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Osteoarthritis (OA) is the most common degenerative joint disorder worldwide. To identify 
more genetic signals, genome-wide association study (GWAS) has been widely used 
and elucidated some OA susceptibility genes. However, these susceptibility genes could 
only explain only a small part of heritability of OA. It is suggested that the identification 
of disease-related pathways may contribute to understand the genomic etiology of OA. 
Here, we integrated the GWAS into pathway analysis to identify novel OA risk pathways. 
In this study, we first selected 187 independent genetic variants identified by GWAS 
(P < 1.00E−05) and found that most of these genetic variants are noncoding mutations. 
We then conducted an expression quantitative trait loci analysis and found that 165 of 
these 187 genetic variants could significantly regulate the expression of nearby genes. 
Third, we identified OA susceptibility genes corresponding to these genetic variants, 
conducted a pathway analysis, and identified novel OA-related KEGG pathways, GO 
biological processes, GO molecular functions, and GO cellular components. In KEGG 
database, transforming growth factor β signaling pathway is the most significant signal 
(P = 5.98E−05) and is the only pathway after the BH multiple-test adjustment with false 
discovery rate (FDR) = 0.02. In GO database, we identified 24 statistically significant 
GO biological processes, one statistically significant GO molecular function, and five 
statistically significant GO cellular components (FDR < 0.05). These signals are related with 
chondrocyte differentiation and development, which are all known biological pathways 
associated with OA. Finally, we conducted an OA case–control gene expression analysis 
to evaluate the differential expression of these OA risk genes. Using an OA case–control 
gene expression analysis, we showed that 44 risk genes were suggestively differentially 
expressed in OA cases compared with controls (P < 0.05). Three genes, WWP2, COG5, 
and MAPT, were statistically differentially expressed in OA cases compared with controls 
(P < 0.05/122 = 4.10E−04). Hence, our findings may contribute to understanding the 
genomic etiology of OA.

Keywords: osteoarthritis, genome-wide association study, pathway analysis, expession quantitative trait loci 
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INTRODUCTION

Osteoarthritis (OA) is the most common degenerative 
joint disorder worldwide (Martel-Pelletier et al., 2016). 
Osteoarthritis could cause pain and disability in elderly people 
(Parmet et al., 2003; Zeggini et al., 2012). It is considered that 
OA is caused by the combination of risk factors with increasing 
age and obesity (Parmet et al., 2003; Martel-Pelletier et al., 
2016). Osteoarthritis is a complex disease and has a strong 
genetic component (Zeggini et al., 2012). To identify more 
genetic signals, genome-wide association study (GWAS) has 
been widely used and elucidated some OA susceptibility genes 
(Zeggini et al., 2012; Styrkarsdottir et al., 2014; Styrkarsdottir 
et al., 2018; Zengini et  al., 2018; Tachmazidou et al., 2019). 
However, these susceptibility genes could explain only a small 
part of heritability of OA (Zeggini et al., 2012; Styrkarsdottir 
et al., 2014; Styrkarsdottir et al., 2018; Zengini et al., 2018; 
Tachmazidou et al., 2019). It is suggested that the identification 
of disease-related pathways may contribute to understand the 
genomic etiology of OA (Cibrian Uhalte et al., 2017).

In recent years, kinds of bioinformatics software and 
databases have been developed, especially for the identification 
of disease-related pathways such as VEGAS (Versatile Gene-
based Association Study) (Liu et al., 2010), INRICH (INterval 
enRICHment analysis) (Lee et al., 2012a), and GSA-SNP2 (Yoon 
et al., 2018). Meanwhile, these methods have been widely used in 
OA-related disease rheumatoid arthritis (RA) (Eleftherohorinou 
et al., 2009; Eleftherohorinou et al., 2011; Lee et al., 2012b; Song 
et al., 2013; Zhang et al., 2016), but not in OA. Here, we first 
selected all significant OA risk variants identified by GWAS and 
evaluated their distribution in genome coding and noncoding 
regions. Second, we then conducted an expression quantitative 
trait loci (eQTLs) analysis to evaluate the effect of these genetic 
variants on gene expression. Third, we performed a pathway 
analysis of OA susceptibility genes detected by OA-related 
genetic pathways. Finally, we conducted an OA case–control 
gene expression analysis to evaluate the differential expression of 
these OA risk genes.

