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The often-used A(C)E model that decomposes phenotypic variance into parts due 
to additive genetic and environmental influences can be extended to a longitudinal 
model when the trait has been assessed at multiple occasions. This enables inference 
about the nature (e.g., genetic or environmental) of the covariance among the different 
measurement points. In the case that the measurement of the phenotype relies on self-
report data (e.g., questionnaire data), often, aggregated scores (e.g., sum–scores) are 
used as a proxy for the phenotype. However, earlier research based on the univariate 
ACE model that concerns a single measurement occasion has shown that this can lead 
to an underestimation of heritability and that instead, one should prefer to model the 
raw item data by integrating an explicit measurement model into the analysis. This has, 
however, not been translated to the more complex longitudinal case. In this paper, we 
first present a latent state twin A(C)E model that combines the genetic twin model with 
an item response theory (IRT) model as well as its specification in a Bayesian framework. 
Two simulation studies were conducted to investigate 1) how large the bias is when 
sum–scores are used in the longitudinal A(C)E model and 2) if using the latent twin model 
can overcome the potential bias. Results of the first simulation study (e.g., AE model) 
demonstrated that using a sum–score approach leads to underestimated heritability 
estimates and biased covariance estimates. Surprisingly, the IRT approach also lead to 
bias, but to a much lesser degree. The amount of bias increased in the second simulation 
study (e.g., ACE model) under both frameworks, with the IRT approach still being the less 
biased approach. Since the bias was less severe under the IRT approach than under the 
sum–score approach and due to other advantages of latent variable modelling, we still 
advise researcher to adopt the IRT approach. We further illustrate differences between 
the traditional sum–score approach and the latent state twin A(C)E model by analyzing 
data of a two-wave twin study, consisting of the answers of 8,016 twins on a scale 
developed to measure social attitudes related to conservatism.
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INTRODUCTION

Even in the genomics era, twin studies remain useful to estimate 
the relative importance of genetic and environmental influences, 
in particular when the power of more complex models is restricted 
through the low amount of phenotypic variance explained in 
genome-wide association studies (GWAs) that use direct genetic 
information from genotyped individuals. In the commonly used 
ACE model, the total phenotypic variance is decomposed into 
components due to additive genetic (A) influences, common-
environmental (C) influences that are shared by both family 
members and unique-environmental (E) influences that are 
unique to the individual twin (Jinks and Fulker, 1970).

When the trait has been assessed at multiple occasions, this 
model can be extended to a longitudinal design to analyze the 
nature of the variance at all time points as well as the covariance 
among them (Boomsma et al., 2002). Potentially, this makes 
results very informative, as it enables us not only to investigate 
phenotypic covariance, but we can also decompose this 
covariance further into genetic and environmental components. 
Imagine for example that we have measured the mathematical 
ability of monozygotic (MZ) and dizygotic (DZ) twin pairs at 
four different time points (e.g., at the age of 5, 10, 15, and 20). 
As in the univariate ACE model, we can determine the relative 
importance of genetic and environmental influences in creating 
differences in the phenotype. Additionally, we can also quantify 
the importance of both components among the different time 
points. For example, a hypothesis could be that in earlier years 
(e.g., age 5 to 10) mainly genetic influences are important 
while in later years environmental influences become more 
dominant as secondary schools on different educational levels 
create more environmental variance. Secondly, the data allows 
us to determine phenotypic stability: How stable is the twins’ 
performance among the different time points? We can do this by 
simply calculating the covariance among the time points. While 
the latter is a property of every longitudinal design, the particular 
strength of the longitudinal twin design is that we can further 
decompose this covariance into genetic and environmental 
components. In other words, what is the relative importance 
of either genetic or environmental influences in explaining this 
covariance? In addition to providing the means to answer these 
substantive questions, longitudinal measures can also increase 
the statistical power to detect genetic and/or environmental 
effects (Schmitz et al., 1998).

