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DNA methylation is an important regulator of gene expression and may provide an important 
basis for effective glioma diagnosis and therapy. Here, we explored specific prognosis 
subtypes based on DNA methylation status using 653 gliomas from The Cancer Genome 
Atlas (TCGA) database. Five subgroups were distinguished by consensus clustering using 
11,637 cytosines preceding a guanosine (CpGs) that significantly influenced survival. The 
specific DNA methylation patterns were correlated with age, tumor stage, and prognosis. 
Additionally, weighted gene co-expression network analysis (WGCNA) analysis of CpG 
sites revealed that 11 of them could distinguish the samples into high- and low-methylation 
groups and could classify the prognostic information of samples after cluster analysis of 
the training set samples using the hierarchical clustering algorithm. Similar results were 
obtained from the test set and 12 glioma patients. Moreover, in vitro experiments revealed 
an inverse relationship between methylation level and migration ability or insensitivity to 
temozolomide (or radiotherapy) of glioma cells based on the final prognostic predictor. 
Thus, these results suggested that the model constructed in this study could provide 
guidance for clinicians regarding the prognosis of various epigenetic subtypes.

Keywords: glioma, consensus clustering, DNA methylation, molecular subtypes, prognosis

INTRODUCTION

Glioma derives from glial cells and is the most prevalent primary central nervous system malignant 
tumor (Aldape et al., 2003; Aquilanti et al., 2018). The overall survival time continues to be 
unsatisfactory, especially for high-grade glioma, although treatment strategies, including surgical 
resection, radiation, and chemotherapy, for glioma patients have been greatly improved (Jain, 2018; 
Zang et al., 2018). It is therefore urgent to elucidate the molecular mechanisms underlying glioma 
tumorigenesis for developing novel therapies.

Epigenetics is recognized as heritable alterations in gene expression not connected to an 
alteration in DNA sequence but plays a crucial role in carcinogenesis (El-Osta, 2004; Issa, 2007; 
Hao et al., 2017). Cancer epigenetics covers aspects of aberrant DNA methylation, dysregulated 

Abbreviations: CDF, consensus cumulative distribution function; CpG, cytosine preceding a guanosine; GBM, glioblastoma 
multiforme; knn, k-nearest neighbors; LGG, lower-grade glioma; SD, standard deviation; TCGA, The Cancer Genome Atlas; 
WGCNA, weighted gene co-expression network analysis.
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non-coding RNA, and altered post-translational histone 
modification, among which aberrant DNA methylation is most 
widely investigated (Dawson and Kouzarides, 2012; Kanwal 
et al., 2015). Aberrant DNA methylation could influence the key 
genes that are involved in glioma carcinogenesis and progression 
and may especially influence some tumor suppressor genes by 
altering their expression and inhibiting their function (Liu et al., 
2016; Charlet et al., 2017). Thus, biological processes, specifically 
alterations in DNA methylation, can provide an important basis 
for early diagnosis and prognosis of cancer and development 
of new approaches for further clinical applications. Although 
the effects of certain genes with aberrant DNA methylation 
on glioma have been reported extensively, the comprehensive 
profile of the interaction network still needs further elucidation.

During the last decades, bioinformatics analysis and microarray 
technology have been widely used to identify general genetic or 
epigenetic alterations in carcinogenesis and screen biomarkers 
for prognosis and diagnosis of cancer (Crispatzu et al., 2017; 
Yang et al., 2019). Several single genes whose global methylation 
status correlates with glioma outcome and gene expression level 
have already been identified (Fanelli et al., 2008; Hill et al., 2014). 
Additionally, some research on aberrant DNA methylation has been 
conducted to identify glioma DNA methylation subtypes by DNA 
methylation profile (Gustafsson et al., 2018; Johannessen et  al., 
2018); however, this classification was not detailed enough, and the 
specific sites that are associated with each category are unclear.

