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Prognostic biomarkers are vital in the management of progressive chronic diseases such 
as liver cirrhosis, affecting 1–2% of the global population and causing over 1 million deaths 
every year. Despite numerous candidate biomarkers in literature, the costly and lengthy 
process of validation hampers their clinical translation. Existing omics databases are not 
suitable for in silico validation due to the ignorance of critical factors, i.e., study design, 
clinical context of biomarker application, and statistical power. To address the unmet need, 
we have developed the Molecular Prognostic Indicators in Cirrhosis (MPIC) database as a 
representative example of an omics database tailored for prognostic biomarker validation. 
MPIC consists of (i) a molecular and clinical database structured by defined disease context 
and specific clinical outcome and annotated with employed study design and anticipated 
statistical power by disease domain experts, (ii) a bioinformatics analysis engine for user-
provided gene-signature- or gene-based prognostic prediction, and (iii) a user interface for 
interactive exploration of relevant clinical cohort/scenario and assessment of significance 
and reliability of the result for prognostic prediction. MPIC assists cost-effective prognostic 
biomarker development by facilitating the process of validation, and will transform the care 
of chronic diseases such as cirrhosis. MPIC is freely available at www.mpic-app.org. The 
website is implemented in Java, Apache, and MySQL with all major browsers supported.
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INTRODUCTION

Management of chronic diseases is a considerable economic burden to the medical care systems. 
For example, progressive fibrosis in solid organs is one of the major life-limiting chronic disease 
conditions associated with at least one-third of deaths worldwide (Rockey et al., 2015). Liver 
cirrhosis is one of the major fibrotic conditions that costs >$12 billion even in the U.S. alone (Ge 
and Runyon, 2016; Fujiwara et al., 2018). Organ fibrosis progression generally takes decades and the 
rate of disease progression is highly variable across the patients. Therefore, prognostic prediction is 
critical to allocate limited medical resources to rapid progressors who most need intervention, while 
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sparing the resources for slow progressors to maximize the cost-
effectiveness of patient management. However, development 
of prognostic biomarker is extremely challenging as evidenced 
by the absence of clinically translated biomarkers despite years 
of research (Goossens et al., 2015). This is primarily due to 
requirement of lengthy and costly clinical validation of candidate 
biomarkers, which does not fit within the budget and time frame 
of typical clinical trial. A fast and cheap alternative strategy of 
prognostic biomarker validation is sorely needed.

Publicly available omics profiles of clinical specimens may 
provide the opportunity of in silico validation for candidate 
prognostic biomarkers and spare resources and efforts wasted for 
unsuccessful clinical trials. However, currently available databases 
do not meet the need because the following two critical issues for 
prognostic biomarker assessment are disregarded (Chen et al., 
2014): (1) Study-design-related information is missing. Clinical 
prognostic information, defined as time to clinical event, is 
generally incomplete due to insufficient observation period and/or 
biases in patient enrollment and treatment and follow-up protocols. 
Therefore, observed prognostic association is vulnerable to flaws 
in study design that could lead to false positive or negative finding 
(Goossens et al., 2015). Clinical patient cohort can be assembled in 
either retrospective or prospective manner. A retrospective cohort 
is a collection of patients from previously performed clinical care, 
where patient inclusion/exclusion criteria cannot be optimized 
because the enrollment is already completed in the past. In contrast, 
a prospective cohort is a collection of patients from future clinical 
care, which can be enrolled based on pre-determined inclusion/
exclusion criteria, although completion of patient enrollment and 
follow up will take long time and is costly. In reality, virtually most 
of omics data suffer from the issue of biased patient enrollment 
because of the use of “samples of convenience,” i.e., readily available 
biospecimens retrospectively collected without predetermined 
intention of prognostic biomarker assessment (Simon et al., 
2009). Thus, it is critical to annotate cohort/dataset for study 
design quality according to reporting guidelines to provide clue 
to reliability of observed prognostic association (Mcshane et al., 
2006; Vandenbroucke et al., 2007); (2) Specific clinical context or 
scenario for biomarker application is missing. There is no clinical 
utility for a prognostic biomarker without specific indication of its 
use in real-world clinical practice, e.g., prediction of liver cancer 
development in Child-Pugh class A compensated viral cirrhosis 
patients monitored under biannual liver cancer screening, 
prediction of cancer-related death after 8-week cisplatin-based 
chemotherapy in stage III ovarian cancer.

To meet the unmet need by addressing the two major issues, 
we have developed Molecular Prognostic Indicators in Cirrhosis 
(MPIC) database as a proof of concept specifically designed for 
reliable prognostic assessment of candidate biomarkers using 
chronic fibrotic liver diseases as representative example. This 
scheme is readily applicable to other chronic diseases.

