 
cAMPs (Anaya-López et al., 2013), and the higher abundance of 
amiABC in animals with lower ADG may be indicative of higher 
abundance of pathogens, which can cause inflammatory response 
in the rumen potentially reducing nutrient use and absorption 
(Reynolds et al., 2017). Brown et al. (2003) demonstrated that 
acetate and propionate are agonists of the human receptors 
GPR43 and GPR41, and Hong et al. (2005) proposed that acetate 

TABLE 4 | Summary of microbial genes identified for the prediction of RFI. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K03406 Methyl-accepting chemotaxis protein mcp 2Two-component system; bacterial 
chemotaxis

0.0225 −0.0510 1.26 1

K03413 Two-component system, 
chemotaxis family, response 
regulator CheY

cheY 2Two-component system; bacterial 
chemotaxis

0.0018 0.0478 1.16 1

K01534 Cd2+/Zn2+-exporting ATPase zntA 5Cation-transporting ATPase activity; metal 
ion binding; nucleotide binding

0.0211 −0.0653 1.16 04

K07258 serine-type D-Ala-D-Ala 
carboxypeptidase (penicillin-binding 
protein 5/6)

dacC 2Metabolic pathways; Peptidoglycan 
biosynthesis

0.0049 −0.0375 1.14 1

K07301 Cation:H+ antiporter yrbG 3Inorganic ion transport and metabolism 0.0096 −0.0145 1.09 04
K04720 Threonine-phosphate decarboxylase cobD 2Porphyrin and chlorophyll metabolism 0.0034 −0.0501 1.06 04
K03407 Two-component system, chemotaxis 

family, sensor kinase CheA
cheA 2Two-component system; bacterial 

chemotaxis
0.0048 −0.0236 1.04 1

K00595 Precorrin-6Y C5,15-
methyltransferase (decarboxylating)

cobL 2Metabolic pathways; porphyrin and 
chlorophyll metabolism

0.0078 0.0223 1.02 04

K01571 Oxaloacetate decarboxylase, alpha 
subunit

oadA 2Metabolic pathways; pyruvate metabolism 0.0165 −0.0501 0.96 04

K02057 Simple sugar transport system 
permease protein

ABC.SS.P 3Carbohydrate transport and metabolism 0.0023 −0.1375 0.96 20

K02390 Flagellar hook protein FlgE flgE 2Flagellar assembly 0.0015 −0.0376 0.87 1

K02417 Flagellar motor switch protein FliN/
FliY

fliN 2Bacterial chemotaxis; flagellar assembly 0.0018 −0.1120 0.77 1

K03738 Aldehyde:ferredoxin oxidoreductase aor 2Metabolic pathways; Microbial metabolism 
in diverse environments; Pentose phosphate 
pathway; Carbon metabolism

0.0144 −0.0657 0.68 NC

K02009 Cobalt transport protein cbiN 2ABC transporters 0.0074 −0.1126 0.67 01

K01709 CDP-glucose 4,6-dehydratase rfbG 2Metabolic pathways; amino sugar and 
nucleotide sugar metabolism

0.0041 0.2549 1.46 1

K00978 Glucose-1-phosphate 
cytidylyltransferase

rfbF 2Metabolic pathways; amino sugar and 
nucleotide sugar metabolism; starch and 
sucrose metabolism

0.0042 0.2056 1.23 1

K14113 Energy-converting hydrogenase B 
subunit D

ehbD – 0.0010 0.1703 1.00 NC

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 65.6% of the variation in RFI (residual 
feed intake). Rows colored in grey correspond to genes simultaneously identified for both RFI and DFI (daily feed intake) prediction.
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and propionate induce lipid accumulation and inhibition of 
lipolysis through the GPR43 receptor in mice. These genes are 
also part of the bovine genome, where they mediate an inhibitory 
effect of acetate, propionate, and butyrate on cAMP signaling 
(Wang et al., 2009). This could indicate that, in less efficient 
animals (lower ADG), the lower amount of acetate, propionate, 
and butyrate may lead to decreased inhibition of lipolysis by the 
host, which potentially results in lower ADG. Alternatively, the 
lower amount of VFAs in these animals may lead to decreased 
inhibition of cAMP signaling and increased release of cAMPs by 
the host to the rumen. The cAMPs act primarily on organisms 
without effective resistance mechanisms, consequently 
increasing the relative abundance of cAMP-resisting organisms 

and of the microbial genes encoding for the resistance. Two other 
microbial genes identified in the present research are part of the 
cAMP resistance pathway—lpxA and tolC (associated with FCR 
and DFI, respectively). Although all three genes (amiABC, lpxA, 
and tolC) are part of the same pathway, they present opposite 
tendencies—while lpxA and tolC are proportionally highly 
abundant in animals with higher ADG and lower FCR, amiABC 
is relatively highly abundant in animals with lower ADG and 
higher FCR. The gene lpxA is related to lipid A integration in 
the cell wall, as a preventive measure against the hosts’ immune 
system, and tolC is involved in the efflux of antibiotics (Raetz 
et al., 2007; Zgurskaya et al., 2011). This could be indicative of 
the different cAMP resistance mechanisms evolved by bacterial 

TABLE 5 | Summary of microbial genes identified for the prediction of DFI. 