In this study, we addressed glioma classification by identifying 
specific prognosis subtypes based on DNA methylation profiles 
of glioma obtained from The Cancer Genome Atlas (TCGA) 
database. This classification system may help identify molecular 
subtypes or new glioma markers to subdivide glioma patients 
more accurately. Moreover, our classification system provides 
guidance for clinicians on personalized treatments and diagnoses 
by identifying differences in prognosis for each epigenetic subtype.

MATERIALS AND METHODS

Data Pre-processing and the Initial 
Screening of DNA Methylation Loci in 
Glioma
Lower-grade glioma (LGG) and glioblastoma multiforme (GBM) 
DNA methylation data generated with the Illumina Infinium 
HumanMethylation450 BeadChip array were downloaded from 
the TCGA data portal (Weinstein et al., 2013). Methylation level of 
each probe was represented by the β-value, which ranges from 0 to 1, 
corresponding to unmethylated and fully methylated, respectively. 
Probes with missing data in more than 70% of the samples were 
removed. The remaining probes that were not available (NAs) were 
imputed using the k-nearest neighbors (knn) imputation procedure. 
The ComBat algorithm in sva R package was used to remove batch 
effects by incorporating patient ID information and batch and 
integrating all the DNA methylation array data. Unstable genomic 
sites, including cytosines preceding a guanosine (CpGs) in single 
nucleotide polymorphisms and sex chromosomes, were removed. 
We selected CpGs in promoter regions because DNA methylation 
in promoter regions influences gene expression strongly. Promoter 

regions were defined as 2 kb upstream to 0.5 kb downstream from 
transcription start sites. Finally, we selected samples having gene 
expression profiles. In total, 653 gliomas were used for the analysis.

Next, we separated the data set into two cohorts: a training set and 
a test set. The criteria for this grouping were as follows: a) random 
division of samples into two groups and b) similar age distribution, 
staging, follow-up time, and death ratio in the two groups.

Determining Classification Features by 
COX Proportional Risk Regression Models
CpG sites influencing survival significantly were used as 
classification features. First, univariate COX proportional risk 
regression models were constructed with methylation levels of 
each CpG site, age, and stage, and survival data of the cases. Then, 
the significant CpGs obtained from univariate COX proportional 
risk regression models were introduced into multivariate COX 
proportional risk regression models, using tumor stage and 
age as covariates, which were also significant in the univariate 
models. Finally, the CpG sites that were still significant were used 
as classification features. COX proportional hazard models were 
fitted with methylation levels of CpGs using the coxph function 
in survival package R, with clinical and demographic attributes 
(stage and age) as covariates in the multivariate analysis.

Consensus Clustering to Obtain Molecular 
Subtypes Associated With Glioma Prognosis
Consensus clustering was performed with the Consensus ClusterPlus 
package in R to determine subgroups of gliomas based on the most 
variable CpG sites (Wilkerson and Hayes, 2010). In this study, 80% 
of the samples were sampled 100 times by adopting the resampling 
program; the similarity distance between samples was estimated by 
the Euclidean distance (Ghosh and Barman, 2016), and kmdist was 
used as the clustering algorithm to search for the reliable and stable 
subgroup classification. After executing ConsensusClusterPlus, 
the item-consensus results and cluster consensus were obtained. 
The criteria to determine the number of clusters were as follows: 
relatively high consistency within clusters, relatively low variation 
coefficient, and no appreciable rise in the area under the cumulative 
distribution function (CDF) curve. Variation coefficient was 
calculated according to the following formula: coefficient of 
Variation (CV) = (SD/MN)*100%, where MN represents the average 
of samples and SD represents the standard deviation. The category 
number was selected as the area under the CDF curve and showed 
no significant change. The heat map corresponding to the consensus 
clustering was generated by pheatmap R package.

Survival and Clinical Characteristic 
Analyses
Kaplan–Meier plots were used to determine overall survival 
among glioma subgroups defined by DNA methylation profiles. 
The log-rank test was used to measure the significant differences 
among the clusters. Survival analyses were performed with the 
survival package in R software. Associations between biological 
and clinical characteristics and DNA methylation clustering were 
analyzed with the chi-square test. All tests were two-sided, and 
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for all statistical tests, p < 0.05 was considered to be significant 
unless otherwise noted.