MATERIALS AND METHODS

Selection of OA Risk Variants
We selected the potential OA risk variants identified by GWAS 
by searching for the NHGRI GWAS catalog database using the 
keyword “osteoarthritis” (Welter et al., 2014; MacArthur et al., 
2017; Buniello et al., 2019). Finally, we selected 187 genetic 
variants associated with OA (P < 1.00E−05) (Welter et al., 2014; 
MacArthur et al., 2017; Buniello et al., 2019). These variants are 
associated with OA, OA of the hip, OA of the knee, or OA of 
the hand. Here, we provided all related information about these 
variants in Supplementary Table 1.

Identification of OA Risk Genes
For each of these 187 genetic variants, if this variant is an 
intronic variant, we select its corresponding gene. If this variant 
is an intergenic variant, we select its corresponding nearest 

upstream and downstream genes. The gene set consists of 202 
risk genes using all these 187 genetic variants, as provided in 
Supplementary Table 1.

Function Analysis
We used the HaploReg tool (v4.1) to annotate these 187 genetic 
variants and evaluate how many genetic variants are coding and 
noncoding mutations (Ward and Kellis, 2012; Ward and Kellis, 
2016). The reference information is from the 1000 Genomes 
Project (Ward and Kellis, 2012; Ward and Kellis, 2016).

eQTLs Analysis
When noncoding genetic variants are identified, we conducted 
an eQTLs analysis to evaluate the effect of these genetic variants 
on gene expression using Phenol Scanner (v2), a database of 
human genotype–phenotype associations (Staley et al., 2016; 
Kamat et al., 2019).

Identification of OA Risk Pathways
Here, we selected the pathway resources from KEGG and 
GO databases, as provided in Web-based Gene Set Analysis 
Toolkit (WebGestalt version 2019) (Wang et al., 2017). To 
identify a potential OA risk pathway, the hypergeometric test 
was used to evaluate an overrepresentation of the OA risk 
genes among all the genes in the selected pathway, as did in 
previous studies (Bao et al., 2015; Zhao et al., 2015; Jiang et al., 
2017; Liu et al., 2017; Wang et al., 2017). For a given pathway, 
the P value of observing more than K OA risk genes could be 
calculated by
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where N is the total number of genes that are of interest (the 
reference gene list), S is the number of all OA risk genes (here, 
n = 202), m is the number of genes in the pathway, and K is 
the number of OA risk genes in the pathway, as did in previous 
studies (Liu et al., 2012; Liu et al., 2013; Liu et al., 2014; Quan 
et al., 2015; Shang et al., 2015; Xiang et al., 2015).

Using WebGestalt version 2019, the minimum number of 
genes for a category is 5, and the maximum number of genes 
for a category is 2000. In addition, we used the BH multiple-
test adjustment method to adjust the P value of each pathway. 
A specific pathway with adjusted FDR < 0.05 is considered to be 
statistically significant. A specific pathway with unadjusted P < 
0.05 is considered to be suggestively significant.

OA Case–Control Gene Expression 
Analysis
We conducted an OA case–control gene expression analysis 
to evaluate the differential expression of these 202 risk genes, 
as provided in Supplementary Table 1. The gene expression 
profile dataset is from peripheral blood mononuclear cells of 
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106 OA patients and 33 sex and age-matched healthy controls, 
which is a subset of the Genetics osteoarthritis and Progression 
study (Ramos et al., 2014). Here, we used the interactive web 
tool GEO2R to identify genes that are differentially expressed 
in OA patients and healthy controls. A gene with unadjusted P 
< 0.05 is considered to be suggestively differentially expressed. 
In addition, we used the Bonferroni correction method to 
adjust these P values and define the statistically differential 
expression, as described in a previous study (Krzywinski 
and Altman, 2014).

RESULTS

Function Analysis
Function analysis using HaploReg tool (v4.1) showed that 
eight genetic variants, rs12193102, rs35611929, rs375575359, 
rs528981060, rs532464664, rs541612392, rs547116051, and 
rs547181612, were not found in 1000 Genomes Phase 1 data. 
In the remaining 179 genetic variants, 11 genetic variants 
are coding mutations, and the other 168 genetic variants are 
noncoding mutations. More detailed information is provided in 
Supplementary Table 2.

eQTLs Analysis
Using Phenol Scanner (v2), the eQTLs analysis showed that 
165 of these 187 genetic variants could significantly regulate 
the expression of nearby genes with P < 0.01. We found that the 
other 22 genetic variants were not eQTLs including rs111427307, 
rs11335718, rs11409738, rs12028630, rs12193102, rs138063419, 
rs143083812, rs150198051, rs201708019, rs35087650, 
rs35912128, rs375575359, rs4867568, rs528981060, rs541612392, 
rs547116051, rs547181612, rs5834501, rs62262139, rs6557013, 
rs7510312, and rs9930333. More detailed information is provided 
in Supplementary Table 3.