The longitudinal design has been used extensively in the field 
of behavior genetics, leading to a number of relevant findings. 
For example, Long et al. (2017) used a Swedish population-based 
sample consisting of male twin pairs (1,532 MZ and 1,940 DZ 
twin pairs) and 66,033 full male sibling pairs born less than 2 
years apart where alcohol use disorder (AUD) was assessed 
during three age periods (18–25, 26–33, and 33–41). They found 
that, although the heritability of AUD seemed to be stable over 
time, there were two major genetic factors that contributed to 
AUD risk—one beginning at ages 18–25 with a modest decline 
in importance over time and one of less impact beginning at 
ages 26–33 with a modest increase in importance by ages 33–41. 
Nivard et al. (2015) conducted a longitudinal study on symptoms 

of anxiety and depression (SxAnxDep) across the lifespan. 
They combined data from 49,524 twins where SxAnxDep were 
assessed repeatedly with a maximum of eight assessments over 
a 25-years period. Using the genetic simplex model [for more 
details, see Boomsma and Molenaar (1987)], they found that the 
substantial phenotypic stability in SxAnxDep could be explained 
mainly by genetic effects. Furthermore, environmental influences 
contributed to change (e.g., their importance increased with age), 
but also to short-term stability.

Aforementioned studies exemplify how the results of 
longitudinal twin studies contribute to our understanding of 
the etiological mechanisms underlying a trait by elucidating the 
nature of genetic and environmental influences over time. For 
example, the finding by Nivard et al. (2015) that environmental 
effects contributed to change but also to short-term stability 
suggests that, in clinical practice, an improvement in SxAnxDep 
can be accomplished by positive environmental experiences, such 
as beneficial therapy or positive life events. Contrarily, increases 
of SxAnxDep can be caused by negative experiences, such as 
adverse life events. These implications underline the importance 
of addressing the environment in therapy (e.g. increasing social 
support or involving significant others). Additionally, their results 
have several implications for future research. For example, the fact 
that they have observed little age-related heterogeneity in genetic 
effects implies that gene-finding studies should strive for big samples 
that may include adults aged between 18 and 63 instead of stratifying 
samples in age groups. Overall, the findings of longitudinal twin 
studies 1) have important implications for practice, and 2) can help 
to formulate recommendations for subsequent research. Arguably, 
when a longitudinal twin analysis finds that different genetic factors 
are at play in explaining individual differences in a certain trait for 
different age groups, this suggests that a genome-wide association 
study (GWAS) on that same trait should strive for big samples of 
certain age groups to avoid hampering of gene-findings through an 
increased amount in genetic heterogeneity.

Potential Issues of Sum–Scores
As is common across all behavior sciences, in the field of behavior 
genetics, often, self-reported measures consisting of multiple items 
(e.g., a mathematical ability test or a personality questionnaire) 
are used to measure the phenotype of interest. Traditionally, the 
scores obtained on the multiple items are aggregated into a sum–
score by adding up an individual twin’s answers to all items in a 
questionnaire or test and then used as a proxy for the latent variable 
of interest (e.g., cognitive ability or personality trait). However, 
using this approach comes with a number of disadvantages. First, 
and most importantly, the uncertainty (e.g., the measurement 
error) that results from not observing the latent trait directly 
is usually ignored when the sum–score approach is used. This 
results in a confounded measure of the phenotype and impacts 
estimated variances and relationships with other variables (Fox 
and Glas, 2003; van den Berg et al., 2007). Another disadvantage 
is that the sum–score approach is not very flexible when it comes 
to the handling of missing values. Twins might for example not 
answer all questions on a questionnaire but skip items on sensitive 
topics (e.g., questions related to socially undesirable behavior) 
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or not reach the end of a test due to time limits. Although more 
complex methods are available, in that case, often values are 
imputed (e.g., the respondent’s mean response on all available 
items) but the uncertainty of the imputed values is not taken into 
account as standard errors and confidence intervals are calculated 
as if there were no missing item scores. Furthermore, imputation 
of the respondent’s mean response on the available item responses 
does not take the item characteristics (such as item difficulty) into 
account, which will be a problem if responses are not missing 
completely at random. Lastly, foundational to the interpretation 
of any longitudinal design is that the assumption of measurement 
invariance is met. This means that the same trait is measured in 
the same way across the different time points (Millsap, 2011). The 
absence of measurement invariance, however, cannot be assessed 
or corrected for when the sum–score approach is used (Millsap, 
2010). Lubke et al. (2012) showed that, if undetected, absence 
of measurement invariance will be confounded with group 
differences in heritabilities and consequently can lead to bias, such 
as the spurious finding of genotype by environment interaction or 
(the absence of) scalar sex-limitations. Using analytic derivations, 
simulation studies, and an empirical analysis of aggression in 
children aged 3–12 years, Luningham et al. (2017) investigated 
to which extent violations of measurement invariance lead to 
bias in the results of a latent growth model fitted to sum–scores. 
The results showed that measurement non-invariance across age 
can lead to bias in estimates of the growth mean and variances. 
However, results also suggested that the results of a genetic 
variance decomposition of growth factors is not biased due to 
measurement non-invariance across age, provided that there is 
no measurement non-invariance across birth-order and zygosity 
in twins. Another potential issue of longitudinal designs is that 
measurement instruments often change, for instance because 
certain questionnaire items might be less suitable for an older age 
group. For example, in intelligence research, often standardized 
scores are used based on different versions of a test that is tailored 
at different age groups (e.g., different versions of the commonly 
used Raven Progressive Matrices test, Raven, 2000). Such changes 
in assessment indicators hamper the use of sum–scores for 
evaluation of change.