Glioma Cell Survival and Migration Assays
After receiving informed consent, glioma specimens were 
obtained from patients undergoing surgery at the Hefei Cancer 
Hospital, Chinese Academy of Sciences, in accordance with the 
Institutional Review Board. Within hours after surgical removal, 
tumor specimens were enzymatically dissociated into single cells, 
following previously reported procedures (Chen et al., 2016). For 
cell survival assay, the cells were plated at a seeding density of 10,000 
cells/plate in a 60 mm plate, treated with or without temozolomide 
or 6 Gy radiotherapy, grown for 48 h in a standard growth medium, 
and washed with phosphate buffer saline (PBS). For cell migration 
assay, cell suspension in serum-free medium was added to the 
upper Transwell chamber and then incubated for 18 h. The cells 
were fixed in cold methanol for 20 min, washed, and stored. Fixed 
cell colonies were visualized by incubating the cells with 0.5% 
(w/v) crystal violet for 0.5 h. Excess crystal violet was removed by 
washing with PBS. Cells that survived or migrated were counted. 
Differences in means were considered statistically significant when 
p < 0.05 using a two-tailed t test.

RESULTS

DNA Methylation Features for 
Classification Based on Prognosis
To identify the specific CpG sites that were significantly correlated 
with survival in glioma, we set up the workflow shown in 

Figure 1. The 450 k methylation profiles were downloaded from 
TCGA; 485,577 CpG sites in 685 samples and clinical follow-up 
information from 1,148 cases were obtained. There were 653 
matched samples between clinical data and methylation profiles. 
The samples were evenly divided into a training set (n = 327) and 
test set (n = 326); four properties (including age, follow-up period, 
proportion of death cases, and clinical stage) between the training 
set and test set samples were observed, and they were found to be 
similar in the training set and test set (Supplementary Figure 1). 
Firstly, the univariate COX proportional hazard regression model 
was used to analyze each methylation site and survival data. When 
p < 0.05 was selected as the threshold, a total of 12,264 methylation 
sites significantly correlated with survival were obtained. Age 
(p = 0.0043) and tumor stage (p = 0.0012) were also significant 
factors. Age and grade were included in the COX proportional 
hazard regression model as covariates, and 13,739 methylation 
sites significantly correlated with survival were obtained, including 
11,637 matching sites between the two analyses.

Consensus Clustering of Glioma Identified 
Distinct DNA Methylation Prognosis 
Subgroups
The methylation profiles of the 11,637 CpG sites from the 327 
samples in the training set were employed for the consensus 
clustering of samples using the ConsensusClusterPlus R software 
package to obtain the glioma molecular subtypes. To determine 
the appropriate cluster number, we calculated the average cluster 
consistency and inter-cluster variation coefficient for the number 
of each cluster, respectively. Typically, the area under the CDF 
curve tended to be stable after five clusters (Figure 2A), the 

FIGURE 1 | Flowchart describing the schematic overview of the study design.
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smallest variation coefficient among all clusters was 0.076, and 
the sample cluster number was 5 (Supplementary Table  1). 
Therefore, five was selected as a suitable cluster number for 
further analysis in this study (Figure 2B).

Notably, most methylation sites displayed low DNA methylation 
levels in each sample; additionally, there were also differences in 
the DNA methylation profile among the five clusters, and the 
DNA methylation levels of Cluster2, Cluster3, and Cluster5 were 
lower than those of Cluster1 and Cluster4 (Figure 2C).