Identification of OA-Related KEGG 
Pathways
Using these 202 OA risk genes, we identified 29 suggestively 
significant KEGG pathways (unadjusted P < 0.05). Here, we 
provide the top 20 significant pathways, as provided in Table 1. 
The transforming growth factor β (TGF-β) signaling pathway is 
the most significant signal (P = 5.98E−05). Importantly, this is the 
only pathway after the BH multiple-test adjustment with FDR = 
0.02. In addition, we identified other OA risk pathways including 
inflammatory bowel disease (IBD), human T-cell leukemia virus 
1 infection, RA, influenza A, asthma, tuberculosis, prostate 
cancer, hematopoietic cell lineage, transcriptional misregulation 
in cancer, allograft rejection, mitogen-activated protein kinase 
(MAPK) signaling pathway, TH7 cell differentiation, graft-versus-
host disease, toxoplasmosis, type 1 diabetes mellitus, cell cycle, 
intestinal immune network for IgA production, autoimmune 
thyroid disease, and ubiquitin-mediated proteolysis. More 
detailed information is described in Table 1.

Identification of OA-Related GO Biological 
Processes
Using these 202 OA risk genes, we identified 24 statistically 
significant GO biological processes (FDR < 0.05). These biological 
processes could be mainly divided into two classes including 
differentiation and development. The differentiation-related 
biological processes consist of chondrocyte differentiation, 
regulation of chondrocyte differentiation, positive regulation 
of chondrocyte differentiation, regulation of epithelial cell 
proliferation, regulation of cell proliferation, and epithelial cell 
proliferation. The development-related biological processes 
consist of regulation of cartilage development, cartilage 
development, connective tissue development, chondrocyte 
development, skeletal system development, liver development, 
hepaticobiliary system development, positive regulation of 

TABLE 1 | Top 20 osteoarthritis risk pathways identified in KEGG database.

Gene set Description Size Expect Ratio P FDR

hsa04350 TGF-β signaling pathway 84 0.43 11.70 5.98E−05 0.02
hsa05321 Inflammatory bowel disease 65 0.33 9.07 4.27E−03 0.41
hsa05166 Human T-cell leukemia virus 1 infection 255 1.30 3.85 8.91E−03 0.41
hsa05323 Rheumatoid arthritis 90 0.46 6.55 1.05E−02 0.41
hsa05164 Influenza A 171 0.87 4.60 1.07E−02 0.41
hsa05310 Asthma 31 0.16 12.68 1.07E−02 0.41
hsa05152 Tuberculosis 179 0.91 4.39 1.25E−02 0.41
hsa05215 Prostate cancer 97 0.49 6.08 1.29E−02 0.41
hsa04640 Hematopoietic cell lineage 97 0.49 6.08 1.29E−02 0.41
hsa05202 Transcriptional misregulation in cancer 186 0.95 4.23 1.42E−02 0.41
hsa05330 Allograft rejection 38 0.19 10.35 1.58E−02 0.41
hsa04010 Mitogen-activated protein kinase signaling pathway 295 1.50 3.33 1.60E−02 0.41
hsa04659 TH17 cell differentiation 107 0.54 5.51 1.68E−02 0.41
hsa05332 Graft-versus-host disease 41 0.21 9.59 1.82E−02 0.41
hsa05145 Toxoplasmosis 113 0.57 5.22 1.94E−02 0.41
hsa04940 Type 1 diabetes mellitus 43 0.22 9.14 2.00E−02 0.41
hsa04110 Cell cycle 124 0.63 4.76 2.47E−02 0.46
hsa04672 Intestinal immune network for IgA production 49 0.25 8.02 2.55E−02 0.46
hsa05320 Autoimmune thyroid disease 53 0.27 7.42 2.95E−02 0.51
hsa04120 Ubiquitin-mediated proteolysis 137 0.70 4.30 3.19E−02 0.51
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cartilage development, striated muscle tissue development, 
and muscle tissue development. Here, we provide the top 20 
significant biological processes, as provided in Table 2.