KEGG 
id

Description Gene name 
abbreviation

Pathways Mean 
abundance

PLS 
estimate

VIP Cluster

K00370 Nitrate reductase 1, alpha 
subunit

narG 2Microbial metabolism in diverse environments; 
nitrogen metabolism; two-component system

0.0022 −0.2272 1.22 1

K01858 Myo-inositol-1-phosphate 
synthase

INO1 2Metabolic pathways; biosynthesis of antibiotics; 
streptomycin biosynthesis; inositol phosphate 
metabolism

0.0542 −0.0459 1.14 1

K03685 Ribonuclease III rnc 2Ribosome biogenesis in eukaryotes; proteoglycans 
in cancer

0.0288 −0.0097 1.13 1

K00613 Glycine amidinotransferase GATM 2Metabolic pathways; glycine, serine and threonine 
metabolism; arginine and proline metabolism

0.0019 −0.1417 1.09 1

K02428 XTP/dITP 
diphosphohydrolase

rdgB 2Metabolic pathways; purine metabolism 0.0147 −0.0216 0.94 02

K03602 Exodeoxyribonuclease VII 
small subunit

xseB 2Mismatch repair 0.0035 0.0803 0.94 02

K03210 Preprotein translocase 
subunit YajC

yajC 2Bacterial secretion system; quorum sensing; 
protein export

0.0069 0.1317 0.93 1

K12340 Outer membrane channel 
protein TolC

tolC 2Beta-lactam resistance; cationic antimicrobial 
peptide (CAMP) resistance; two-component 
system; bacterial secretion system; plant−pathogen 
interaction; pertussis

0.0157 0.0068 0.92 02

K03043 DNA-directed RNA 
polymerase subunit beta

rpoB 2Metabolic pathways; purine metabolism; pyrimidine 
metabolism; RNA polymerase

1.2470 −0.0995 0.91 NC

K04751 Nitrogen regulatory protein 
P-II 1

glnB 2Two-component system 0.0151 0.0613 0.91 02

K03625 N utilization substance 
protein B

nusB 3Transcription termination 0.0135 0.0766 0.91 02

K06178 Ribosomal large subunit 
pseudouridine synthase B

rluB 3Translation, ribosomal structure, and biogenesis 0.0693 −0.0038 0.85 02

K05349 Beta-glucosidase bglX 2Metabolic pathways; biosynthesis of secondary 
metabolites; cyanoamino acid metabolism; 
starch and sucrose metabolism; phenylpropanoid 
biosynthesis

0.2272 0.0063 0.84 1

K05515 Penicillin-binding protein 2 mrdA 2Peptidoglycan biosynthesis; beta-lactam resistance 0.0295 0.0214 0.82 02
K04764 Integration host factor 

subunit alpha
ihfA 3DNA binding: replication, recombination, and repair 0.0041 0.0306 0.80 02

K01709 CDP-glucose 
4,6-dehydratase

rfbG 2Metabolic pathways; amino sugar and nucleotide 
sugar metabolism

0.0041 0.2412 1.53 1

K00978 Glucose-1-phosphate 
cytidylyltransferase

rfbF 2Metabolic pathways; amino sugar and nucleotide 
sugar metabolism; starch and sucrose metabolism