Indeed, the methylation levels of these five subgroups were 
significantly related to some molecular genetic features. For 
example, the methylation levels were positively associated with 
TP53 mutant but were negatively associated with co-deletion 
of 1p/19q in Cluster1 (Supplementary Table 2). In Cluster2, 
tumor protein p53 (TP53) mutant, isocitrate dehydrogenase 
[NADP(+)] 1 (IDH1) mutant, and co-deletion of 1p/19q have 
been reported to be negatively associated with methylation levels 
(Supplementary Table 3). The methylation levels were positively 
related to O-6-methylguanine-DNA methyltransferase (MGMT) 
promoter unmethylation but were negatively associated with 
TP53 mutant, α-thalassemia mental retardation X-linked (ATRX) 
mutant, and co-deletion of 1p/19q in Cluster3 (Supplementary 
Table 4). In Cluster4, the methylation levels have been associated 

with IDH1 mutant, ATRX mutant, and MGMT promoter 
unmethylation (Supplementary Table 5). TP53 mutant, 
telomerase reverse transcriptase (TERT) mutant, and MGMT 
promoter unmethylation were associated with methylation 
levels in Cluster5 (Supplementary Table 6). Thus, the five 
subgroups based on the methylation levels may reflect changes in 
some molecular genetic features.

Characterizing Different Characteristics of 
DNA Methylation Clustering
Furthermore, we analyzed the prognosis, grade and age 
distribution, and survival of each sample in the five molecular 
subtypes. It was discovered through Kaplan–Meier and log-
rank tests that there were significant differences in prognosis 
among samples of these five molecular subtypes (p = 0.00039) 
(Figure 3A); Cluster4 had favorable prognosis, while Cluster2 and 
Cluster3 were associated with poor prognosis and relatively lower 
DNA methylation levels, revealing that the prognosis for low-
methylated samples was poorer than that for highly methylated 
samples. It was also noted that patients in Cluster1 were generally 
between 30 and 45 years of age (Figure 3B) and were younger 
than patients in the other clusters. Comparing the tumor grades 

FIGURE 2 | Consensus matrix for DNA methylation classification with the corresponding heat map. (A) Delta area curve of consensus clustering, indicating the 
relative change in area under the cumulative distribution function (CDF) curve for each category number k compared with k − 1. The horizontal axis represents the 
category number k, and the vertical axis represents the relative change in area under the CDF curve. (B) Color-coded heat map corresponding to the consensus 
matrix for k = 5 obtained by applying consensus clustering. The color gradients were from 0 to 1, representing the degree of consensus, with white corresponding 
to 0 and dark blue to 1. (C) Heat map corresponding to the dendrogram in (B), which was generated using the pheatmap function with DNA methylation 
classification, tumor stage, age, and prognostic status as the annotations.
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of the subgroups, 98.7% and 100% of the samples in Cluster1 
and Cluster4 corresponded to glioma grade 2, respectively, while 
71.1%, 56.4%, and 25% of the samples in Cluster2, Cluster3, and 
Cluster5 corresponded to grade 2, respectively (Figure 3C). Taken 
together, these results indicated that these DNA methylation sites 
could serve as important markers for prognosis.

Next, the online network tool Enrichr was utilized for 
functional enrichment analysis of genes corresponding to the 
gene promoter regions annotated by the CpG sites that were 
significantly correlated with survival (Chen et al., 2013). It 
was found that these genes were enriched in the biological 
processes related to glioma, which included basic cancer-
related biological processes, as well as glioma-related specific 
biological processes, including mitotic recombination, DNA 
metabolism, and ErbB2 signaling pathway (Figure 3D), 
suggesting that the methylation sites revealed in this study 
might affect gliomagenesis and development. The weight 
co-expression network was constructed using the weighted 

gene co-expression network analysis (WGCNA) R software 
package (Langfelder and Horvath, 2008), and to guarantee 
that the network was scale-free, the soft threshold â = 6 was 
selected (Figure 4A). Five modules were obtained after 
further analysis (Figure 4B), among which the gene numbers 
included in each module were 80, 67, 52, 637, 1,319, and 59, 
respectively (Supplementary Table 7). Analysis of the module–
trait relationship showed that several of the modules displayed 
significant correlation or anti-correlation with the five glioma 
molecular subtypes (Figure 4C).