Identification of OA-Related GO Molecular 
Functions
Using these 202 OA risk genes, we identified only one 
statistically significant GO molecular function (FDR < 0.05) 
TGF-β receptor binding (P = 9.30E−06). Here, we provide the 
top 20 significant molecular functions, as provided in Table 3. 
Most of these molecular functions are related with  binding 

including TGF-β receptor binding, phospholipid binding, 
TGF-β binding, peptide antigen binding, antigen binding, 
phosphatase binding, type II TGF-β receptor binding, protein 
phosphatase binding, lipid binding, bridging protein binding, 
apolipoprotein binding, cytokine receptor binding, and 
cytokine binding.

Identification of OA-Related GO Cellular 
Components
Using these 202 OA risk genes, we identified five statistically 
significant GO cellular components (FDR < 0.05) including 

TABLE 2 | Top 20 osteoarthritis risk biological processes identified in GO database.

Gene set Description Size Expect Ratio P FDR

GO:0002062 Chondrocyte differentiation 119 0.7497 12.004 6.01E−08 5.00E−04
GO:0061035 Regulation of cartilage development 65 0.4095 17.093 1.66E−07 8.00E−04
GO:0032330 Regulation of chondrocyte differentiation 47 0.2961 20.263 4.71E−07 1.40E−03
GO:0051216 Cartilage development 205 1.2916 7.7426 6.65E−07 1.50E−03
GO:0061448 Connective tissue development 265 1.6696 6.5885 8.89E−07 1.60E−03
GO:0032332 Positive regulation of chondrocyte differentiation 20 0.126 31.745 6.67E−06 1.01E−02
GO:0002063 Chondrocyte development 46 0.2898 17.253 0 1.31E−02
GO:0001501 Skeletal system development 506 3.1879 4.0779 0 1.98E−02
GO:0001503 Ossification 371 2.3374 4.7061 0 2.21E−02
GO:0001889 Liver development 137 0.8631 8.11 0 2.21E−02
GO:0070848 Response to growth factor 690 4.3472 3.4505 0 2.21E−02
GO:0061008 Hepaticobiliary system development 140 0.882 7.9362 0 2.21E−02
GO:0050678 Regulation of epithelial cell proliferation 318 2.0035 4.9913 0 2.25E−02
GO:0009887 Animal organ morphogenesis 974 6.1364 2.9333 0 2.25E−02
GO:0061036 Positive regulation of cartilage development 31 0.1953 20.48 0 2.40E−02
GO:0090100 Positive regulation of transmembrane receptor protein serine/

threonine kinase signaling pathway
101 0.6363 9.4291 0 2.40E−02

GO:0060389 Pathway-restricted SMAD protein phosphorylation 64 0.4032 12.4 1.00E−04 2.74E−02
GO:0014706 Striated muscle tissue development 357 2.2492 4.446 1.00E−04 4.10E−02
GO:0090092 Regulation of transmembrane receptor protein serine/threonine 

kinase signaling pathway
224 1.4113 5.6687 1.00E−04 4.10E−02

GO:0042127 Regulation of cell proliferation 1564 9.8536 2.3342 1.00E−04 4.13E−02

TABLE 3 | Top 20 osteoarthritis risk molecular functions identified in GO database.