0.0042 0.2634 1.43 1

K14113 Energy-converting 
hydrogenase B subunit D

ehbD – 0.0010 0.1594 1.16 NC

Each column respectively presents information about: 1) KEGG identifier, 2) description of the gene (from KEGG), 3) gene name abbreviation, 4) metabolic pathways in which 
this gene participates, 5) mean relative abundance of the microbial gene in 42 animals, 6) the partial least squares (PLS) estimate of the regression coefficient using three latent 
variables, 7) the variable importance in projection (VIP) calculated during the PLS analysis using three latent variables, and 8) the cluster in which the microbial gene was allocated 
in the final network. 1Microbial genes excluded from the final network due to the 0.80 minimum correlation threshold. NC, Microbial genes not clustered in the final network. 
Information retrieved from: 2KEGG database, 3NCBI database, 4BioCyc database, and 5UniProt database. The genes in this table explained 72.9% of the variation in DFI (daily 
feed intake). Rows colored in gray correspond to genes simultaneously identified for both RFI (residual feed intake) and DFI prediction.
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FIGURE 5 | Correlation network analysis of metagenomic data: Each node represents a vector of relative abundances of each microbial gene in all 42 animals, and 
the edges represent a correlation between the microbial genes. A minimum correlation threshold of 0.80 was applied to the network. Different colors illustrate different 
clusters, which were calculated using MCL method (inflation: 2; preinflation: 2; scheme: 6). Clusters identified by numbers were found to be significantly (P < 0.05) 
enriched for microbial genes identified for the traits whose abbreviations are between brackets (FCR, feed conversion ratio; ADG, average daily gain; RFI, residual 
feed intake; DFI, daily feed intake; FCR&ADG, set including microbial genes identified for prediction of either FCR and/or ADG; RFI&DFI, set including microbial genes 
identified for prediction of RFI and/or DFI; FCR+ADG, set including microbial genes simultaneously identified for prediction of both traits FCR and ADG).

FIGURE 6 | Summary of microbial genes identified for the prediction of each trait: Traits are located in the four central boxes: FCR, feed conversion ratio; ADG, 
average daily gain; RFI, residual feed intake; DFI, daily feed intake. Solid lines represent positive correlations, and dotted lines represent negative correlations. 
Microbial genes are listed in the outside boxes, organized by general function, and each general function is represented by a different color.
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organisms, which include modification of the cell external 
surface, efflux pumps, and biosynthesis and crosslinking of cell 
envelope components (Nizet, 2006).

The set of microbial genes associated with ADG included 
mostly housekeeping genes and genes related to amino acid 
metabolism and transport. Artegoitia et al. (2017) found a 
link between ruminal aromatic amino acids synthesis such as 
phenylalanine and high ADG in beef steers. For example, paak 
[previously mentioned by Kamke et al. (2016) related to sheep 
with high production of methane] and asd encode proteins 
that respectively catalyze phenylalanine and phenylacetate 
(related to aspartate degradation and biosynthesis of amino 
acids including threonine), with release of H+. In the current 
research, both of these genes were positively correlated to 
ADG, which is supported by the positive correlations between 
ADG and dry matter intake (DMI), between DMI and methane 
emissions, and between methane emissions and body weight 
measurements (weaning weight, yearling weight, and final 
weight), previously observed in cattle (Koots et al., 1994; Arthur 
et al., 2001; Herd et al., 2014).

Some housekeeping genes were simultaneously identified 
for the prediction of FCR and ADG, such as protein translation 
from diphthamide (dph2) or peptidoglycan biosynthesis (murD), 
both more abundant in efficient animals (higher ADG and lower 
FCR). The importance of diphthamide biosynthesis in archaea 
is not yet fully known (Narrowe et al., 2018). Microbial gene 
murD is related to the glutamate–glutamine cycle, an important 
appetite regulator in humans (Delgado, 2013), but in the present 
research, it was not associated to DFI.

Proteins encoded by microbial genes associated with RFI are 
mostly related to chemotaxis (cheA and cheY), detoxification 
(Cd2+/Zn2+-exporting ATPase, zntA), and vitamin B12 
production (cbiN, cobD, and cobL). The negative correlation of 
microbial genes involved in chemotaxis and motility with RFI 
may suggest an increased microbial metabolism in efficient 
animals, derived from their ability to sense chemical gradients 
in their surrounding environment and to react accordingly, i.e., 
moving closer to nutrients (Rajagopala et al., 2007). Microbial 
gene zntA was also more abundant in efficient animals and 
plays a role in the homeostasis of transition metals (Cd2+, Zn2+), 
participating in functional pathways ranging from cellular 
respiration to gene expression (Fraústro da Silva and Williams, 
2001). Finally, higher relative abundance of microbial genes 
involved in vitamin B12 production (cbiN, cobD, and cobL) was 
observed in more efficient animals. This essential cofactor needs 
to be taken up directly from the diet or to be made available for 
animal absorption by the rumen microbial organisms because it 
is not produced by eukaryotes (Warren et al., 2002). Furthermore, 
vitamin B12 has been previously associated with increased cobalt 
content on high-fiber diets and increased VFA, such as acetate 
(Beaudet et  al., 2017), which may affect the animals’ appetite 
(Frost et al., 2014), in line with our observation of higher relative 
abundance of these genes in more efficient animals, i.e., animals 
with lower feed intake than expected.