Identifying Specific DNA Methylation 
Markers
Cluster4 was linked to the best prognosis among all clusters; 
therefore, all CpG sites in the turquoise module that was 
most correlated with Cluster4 were selected. The CpG sites 
(connectivity > 1000) in the network were selected as the feature 

FIGURE 3 | Prognosis, grade, age distribution, and survival of each sample in the molecular subtypes. (A) Survival curves of DNA methylation subtypes in the 
training set. The horizontal axis represents the survival time (days), and the vertical axis represents the probability of survival. The numbers in parentheses in the 
legend represent the number of samples in each cluster. The log-rank test was used to assess the statistical significance of the differences. (B) Age distributions 
of nine DNA methylation clusters in the training set. The horizontal axis represents the DNA methylation clustering. (C) Grade distributions of nine DNA methylation 
clusters in the training set. The horizontal axis represents the DNA methylation clustering. (D) The online network tool Enrichr was utilized for functional enrichment 
analysis of genes corresponding to the gene promoter regions annotated by the CpG sites that were significantly correlated with survival.
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methylation sites of Cluster4 samples, and the correlation among 
108 CpG loci was significantly higher than that among other loci 
using Pearson correlation analysis. Ultimately, we chose 11 CpG 
loci, which intersected the 2 loci (Supplementary Figure 2 and 
Supplementary Table 8).

Constructing and Evaluating the 
Prognosis Prediction Model
These 11 CpG methylation profiles were selected for further 
unsupervised cluster analysis; the similarity between samples 
was calculated by the Euclidean distance. The results suggested 
that the methylation levels of these 11 CpG sites could divide 
the samples into two groups, namely, Cluster1 and Cluster2, of 
which Cluster2 was the high-methylation group, while Cluster1 
was the low-methylation group (Figure  5A). The difference in 
prognosis between the two groups was further analyzed, which 
revealed that the prognosis in the high-methylation group was 
worse than that in the low-methylation group (Figure 5B). The 
methylation profiles of these 11 CpG sites were extracted from 
the methylation profiles in the test set for further hierarchical 

cluster analysis. It was observed that the methylation profiles of 
these 11 CpG methylation sites could be clearly grouped into two 
clusters, among which the methylation level in Cluster1 samples 
was markedly lower than that in Cluster2 samples (Figure 5C). 
The distinct high-methylation and low-methylation samples 
were selected for survival analysis and demonstrated that the 
prognosis in highly methylated samples was notably worse 
than that in low-methylated samples (Figure 5D), which was 
consistent with the training set results.

Based on the final prognostic predictor, we analyzed the clinical 
follow-up data of these 12 glioma patients, which were divided 
into the high-methylation group (n = 6) and low group (n = 6) 
(Supplementary Figure 3 and Figure 6A). There was a positive 
correlation between the methylation level and overall survival 
(p = 0.0162) (Figure 6B), with an area under curve (AUC) of 
0.8542 (Figure 6C). Consistent with these, there was an inverse 
relationship between the methylation level and insensitivity to 
temozolomide (or radiotherapy) (Figures 6D, E) or migration 
ability (Figure 6F) of glioma cells derived from GBM patients. 
Thus, we concluded that this prognostic predictor showed great 
promise for application in clinical practice.

FIGURE 4 | WGCNA analysis of CpG sites. (A) Scale-free topology index and mean connectivity were used to determine the soft threshold (â = 6). (B), Clustering 
dendrogram of CpG sites. The dissimilarity of CpG sites is based on topological overlap. The genes are assigned to different modules and are identified using 
different colors. (C) Module–trait correlation analysis showed that five modules were significantly correlated with each cluster.
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DISCUSSION

Aberrant DNA methylation is one of the hallmarks of cancer 
tissues (Klutstein et al., 2016; Witt et al., 2018). Recent 
developments in sequencing technologies have made it possible 
to analyze genome-wide DNA methylation profiles at high 
resolution. Whole genome bisulfate sequencing is the best 
method to investigate DNA methylation; its efficacy, however, 
is limited by high analytic burden and cost. DNA methylation 

arrays are a good alternative for investigating genome-wide DNA 
methylation in a large collection of tumors. The TCGA database 
is a publicly available resource that covers a wide variety of data 
types in a variety of cancers; thus, the large sample sizes allowed 
us to explore glioma molecular subtypes more comprehensively.