Motivated by the fact that this source of potential bias is 
the most relevant when estimating heritability, in this paper, 
we concentrate on one particular limitation of the sum–score 
approach: not taking into account measurement error. Particularly 
when a scale is used with only a few items and unreliability is 
not taken into account, estimated correlations between measures 
related to the phenotype will be suppressed—a phenomenon 
that is referred to as attenuation in the statistical literature. In 
the cross-sectional case (e.g., when only a single measurement is 
considered), van den Berg et al. (2007) showed that attenuation 
leads to an underestimation of heritability, particularly when 
the sum–score distribution is skewed. When decomposing the 
raw sum–scores aggregated over 14 dichotomous items (either 
with or without log transformation) under an AE model, the 
heritability point estimate dropped from the true value of 72% 
to an estimate of approximately 42%. They furthermore show 
that this effect depends on 1) the number of items (e.g., this 
bias was the most severe when sum–scores were based on a 

total of five items but vanished when answers to 100 items were 
simulated) and 2) the true correlation among MZ and DZ twins 
(e.g., with five items, a true correlation of 0.90 was attenuated to 
a correlation of 0.55 and a true correlation of 0.10 was attenuated 
to a correlation of 0.06).

Item Response Theory—A Solution to the 
Problem?
Alternatively to calculating sum–scores, we can also apply latent 
variable modelling, a framework that directly accounts for 
measurement error. There are different latent variable modelling 
traditions (e.g., structural equation modelling and item response 
theory). As in psychological assessments measurements are often 
not metric, but categorical or ordinal, we here focus on models of 
the item response theory (IRT) framework.

For illustrative purposes, we focus on a simple model for 
explaining the idea. Note however that the argumentation 
also applies to other latent variable models. For dichotomous 
responses (e.g., when responses are scored as 1 = correct and 0 = 
incorrect), the most basic IRT model is the Rasch model (Rasch, 
1960). In the Rasch model, the probability of a correct answer to 
item k (e.g., of a mathematics test) by twin j from family i, P(Yijk 
= 1), is modeled as a logistic function of the difference between 
the twin’s latent trait score (e.g., mathematical ability) and the 
difficulty of the item:

 
P Y

exp b

exp bijk
ij k

ij k

=( ) =
−( )

+ −( )1
1

θ

θ  (1)

where θij refers to the latent trait score of individual twin j from 
family i. bk denotes the difficulty of item k which represents the 
trait level associated with a 50% chance of endorsing an item. An 
underlying assumption of the Rasch model is that each item is 
equally informative for the latent trait (e.g., comparable to equal 
factor-loadings in structural equation modelling).

van den Berg et al. (2007) showed that potential bias due 
to an attenuation can be solved by applying an IRT model 
within the genetic model. Crucial to this approach is that both, 
genetic and IRT models, are estimated simultaneously such 
that the estimation takes into account the unreliability of the 
measurement (Béguin and Glas, 2001). This is computationally 
challenging, as multiple integrals have to be solved due to the 
multilevel nature of the twin design [estimating between and 
within twin pair (co-)variance]. Alternatively, the Bayesian 
framework with Markov chain Monte Carlo (MCMC) 
algorithms can be used to estimate the model (see also van den 
Berg et al., 2006; van den Berg et al., 2007).