The four most important microbial genes identified for 
the prediction of DFI included the three microbial genes also 
identified for prediction of RFI (rfbG, rfbF, and ehbD) and 

narG. Microbial genes rfbG and rfbF (VIP > 1.4) are part of the 
rfc region (Morona et al., 1994) and are related to nucleotide sugar 
metabolism, which is necessary for the production of microbial 
lipopolysaccharide (LPS). LPS is a major virulence factor of Gram-
negative bacteria, particularly due to the O-antigen, paramount for 
host colonization and niche adaptation by bacterial organisms, due 
to its part in the protection from host immune response (Reeves, 
1995; Samuel and Reeves, 2003; Geue et al., 2017). Both genes rfbG 
and rfbF showed a positive correlation to RFI and DFI, supporting 
our hypothesis that the use of energy to stimulate the innate immune 
system against pathogens increases DFI and reduces feed conversion 
efficiency as determined by RFI (Neal et al., 1991; Jing et al., 2014; 
Vigors et al., 2016). Other microbial genes positively correlated to 
DFI were found to be involved in resistance mechanisms, such as 
the penicillin-binding protein 2-encoding gene (mrdA), which 
belongs to the peptidoglycan and beta-lactam resistance metabolic 
pathways. These proteins are transpeptidases or carbopeptidases 
involved in peptidoglycan metabolism and have an important role 
against beta-lactam resistance (Zapun et al., 2008). The microbial 
gene myo-inositol-1-phosphate synthase (INO1) is related to 
antibiotic biosynthesis, including streptomycin. Microbial gene 
ehbD is a subunit of the energy-converting hydrogenase B, found 
in methanogens such as Methanococcus maripaludis. This microbial 
gene is important due to its role in autotrophic CO2 assimilation (Porat 
et al., 2006), having implications for microbial growth. Furthermore, 
narG, part of the narGHIJ operon, essential for some microorganisms 
to gather energy under anaerobic conditions by the reduction in 
nitrate to nitrite in a denitrification process (Blasco et al., 1990; 
Latham et al., 2016), was proportionally more abundant in animals  
with low DFI.

The microbial gene nusB (associated with DFI) is part of a set 
of nus genes, which also includes nusA (identified for prediction 
of FCR and ADG). Genes in the nus complex are involved in 
transcription termination and antitermination processes, such 
as Rho-dependent transcriptional termination (Torres et  al., 
2004), which is the regulatory mechanism involved in the 
efficient transcription of the tryptophan operon (Farnham et al., 
1982; Kuroki et al., 1982; Prasch et al., 2009). The nus-complex 
microbial genes were found to be relatively more abundant in 
efficient animals. This association may be due to the influence 
of the nus genes, which extends from the ribosomal operons 
to the tryptophan operon and constitutes a good example of 
how termination and antitermination processes can control 
gene expression, occurring during RNA transcription, and 
potentially positively impacting bacterial growth and rumen  
fermentation processes.

Although microbial genes amiABC, tolC, glo1, rfbF, rfbG, and 
lpxA were identified in the present research for the prediction 
of different traits, all are associated with bacterial defense 
mechanisms either from other bacteria or from the host. The 
majority of these genes had higher abundance in less efficient 
animals. This suggests that the presence of either bacterial 
pathogens in the rumen or antibiotics produced as host immune 
responses might represent a significant energy sink, impairing 
feed conversion efficiency.

Further improvement of prediction of feed conversion traits 
using metagenomic information may be achieved through 
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the integration of protein, enzyme, and pathway data from the 
Hungate collection (Seshadri et al., 2018) and the large rumen 
metagenomic reference dataset (Stewart et al., 2018).

CONCLUSIONS

The results presented here suggest that relative abundances of 
rumen microbial genes may be highly informative predictors of 
feed conversion efficiency, growth rate, and feed intake, which are 
labor intensive, time consuming, and expensive traits to record. 
Most microbial genes identified for the prediction of traits in this 
research were trait specific. Microbial genes related to cellulose and 
hemicellulose degradation, vitamin B12 synthesis, and amino acids 
metabolism were associated to enhanced feed conversion efficiency 
(FCR or RFI), while those involved in nucleotide sugars metabolism, 
pathogen LPS synthesis, cAMP resistance, and degradation of 
toxic compounds were associated with inefficient feed conversion. 
Furthermore, we identified specific microbial genes encoding 
proteins related to the crosstalk between the microbiome and the host 
cells, such as murD and amiABC, and associated to gene expression 
regulatory mechanisms, such as nusA and nusB. Thus, our results 
provide a deeper understanding of the potential influence of the 
rumen microbiome on the feed conversion efficiency of its host, 
highlighting specific enzymes involved in metabolic pathways that 
reflect the complex functional networks impacting the conversion 
of feed into animal products such as meat.
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