Gene set Description Size Expect Ratio P FDR

GO:0005160 Transforming growth factor β receptor binding 51 0.28 17.57 9.30E−06 0.02
GO:0005543 Phospholipid binding 412 2.30 4.35 1.00E−04 0.09
GO:0050431 Transforming growth factor β binding 22 0.12 24.44 2.00E−04 0.09
GO:0042605 Peptide antigen binding 22 0.12 24.44 2.00E−04 0.09
GO:0003823 Antigen binding 55 0.31 13.04 2.00E−04 0.09
GO:0008083 Growth factor activity 163 0.91 6.60 3.00E−04 0.09
GO:0019902 Phosphatase binding 178 0.99 6.04 5.00E−04 0.13
GO:0005114 Type II transforming growth factor β receptor binding 7 0.04 51.22 6.00E−04 0.15
GO:0019903 Protein phosphatase binding 133 0.74 6.74 9.00E−04 0.19
GO:0003777 Microtubule motor activity 83 0.46 8.64 1.20E−03 0.22
GO:0005201 Extracellular matrix structural constituent 158 0.88 5.67 1.90E−03 0.33
GO:0008289 Lipid binding 718 4.01 2.75 2.10E−03 0.34
GO:0030674 Protein binding, bridging 172 0.96 5.21 2.80E−03 0.39
GO:0034185 Apolipoprotein binding 15 0.08 23.90 3.10E−03 0.39
GO:0005024 Transforming growth factor β–activated receptor activity 15 0.08 23.90 3.10E−03 0.39
GO:0001228 DNA-binding transcription activator activity, RNA polymerase II specific 444 2.48 3.23 3.40E−03 0.39
GO:0004675 Transmembrane receptor protein serine/threonine kinase activity 17 0.09 21.09 4.00E−03 0.44
GO:0005126 Cytokine receptor binding 274 1.53 3.93 4.30E−03 0.45
GO:0060090 Molecular adaptor activity 194 1.08 4.62 4.60E−03 0.46
GO:0019955 Cytokine binding 127 0.71 5.65 5.60E−03 0.52
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extracellular matrix, COPII-coated endoplasmic reticulum (ER) to 
Golgi transport vesicle, collagen-containing extracellular matrix, 
extracellular matrix component, and major histocompatibility 
complex (MHC) protein. In addition, the top 20 significant 
cellular components also include coated vesicle, nucleoplasm part, 
endocytic vesicle membrane, fibrillar collagen trimer, banded 
collagen fibril, Golgi-associated vesicle, MHC class II protein 
complex, ER to Golgi transport vesicle membrane, cytoplasmic 
vesicle membrane, ER lumen, vesicle membrane, complex of 
collagen trimers, ER part, microtubule associated complex, and 
sarcoplasm. More detailed information is described in Table 4.

OA Case–Control Gene Expression 
Analysis
Of the selected 202 risk genes, 122 risk genes were included in 
the OA case–control gene expression dataset, as provided in 
Supplementary Table 4. The results showed that 44 of these 
122 risk genes showed suggestively differential expression in 
OA cases compared with controls (P < 0.05). Importantly, three 
genes including WWP2, COG5, and MAPT showed statistically 
different expression in OA cases compared with controls (P < 
0.05/122 = 4.10E−04), as described in Table 5.

DISCUSSION

In this study, we first selected 187 independent genetic variants 
identified by GWAS (P < 1.00E−05) and found that most of these 
genetic variants are noncoding mutations. We then conducted an 
eQTLs analysis and found that 165 of these 187 genetic variants 
could significantly regulate the expression of nearby genes. Third, 
we identified OA susceptibility genes corresponding to these 
genetic variants, conducted a pathway analysis, and identified 
novel OA-related KEGG pathways, GO biological processes, GO 
molecular functions, and GO cellular components.

In KEGG database, TGF-β signaling pathway is the most 
significant signal (P = 5.98E−05) and is the only pathway after 
the BH multiple-test adjustment with FDR = 0.02. Our finding 
is consistent with previous findings. Recent findings provide 
substantial evidence that TGF-β signaling contributes to OA 
development and progression (Shen et al., 2014; Fang et al., 
2016). In addition, we found the association of OA with other 
human diseases including IBD, RA, asthma, prostate cancer, 
hematopoietic cell lineage, transcriptional misregulation in 
cancer, allograft rejection, MAPK signaling pathway, graft-
versus-host disease, type 1 diabetes mellitus, and autoimmune 
thyroid disease. Previous study supported our finding about the 
association of human T-cell leukemia virus 1 infection pathway 
with OA. It is reported that human T lymphotropic virus type I 
retrovirus infection could alter the expression of inflammatory 
cytokines in primary OA (Yoshihara et al., 2004). Here, we 
highlighted the association of TH17 cell differentiation pathway 
with OA. Evidence showed that complement could drive TH17 
cell differentiation and trigger autoimmune arthritis (Hashimoto 
et al., 2010; Li et al., 2017).