Research Questions
For the case where a single measurement occasion is 
considered, van den Berg et al. (2007) showed how severe 
the bias of using sum–scores can be as well as the utility of 
IRT modelling within the genetic model for solving this issue. 
As far as we know, the impact of measurement error and the 
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utility of latent variable modelling for longitudinal genetic 
data, in which covariances are further decomposed into 
genetic- and environmental sources, has not been shown. In 
fact, so far, behavior genetics researchers commonly use sum–
scores for longitudinal analyses. However, the issue of bias due 
to attenuation can be expected to be especially problematic for 
longitudinal twin studies, as there the relationship between 
many more latent variables is considered: in addition to the 
correlations that are studied within each time point, these 
studies also consider the association between latent variables 
across time points. Each of these correlations can be expected 
to suffer from attenuation, which may create a misleading 
picture of both the heritability and the stability of traits. As 
such, the impact of the measurement error might even be more 
severe than in the cross-sectional case.

In this paper, we first present a latent state longitudinal A(C)
E model that integrates IRT modelling into longitudinal twin 
modelling and then the results of two simulation studies to 
answer the following research questions:

1. How large is the bias when the sum–score approach is used in 
the longitudinal case?

2. Can we reduce the bias by using the latent state longitudinal 
model?

In both simulation studies, we simulated item-level 
longitudinal twin data which we then analyzed using both the 
traditional sum–score approach and the latent state longitudinal 
A(C)E model introduced here. The first simulation study was 
conducted to get an overview of how the classical approach 
(e.g., using sum–scores) and the psychometric approach (e.g., 
analyzing item-level data) compare in terms of bias. For an 
easier interpretation and to be able to investigate a large number 
of scenarios, a simple AE decomposition model was used 
where the variance–covariance matrix is only decomposed into 
additive genetic- and unique-environmental influences. While 
the magnitude of variance explained by additive genetic- and 
unique-environmental influences was fixed, we manipulated the 
magnitude of covariance due to these two sources. Based on the 
results of this study, the worst case scenario (e.g., the combination 
of covariance among additive genetic- and environmental 
influences at both time points that led to the largest bias) was 
selected and, under this scenario, an ACE model was used for 
the data generation where we manipulated the magnitude of 
covariance due to common-environmental influences.

To further illustrate the difference between the traditional 
sum–score approach and the proposed psychometric approach, 
we analyzed data from a two-wave twin study, consisting of the 
answers of 8,016 twin pairs at two different time points on a scale 
developed to measure attitudes related to conservatism.

Latent State Longitudinal A(C)E Twin 
Model
A broad range of different longitudinal models exist in the field 
of behavior genetics. Some of the longitudinal models typically 
used in psychometric research follow the same parametrization 

(without the genetic modelling) but are known in psychometrics 
under a different name (e.g., simplex genetic models and auto 
regressive models), while others have not been applied to 
genetic modelling yet (e.g., latent change models). These models 
all differ in their substantive interpretations and an overview 
of the existing models in both genetics and psychometrics is 
beyond the scope of this paper. In this paper, we propose the 
latent state longitudinal A(C)E twin model, where we combine 
item response modelling with longitudinal twin modelling. In 
the psychometric part of this model (the latent state model, 
Steyer et al., 1992), an IRT model is applied to model raw item-
level data at each time point. The genetic part of this model is 
known as the independent pathway model in the twin literature 
(see e.g. Neale and Cardon, 1992) and consists of decomposing 
the phenotypic variance into additive genetic (A), common-
environmental (C) and unique-environmental (E) influences at 
each time point separately, such that we can estimate stability of 
these components across time.

For the sake of simplicity, we will use a model with only two 
time points throughout the paper, but note that an extension 
to multiple time points is straightforward. To estimate the 
latent state longitudinal A(C)E twin model, we adopt the 
Bayesian framework and use off-the-shelf MCMC methods. In 
the following, we will present the model for MZ and DZ twins 
separately. The latent variables (A, C and E) in the models are 
all modeled here as multivariate normal distributed variables 
(e.g., correlated among the two time points), but note that this 
presentation is not standard notation, but serves the Bayesian 
estimation procedure where the model specification consists of 
conditional distributions.