METHODOLOGY AND RESULTS

Genome-wide transcriptome datasets and associated clinical 
outcome data are from our previous and ongoing studies as well 

as private contribution. Although available data are still scarce, 
cohorts/outcomes from public databases such as NCBI Gene 
Expression Omnibus (www.ncbi.nlm.nih.gov/geo) and EBI 
ArrayExpress (www.ebi.ac.uk/arrayexpress) are included.

The database currently contains 66 unique cohorts/outcomes 
of 5,540 subjects with unique clinical contexts, covering the 
major chronic liver diseases (i.e., viral or metabolic chronic 
hepatitis, cirrhosis, and cancer) for two types of outcome, 
time-to-event and binary outcomes (Table 1). The contents are 
curated and thoroughly annotated for study design by disease 
domain experts (NF and YH). The metadata include clinical 
demographics such as disease etiology, patient race/ethnicity, 
geographic region/country, median and interquartile range 
of clinical follow-up time, and % of patients who experienced 
clinical outcome of interest. Mode of patient enrollment 
is presented as prospective, retrospective to indicate the 
reliability of outcome association derived from the cohort. 
For instance, the analysis result from a prospective cohort 
can be reported as derived from “prospective-retrospective” 
study design, which indicates higher reliability compared to a 
result from retrospective study (Simon et al., 2009). Setting of 
patient enrollment is indicated as population-, community-, or 
hospital-based to explicitly indicate applicable clinical setting. 
Statistical power to detect certain magnitude of prognostic risk 
distinction is also provided to inform users about potential 
lack of statistical power for user-provided prognostic gene(s) at 
hazard ratios of 2.0 to 5.0 in Cox regression modeling, cutoffs 
often adopted to determine clinically meaningful prognostic risk 
distinction. Specific clinical contexts of biomarker application 
are unequivocally defined, and user can interactively find a 
clinical scenario of interest (see Step 1 in the next section).

MPIC consists of the following three components: (i) 
MySQL database of molecular profiles and clinical annotations 
for each specific clinical outcome in each patient cohort, 
(ii) bioinformatics data analysis engine developed based on 
GenePattern genomic analysis environment (Reich et  al., 
2006), and (iii) a user interface implemented using Java 
Grails, communicating with the database and analysis engine. 
Biostatistical analysis methods are implemented using the R 
statistical language (www.r-project.org).

TABLE 1 | Clinical demographics of subjects in MPIC database.

Clinical characteristic

Age, median (IQR) 57 (50–65)
Sex, male no. (%) 4,035 (72.8)
Race/ethnicity, no. (%)
 Asian 3,369 (60.8)
 Black 31 (0.6)
 Caucasian 2,078 (37.5)
 Hispanic 46 (0.8)
Disease etiology, no. (%)
 Hepatitis B 1,278 (23.0)
 Hepatitis C 2.699 (48.7)
 Alcohol 796 (14.4)
 Non-alcoholic fatty liver disease 585 (10.6)
Observation time (yr), median (IQR) 2.9 (1.8–5.2)
Observation clinical events (%), median (IQR) 40 (31–55)
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In MIPC, users can test their own candidate prognostic 
gene(s) for association with a specific clinical outcome in a patient 
cohort following the steps described below (Figure 1). MPIC 
helps circumvent the lengthy and costly process of biomarker 
validation by providing opportunity to quickly perform in silico 
assessment of candidate biomarkers without requiring any 
clinical and experimental resources.

Step 1: Select Patient Cohort and  
Clinical Outcome
Genome-wide molecular profiles of patient cohorts 
are hierarchically organized by disease condition (e.g., 
hepatocellular carcinoma, cirrhosis, alcoholic hepatitis), type 
of specimens (e.g., liver tissue, tumor tissue, serum), and 
clinical outcome (e.g., development of organ decompensation, 
diagnosis of stage I cancer within 2 years after surgical therapy, 
overall death). By selecting a patient cohort under a clinical 
outcome, a user can browse detailed metadata/annotations 
for the cohort. The cohort meta-data are summarized in 
Supplementary Table 1.

Step 2: Upload User-Defined Prognostic 
Gene or Molecular Signature
Subsequently, a user-defined prognostic molecular signature or 
gene is uploaded. A prognostic molecular signature is defined as 
two sets of genes, up- or down-regulated in association with the 
clinical outcome of interest, in official gene symbols. Alternatively, 
a single gene symbol can be provided to examine association of 
the gene’s expression level with the clinical outcome of interest. 
MPIC currently supports only 2-class gene signature, i.e., two 
sets of genes overexpressed in association with either “Class 1” 
or “Class 2,” corresponding to opposite clinical outcomes such as 
“poor survival” or “good survival,” respectively.