In GO database, we identified 24 statistically significant GO 
biological processes, one statistically significant GO molecular 
function, and five statistically significant GO cellular components 
(FDR < 0.05). These signals are related with chondrocyte 
differentiation and development, which are all known 
biological pathways associated with OA. Take the chondrocyte 
differentiation (GO:0002062), for example, previous studies also 
supported the hypertrophic differentiation of chondrocytes in 
OA (Dreier, 2010; Goldring, 2012). Some biological pathways are 
related with TGF-β signaling binding, such as TGF-β receptor 
binding, TGF-β binding, and type II TGF-β receptor binding. 
The phospholipid binding (GO:0005543) is the second significant 
signal among the top 20 OA risk molecular functions identified 
in GO database. Evidence shows that lipids are important 
nutrients in chondrocyte metabolism (Villalvilla et al., 2013). 

TABLE 4 | Top 20 osteoarthritis risk cellular components identified in GO database.

Gene set Description Size Expect Ratio P FDR

GO:0031012 Extracellular matrix 496 2.37 4.65 0 0.02
GO:0030134 COPII-coated endoplasmic reticulum (ER) to Golgi transport vesicle 87 0.42 12.04 1.00E−04 0.02
GO:0062023 Collagen-containing extracellular matrix 366 1.75 5.15 1.00E−04 0.02
GO:0044420 Extracellular matrix component 49 0.23 17.10 1.00E−04 0.03
GO:0042611 Major histocompatibility complex (MHC) protein complex 21 0.10 29.93 1.00E−04 0.03
GO:0030135 Coated vesicle 275 1.31 5.33 3.00E−04 0.07
GO:0044451 Nucleoplasm part 1087 5.19 2.70 6.00E−04 0.10
GO:0030666 Endocytic vesicle membrane 160 0.76 6.55 1.00E−03 0.14
GO:0005583 Fibrillar collagen trimer 11 0.05 38.09 1.20E−03 0.14
GO:0098643 Banded collagen fibril 11 0.05 38.09 1.20E−03 0.14
GO:0005798 Golgi-associated vesicle 169 0.81 6.20 1.30E−03 0.14
GO:0042613 MHC class II protein complex 15 0.07 27.93 2.30E−03 0.22
GO:0012507 ER to Golgi transport vesicle membrane 57 0.27 11.03 2.60E−03 0.23
GO:0030659 Cytoplasmic vesicle membrane 746 3.56 2.81 2.90E−03 0.24
GO:0005788 Endoplasmic reticulum lumen 306 1.46 4.11 3.40E−03 0.25
GO:0012506 Vesicle membrane 767 3.66 2.73 3.50E−03 0.25
GO:0098644 Complex of collagen trimers 19 0.09 22.05 3.70E−03 0.25
GO:0044432 Endoplasmic reticulum part 1332 6.36 2.20 4.00E−03 0.26
GO:0005875 Microtubule associated complex 148 0.71 5.66 5.50E−03 0.34
GO:0016528 Sarcoplasm 77 0.37 8.16 6.00E−03 0.34
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The lipid availability is important to keep cartilage status and OA 
development (Villalvilla et al., 2013).

Using an OA case–control gene expression analysis, we showed 
that 44 of these 122 risk genes were suggestively differentially 
expressed in OA cases compared with controls (P < 0.05). Three 
genes, WWP2, COG5, and MAPT, were statistically differentially 
expressed in OA cases compared with controls (P < 0.05/122 = 
4.10E−04).

In summary, we believe that these findings provide further 
insight into the underlying genetic mechanisms for these 
newly identified OA risk genes. Although these are interesting 
findings, we also realize some limitations to our study. Until 
now, pathway analyses of RA GWAS datasets have widely been 

reported, but not OA GWAS datasets (Eleftherohorinou et al., 
2009; Eleftherohorinou et al., 2011; Lee et al., 2012b; Song 
et al., 2013; Zhang et al., 2016). In the future, we will compare 
our findings using top OA genetic variants with pathway 
analysis of OA using the whole GWAS datasets and further 
clarify the differences between top OA genetic variants and 
the whole OA GWAS datasets. In addition, a gene expression 
analysis in OA-related tissues is necessary to demonstrate 
that these pathways are deregulated in OA cases and controls. 
However, this kind of gene expression datasets in OA-related 
tissues is not available now. Hence, we will further evaluate 
our findings using gene expression datasets in OA-related 
tissues in the future.

TABLE 5 | Forty-four significantly differentially expressed osteoarthritis risk genes.