Monozygotic Twins
We assumed a multivariate normal distributed additive genetic 
effect for both considered time points. For every MZ family i, we 
then have: 

 

A
A

i

i
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A
A

1
2
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∼

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
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where A1i and A2i represent additive genetic influences for family 
i at the first and second time point, respectively. An assumption 
of the genetic model is that both, A1 and A2, have an expected 
value of zero, e.g. μA1 = μA2 = 0 [see for example Fisher (1918) 
or Jinks and Fulker (1970)]. ΣA denotes the variance–covariance 
matrix of genetic influences at both time points and is equal to: 

 

ΣΣA
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=

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where σ A1
2  and σ A2

2  represent variance (at the first and second 
time point respectively) that can be explained by additive genetic 
influences. σ AC

2  denotes covariance among the two time points 
that can be explained by additive genetic influences.
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Then, common-environmental effects for every family 
i at both time points, that is C1i and C2i, were assumed to be 
multivariate normal distributed: 
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C
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where, as for additive genetic influences, we assumed that 
expected values are equal to zero, that is μC1 = μC2 = 0 and 
ΣC denotes the variance–covariance matrix of common-
environmental influences at both time points, which is equal to: 
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where σ C1
2  and σ C2

2  represent variance (at the first and second 
time point respectively) that can be explained by common-
environmental influences and σ CC

2  denotes covariance 
among the time points that can be explained by common-
environmental influences.

We then modeled the phenotypes θijt of every twin j from 
family i at time point t = {1,2} using two multivariate normal 
distributions: 
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where θi11 and θi12 represent the phenotypic trait of twin 1 
of family i at time point 1 and 2 respectively, μ1 and μ2 are the 
phenotypic means at time point 1 and 2 respectively (where μ1 is 
fixed to zero to identify the IRT model) and ΣE is the variance–
covariance matrix of unique-environmental influences at both 
time points, which is equal to: 
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where σ E1
2  and σ E2

2  represent residual variances at time point 1 
and 2 respectively and σ EC

2  denotes covariance that may be due to 
environmental influences or due to measurement error. Note that 
without a measurement model, we cannot distinguish between 
these two sources of variance. However, if the latent phenotype 
is modeled as a latent variable (e.g. using an IRT model), 
measurement error can be accounted for and σ E1

2  and σ E2
2  only 

capture variance due to unique-environmental influences.

Simultaneous to the decomposition model above, for twin j 
from family i at time point t, the latent phenotype was modeled 
based on the one parameter logistic IRT model:

 
ln P Pijtk ijtk ijt k/ 1−( )( ) = −θ β  (9)

where the probability for endorsing an item k at time point t is 
modeled as a function of the difference between a twin’s latent 
trait score θ at time point t and the item difficulty parameter βk. 
In both simulation studies and in the empirical data application, 
we assumed that item difficulty parameters are the same at both 
time points to meet the assumption of measurement invariance 
(Meredith, 1993; Borsboom, 2008). Note however that one needs 
to check whether this assumption actually holds when applying 
the model to empirical data.

Dyzygotic Twins
The model is essentially the same for non-identical twins, but 
while the total genetic variance is assumed to be the same for DZ 
and MZ twins, the genetic covariance in MZ twins is twice as large 
as in DZ twins, as DZ twin pairs share on average only 50% of 
their polymorphic alleles (e.g., the same level of genetic similarity 
as found in non-twin siblings). To model a genetic correlation 
of 1

2
 for DZ twins, we first modeled a multivariate normal 

distributed additive genetic effect for both considered time points 
that is the same for every DZ twin family and then a multivariate 
normal distributed additive genetic effect that is unique for every 
individual twin j. The common additive genetic effect at both time 
points, aDZ1i and aDZ2i were modeled as follows: 
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where, as for MZ twins, expected values of genetic influences at 
both time points, aDZ1 and aDZ2, were assumed to be equal to 
zero (e.g., μA1 = μA2 = 0) and the variance–covariance matrix, ΣA 
is the same as for MZ twins (see Equation 3). At both time points, 
a unique additive genetic effect for every individual twin j from 
family i was modeled, with expected value equal to a family’s 
common additive genetic effect: 
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As for MZ twins, for every family i, multivariate normal 
distributed common-environmental effects at both time points 
were modeled (see Equation 4). Similar to the model for MZ 
twins, an ACE decomposition on the latent variable then yields: 
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,  ΣΣE

 (12)

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Psychometric Modelling of Longitudinal Twin DataSchwabe et al.