Step 3: Patient Classification and 
Assessment of Prognostic Association
Using the user-defined molecular signature, each patient in 
the selected cohort is classified into either “Class 1” or “Class 2” 

subgroup (e.g., “poor survival” or “good survival” subgroup) by a 
nearest neighbor-based versatile class prediction algorithm, Nearest 
Template Prediction (NTP) using cosine distance as dissimilarity 
metric (Hoshida, 2010). Briefly, hypothetical representative 
“Class 1” and “Class 2” templates are defined as vectors with the 
same length with the user’s input gene signature, where “Class 1” 
genes are set to 1 and “Class 2” genes are set to 0 for the “Class 
1” template and vice versa for the “Class 2 template. Classification 
of each patient is performed based on proximity to either of the 
templates measured by cosine distance. Expression pattern of the 
user-provided molecular signature in the cohort is visualized as a 
heatmap of sample-wise Z-score for each gene. Alternatively, when 
a single gene symbol is provided as input, subjects are classified into 
high- or low-expression groups based on top quartile cut-off, and 
visualized as a bar graph. Association of the patient classification 
and time-to-event clinical outcome is evaluated by log-rank test and 
Cox regression and visualized as Kaplan-Meier curves. Correlation 
between each signature gene expression and selected time-to-event 
outcome is calculated as Cox score using the following equation 
adapted from previous study (Bair and Tibshirani, 2004):
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where i, sample index; k, unique death time indices z1:zk; xi, 
transcript abundance in sample i, ti, observation time; dk,  
number of deaths at time zk; mk, number of samples in Rk = i: 
ti > zk. Statistical significance of the statistic is measured as 
false discovery rate based on random gene resampling-based 
(n  =  1,000) nominal p-value and visualized as bar chart. 
Association with binary outcome is evaluated by 2 × 2 table 
statistics (e.g., sensitivity, specificity, positive/negative predictive 
values), Fisher’s exact test, and logistic regression. Data analysis 
engine was developed based on GenePattern (Reich et al., 2006), 
which can be easily extended to incorporate more analytic 
pipelines towards more advanced requirements.

FIGURE 1 | Workflow of MPIC for clinical context-specific in silico prognostic biomarker validation in cirrhosis.
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Throughout the process, users do not have access to individual 
patient’s molecular and clinical data. This is a logistical advantage 
that lowers the bar to deposit clinical outcome data by mitigating 
data contributors’ concerns about sharing unpublished data, 
bleaching patient identity, and other regulatory issues. Besides 
ongoing regular expansion of cohort/dataset collection in the 
database, future developments will cover meta-analysis of 
prognostic associations derived from multiple patient cohorts 
for a molecular signature, multivariable analysis incorporating 
clinical prognostic factors, and comparison of prognostic 
performance across multiple molecular signatures.

DISCUSSION

Prognostic biomarker is the vital component in the management of 
patients with progressive and lethal chronic diseases. However, its 
development has been a daunting task due to the costly and lengthy 
process of clinical validation as evidenced by the scarce prognostic 
biomarker assays successfully translated to clinic. Currently 
available omics databases cannot accommodate the need because 
they disregard critical issues for clinical prognostic assessment such 
as study design, clinical context of biomarker use, setting of patient 
enrollment, statistical power, among many others.

To address the unmet need, we have developed a proof-of-
concept database and web application, called MPIC. As opposed to 
biological hypothesis generation tools such as The Cancer Genome 
Atlas portal and associated databases, MPIC is specialized for 
prognostic biomarker validation using liver cirrhosis (cirrhosis) 
as a representative example that causes over one million deaths 
every year worldwide. It supports a quick go/no-go decision for 
prognostic biomarker candidates for further clinical development, 
avoids wasting cost and time for biomarker clinical trial, and 
enables revolutionarily more cost-effective prognostic biomarker 
development compared to the traditional strategy.

With this resource, we have successfully developed a prognostic 
assay implemented in FDA-approved clinical diagnostic platforms, 
supporting real-world clinical utility of our web application 
(initial discovery: (Hoshida et al., 2008), assay implementation 
and validation: (King et al., 2015; Nakagawa et al., 2016; Ono 
et al., 2017), incorporation in clinical trial as a companion 
biomarker: NCT02273362). Simulation-based analysis showed 
that personalized patient management with the prognostic assay is 
significantly cost-effective (Goossens et al., 2017), supporting that 

MPIC will have transformative biomedical impact on the dismal 
prognosis of cirrhosis patients. In the initial implementation, 
we primarily focused on gene expression datasets, but we will 
expand the database to cover other types of omics information 
such as non-coding RNA, epigenetic profiles, and DNA structural 
alterations. This scheme is readily applicable to other chronic 
diseases, and such an informatics resource will contribute to the 
substantial improvement of chronic disease management and 
patient prognosis.
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