Global loss of methylation and gene-specific DNA promoter 
methylation occur frequently during carcinogenesis, and these 
methylation alterations have been regarded as potential molecular 
markers for cancer initiation and progression (Dor and Cedar, 2018; 

FIGURE 5 | Clustering and survival results of the 11 CpG sites in the training and test set. (A) Consensus clustering of the 11 CpG sites in the training set. (B) 
Survival curves of two clusters predicted from the training set using the prognosis model. The log-rank test was used to assess the statistical significance of the 
difference. (C) Consensus clustering of the 11 CpG sites in the test set. (D) Survival curves of two clusters predicted from the test set using the prognosis model. 
The log-rank test was used to assess the statistical significance of the difference.
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Koch et al., 2018). DNA methylation in mammals mostly occurs at 
position 5′ of the cytosine ring in CpGs through a covalent bond 
of the methyl group (Arber and Linn, 1969; Yarus, 1969). Non-
CpG sequences can also get methylated but with less frequency. In 
normal tissue, CpG island methylation usually increases with age, 
although the total genomic content of methylcytosine decreases 
(Perez et al., 2018). During carcinogenesis, a global loss of DNA 
methylation, together with tumor suppressor gene silencing by 
promoter DNA methylation, has been observed in most tumor 
types. Promoter methylation in tumor suppressor gene CpG 
islands has been demonstrated as a hallmark of cancer. Earlier 
research has profiled gene-specific promoter methylation in 
neck squamous cell carcinoma and head, bladder, lung, and liver 
cancers, among others.

Molecular mechanistic study based on bioinformatics analysis is 
a significant method in cancer research. Previous studies indicated 
that glioma could be classified into three groups based on patterns of 
global DNA methylation: glioma CpG island methylator phenotype 
(G-CIMP) (highly methylated), intermediately methylated, or low-
methylated tumors (Verhaak et al., 2010). One problem associated 
with the use of clustering algorithms to classify tumors into 
subgroups is the failure to realize the “true” number of subgroups 
that are present in a data set. Here, we explored specific prognosis 
subtypes based on DNA methylation status using 653 gliomas from 
the TCGA database. To determine the appropriate cluster number, 
we calculated the average cluster consistency and inter-cluster 
variation coefficient for the number of each cluster, respectively. 
Typically, the area under the CDF curve tended to be stable after 
five clusters, the smallest variation coefficient among all clusters was 
0.076, and the sample cluster number was 5. Thus, five subgroups 
were distinguished by consensus clustering using 11,637 CpGs that 

significantly influenced survival. Similar to recent studies (Ceccarelli 
et al., 2016; De Souza et al., 2018), the subgroups based DNA 
methylation was associated with patient age, advanced stage, and 
prognosis. Importantly, the methylation levels of different subgroups 
could reflect different molecular genetic features.