6 October 2019 | Volume 10 | Article 837Frontiers in Genetics | www.frontiersin.org

 

Twin     2
1 1
2 2

21

22

1 1

2 1

:
θ
θ

µ
µ

i

i

i i

i

MVN
ADZ C
ADZ C

∼
+ +
+ + ii























,  ΣΣE

 (13)

where the variance–covariance matrix, ΣE, was the same as for 
MZ twins (see Equation 8). As for MZ twins, a Rasch IRT model 
for the item responses was assumed for every twin j from family 
i at time point t (see Equation 9).

Parameters of Interest
Under this model, narrow-sense heritability h2 can be estimated 
separately for both time points (e.g., hT1

2  for the first time point 
and hT 2

2  for the second time point), defined as the proportion of 
the total phenotypic variance at the respective time point that can 
be explained by additive genetic variance:
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Furthermore, we can estimate the correlation between the 
latent variables (A, C, and E) at both time points: 
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where ρ(A1, A2) denotes the correlation between additive 
genetic influences at the first and second time point, ρ(C1, 
C2) depicts the correlation between common-environmental 
influences at the two time points and ρ(E1, E2) represents the 
correlation between unique-environmental influences at the 
first and second time point.

Estimation
van den Berg et al. (2007) showed that, in order to take full 
advantage of the IRT approach, the genetic twin model and the 
IRT model have to be fitted within one step. Here, we use Bayesian 
statistical modelling to estimate all parameters of the latent trait 
state twin model simultaneously. In the Bayesian framework, 
statistical inference is based on the joint posterior density of 
the model parameters, which is proportional to the product of 

a prior probability and the likelihood function of the data (for 
further reading see e.g. Box and Tiao, 1972). We use a Markov 
chain Monte Carlo (MCMC) algorithm called Gibbs sampling 
(Geman and Geman, 1984; Gelfand and Smith, 1990; Gelman 
et al., 2004) to obtain this joint posterior density. The algorithm 
works by iteratively drawing samples from the full conditional 
distributions of all unobserved parameters of a model. The full 
conditional distribution relates to the distribution of a parameter 
given the current values of all other relevant parameters of the 
model (Gilks et al., 1996). In each iteration of the Gibbs sampling 
algorithm, a sample is taken from the conditional distribution 
of every parameter in the model, given the current values of the 
other relevant parameters of the model. It can be shown that after 
a number of so-called “burn-in” iterations, subsequent draws can 
then be seen as draws from the joint posterior distribution of 
all parameters.

Prior Distributions
Using a Bayesian approach, prior distributions have to be 
defined for all unobserved parameters. Here, we describe the 
general settings for the latent state longitudinal A(C)E twin 
model. This means that we chose relativity non-informative 
prior distributions, resulting in prior distributions that are 
flat relative to the likelihood function and thus have minimal 
impact on the posterior distribution. This implies that we do 
not have any prior guess or knowledge about how the data are 
generated prior to observing them. Note that, depending on the 
data at hand, other prior settings might be more reasonable, 
for example when earlier research has shown that heritability 
decreases with age.

For the covariance matrices, ΣA, ΣC, and ΣE, we used 
independent inverse Wishart distributions, Σ−1 ~ Wishart(L, T), 
where L is a T by T scale matrix and k refers to the degree of 
freedoms, with T being equal to the total number of time points.

In the sum–score approach, two independent normal 
distributed prior distributions were used for the phenotypic 
mean at both time points (e.g., μ1 ~ N(0, 10) and μ2 ~ N(0, 
10)). In the IRT analysis, the same prior distribution was used 
for the second time point, but the phenotypic mean was set 
to zero at the first time point (e.g., μ1 = 0) in order to identify 
the IRT model. For the difficulty item parameters, we used 
independent normal distributions as prior distributions [e.g., 
βk ~ N (0, 10)].

SIMULATION STUDY 1

Simulation study 1 was conducted to investigate how the classical 
approach (e.g., using a sum–score) and the psychometric 
approach (e.g., analyzing item-level data as described above) 
compare in terms of bias.