ID T B Fold change Gene P

ILMN_1659703 −4.6029458 3.22309 0.87 WWP2 9.31E−06
ILMN_1721535 4.0329713 1.10042 1.26 COG5 9.05E−05
ILMN_1800049 −3.68066 −0.10141 0.96 MAPT 3.32E−04
ILMN_1804895 −3.4402192 −0.86996 0.92 LSMEM1 7.68E−04
ILMN_1778886 −3.397218 −1.00284 0.92 ZNF345 8.89E−04
ILMN_1738239 −3.3661954 −1.09784 0.84 RBM6 9.86E−04
ILMN_1698621 3.1752911 −1.66604 1.07 COG5 1.84E−03
ILMN_1768261 −3.0820359 −1.93322 0.95 PRDM2 2.48E−03
ILMN_1673708 2.9367424 −2.33566 1.02 HDAC9 3.88E−03
ILMN_1776858 −2.924587 −2.36856 0.93 DUS4L 4.03E−03
ILMN_1772218 2.8667893 −2.52332 1.12 HLA-DPA1 4.79E−03
ILMN_1785402 −2.7406448 −2.85157 0.95 LTBP1 6.94E−03
ILMN_1790384 −2.7296251 −2.87962 0.96 PRDM2 7.16E−03
ILMN_1802973 −2.7280423 −2.88364 0.87 ANAPC4 7.20E−03
ILMN_1699469 2.6997749 −2.95509 1.03 KCNIP4 7.80E−03
ILMN_1749026 −2.6961724 −2.96415 0.98 LCT 7.88E−03
ILMN_1693559 2.678254 −3.00904 1.02 DOT1L 8.29E−03
ILMN_1690442 −2.6764894 −3.01345 0.97 TMEM241 8.34E−03
ILMN_2381121 2.6586005 −3.05797 1.06 UQCC1 8.77E−03
ILMN_1682981 −2.6104688 −3.17642 0.95 SMG6 1.00E−02
ILMN_1753353 2.5464314 −3.33099 1.07 SLBP 1.20E−02
ILMN_1823056 −2.4053844 −3.65907 0.98 CCDC33 1.75E−02
ILMN_1716651 2.4049149 −3.66013 1.07 RUNX2 1.75E−02
ILMN_2408885 2.3961067 −3.68005 1.03 HDAC9 1.79E−02
ILMN_1701361 −2.3821458 −3.71148 0.98 LURAP1L 1.86E−02
ILMN_1754121 2.3523213 −3.77806 1.09 CSK 2.01E−02
ILMN_1693427 −2.3253143 −3.83768 0.98 GLIS3 2.15E−02
ILMN_1747386 −2.3074266 −3.87682 0.98 GLIS3 2.25E−02
ILMN_1717780 2.2917001 −3.911 1.02 PLEC 2.34E−02
ILMN_1771987 2.2874158 −3.92028 1.12 SLC44A2 2.37E−02
ILMN_2145670 2.2761251 −3.94464 1.03 TNC 2.44E−02
ILMN_1784287 2.2239902 −4.05569 1.17 TGFBR3 2.78E−02
ILMN_2129668 −2.200499 −4.10495 0.98 TGFB1 2.94E−02
ILMN_1780291 −2.1782335 −4.15119 0.95 NFAT5 3.11E−02
ILMN_1882354 2.1649163 −4.17863 1.15 FAM53A 3.21E−02
ILMN_1680399 −2.1603694 −4.18797 0.97 KAZN 3.25E−02
ILMN_1726387 −2.1502554 −4.20866 0.97 NF1 3.33E−02
ILMN_1654421 −2.129798 −4.25025 0.94 MPHOSPH9 3.50E−02
ILMN_1724734 2.1181634 −4.27374 1.03 UQCC1 3.59E−02
ILMN_2381559 2.0754774 −4.35887 1.02 ASTN2 3.98E−02
ILMN_1673620 −2.0711976 −4.36732 0.97 KIF26B 4.02E−02
ILMN_1871893 −2.0480746 −4.41267 0.98 LINC01507 4.24E−02
ILMN_2046073 2.0412532 −4.42596 1.02 LCT 4.31E−02
ILMN_1813277 2.0065873 −4.49284 1.11 SUPT3H 4.67E−02

T, Moderated t-statistic; B, B-statistic or log-odds that the gene is differentially expressed; F, Moderated F-statistic combines the t-statistics for all the pair-wise comparisons into an 
overall test of significance for that gene.
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