Multifold molecular analyses have been used to take advantage 
of tumor biology in response to prediction or risk stratification 
(Krajewska et al., 2017; Masci, 2017). It is known that 
transcriptional activity is regulated by methylation of cytosine 
residues, which constitutes a rather stable DNA modification. 
Reports on DNA methylation signature, which predicts cancer 
risk, are rare, however. It is important to discover tumor-specific 
prognostic factors for glioma to predict outcome and improve 
treatments. Here, WGCNA analysis of the CpG sites revealed 
that 11 of them could distinguish the samples into high- and low-
methylation groups and could classify the prognostic information 
of samples after cluster analysis of the training set samples using 
the hierarchical clustering algorithm. It is worth noting that four 
CpG sites were found in the glial cell line–derived neurotrophic 
factor (GDNF) gene, a member of the transforming growth 
factor-â (TGF-â) superfamily, which signals via the tyrosine 
kinase receptor c-Ret and the Glial cell line-derived neurotrophic 
factor receptor(GDNF)-alpha (GFRá); meanwhile, it is well 
documented that GDNF also supports neuronal differentiation 
and dopaminergic development. Limited availability of clinical 
data and fresh tumor specimens symbolizing transitional steps 
from tumor initiation to progression is an important barrier to 
improving the clinical outcomes and therapeutic strategies for 
glioma patients. Now, we could analyze epigenomic profiles to 
understand the epigenome-based evolution of gliomas. At first 
recurrence, the IDH-wild-type stem cell–like GBM phenotype 

FIGURE 6 | Application in clinical practice of the final prognostic predictor on 11 feature genes. (A) The clinical characteristics of the 12 glioma patients. 
(B) Survival curves of two clusters predicted from 12 glioma patients using the prognosis model. The log-rank test was used to assess the statistical significance of 
the difference. The red line indicates the low-methylation group (high-risk group), while the blue line indicates the high-methylation group (low-risk group), based on 
the final prognostic predictor. (C) receiveroperating characteristic (ROC) curve with AUC under the final prognostic predictor. (D) The proportion of surviving glioma 
cells derived from glioma patients after treatment with temozolomide with indicated concentration. (E) The proportion of surviving glioma cells derived from glioma 
patients after 6 Gy of irradiation. (F) The proportion of migrated glioma cells derived from glioma patients.
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by G-CIMP-low showed molecular similarity to glial cell 
differentiation (De Souza et al., 2018). In our study, we found 
a series of CpG sites at genes involved in brain development or 
neuronal differentiation. These results could provide clues to the 
mechanism of the evolution of glioma. Indeed, genes involved 
in brain development and neuronal differentiation were strongly 
enriched among genes frequently methylated in tumors, for 
example, choline O-acetyltransferase (CHAT), GS homeobox 2 
(GSX2), NK6 homeobox 1 (NKX6-1), paired box 6 (PAX6), 
retina and anterior neural fold homeobox (RAX) and distal-
less homeobox 2 (DLX2) (Wu et al., 2010; Yu et al., 2013). The 
methylation of the genes involved in neuronal differentiation, in 
cooperation with other oncogenic events, may shift the balance 
from regulated differentiation towards gliomagenesis.

A recent report emphasized the relevance of DNA methylation 
profiles in somatic TERT pathway alterations (Ceccarelli et al., 
2016). Indeed, functional enrichment analysis by Enrichr in our 
study found that these genes were enriched in the basic cancer-
related biological processes, including mitotic recombination, 
DNA metabolism, and ErbB2 signaling pathway. These biological 
processes were significantly associated with telomere maintenance. 
Based on the final prognostic predictor, we analyzed the clinical 
follow-up data of these 12 glioma patients and found a positive 
correlation between methylation level and overall survival. Using 
in vitro experiments, we also confirmed that glioma cells with low 
methylation level would have higher migration ability and show 
resistance to temozolomide (or radiotherapy) compared to cells 
with high methylation level. Thus, these results suggested that 
the model constructed in this study could provide guidance for 
clinicians regarding the prognosis of various epigenetic subtypes.

CONCLUSION

Our research identified five different prognosis subgroups using 
glioma data in TCGA that differed either at the molecular level 
or in epidemiology, providing a more detailed explanation for 
glioma heterogeneousness. Additionally, our criteria will provide 
more targets for glioma precision medicine  by identifying 
specific molecular markers for each subtype. Changes in 
DNA methylation can be used as markers to diagnose special 

subgroups, and clinicians can develop personalized treatments 
following these prognoses. Our approaches can also be used to 
study other tumors.
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