As it is generally known that additive genetic influences 
and common-environmental influences are less well resolvable 
compared to additive genetic influences and unique-
environmental influences or common-environmental influences 
and unique-environmental influences (see e.g., Martin et al., 
1978), for an easier interpretation, a simple AE model was 
used in the first simulation study. This was also done to gain 
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more computational power in order to be able to investigate a 
larger number of scenarios. Based on the first simulation study, 
the worst case scenario (e.g., the one with the largest bias) 
was selected and in a second simulation study, this scenario 
was extended to an ACE model for which we manipulated 
the magnitude of covariance among time points explained by 
common-environmental influences.

Data Generation
To compare estimates based on the sum–score approach and 
the IRT approach, 150 datasets consisting of item-level twin 
data obtained at two time points were generated under different 
scenarios. While additive genetic and unique-environmental 
variances were fixed to 0.80 and 0.20, the magnitude of covariance 
explained by these two sources was manipulated, leading to 

covariances matrices equal to ΣΣA =










0 80
0 80

.
.
X

X
 and 

ΣΣE =










0 20
0 20

.
.
X

X
 where X was set to either 0.16, 0.40 or 

0.60 (in ΣA) and 0.04, 0.10 or 0.15 (in ΣE) to obtain a correlation 
equal to respectively 0.20, 0.50, and 0.80. We considered all 
possible combinations, resulting in a total of nine different 
scenarios. In this simulation study, the data was simulated under 
the AE model meaning that the variance was only decomposed 
into components due to additive genetic influences and unique-
environmental influences. In every scenario, phenotypic means 
at both time points, μ1 and μ2, were simulated to be equal to zero. 
The Rasch model was used to simulate responses to dichotomous 
items at both time points. Item parameters were simulated 
once from a normal distribution with a mean of zero and a 
standard deviation of one and then used for the data generation 
in every condition at both time points (assuming measurement 
invariance). In every scenario, the number of items was fixed to 
20 and the total number of twin pairs to 1,500, consisting of 1,080 
(72% of total N) DZ twin pairs and 480 (28% of total N) MZ twin 
pairs. This particular ratio was chosen to approximately reflect 
the ratio of MZ and DZ twins typically found in European twin 
registers. This resulted in reliability estimates similar to the ones 
we found for the empirical data (for more details see the data 
application section). Cronbach’s alpha was equal to 0.77 and 0.78 
at the first and second time point respectively and (Spearman 
Brown corrected) split-half reliability was equal to 0.79 at both 
time points.

Data Analyses
The simulated data were then analyzed on the basis of the 
sum–scores approach and the IRT approach. For the IRT-based 
analysis, item-level data was analyzed using the Rasch model 
where the phenotypic mean of the first time point was fixed to 
zero (e.g., μ1 = 0) to identify the model.

Under the sum–score approach, the item scores (e.g., answered 
at the first and second time point respectively) were added up to 
create two sum–scores (e.g., for the first and second time point). 
Then, instead of performing the AE decomposition based on the 
θ value of every twin j (see Equations 6 and 7 for MZ twins and 
Equations 12 and 13 for DZ twins) as is done in the latent state 

model, the decomposition was done on the sum–scores directly. 
For MZ twins, this yields:
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where Si11 and Si12 denote the phenotypic trait of the first twin 
of family i at time point t (here: two time points), respectively 
and are calculated by adding up the item scores of that twin at 
the particular time point (e.g., for the first time point and the 
first twin from family i, S Yi i k

K

11 11
1

= ∑  where Yi11k denotes the 
answer of the first twin of family i to item k at time point 1 and 
K denotes the total number of items). The same logic applies to 
DZ twins, with the only exception that the expected value of the 
multivariate distribution includes the unique additive genetic 
effect of every individual twin j from family i (see Equations 12 
and 13). The sum–scores were then analyzed using the same JAGS 
script but instead of estimating a Rasch model, the decomposition 
into additive genetic and unique-environmental influences took 
place directly on the sum–scores (ignoring measurement error) 
as described above. Furthermore, instead of fixing the phenotypic 
mean at the first time point to zero, a normal prior distribution 
was used (e.g., μ1 ~ N(0, 10)). The JAGS script that was used can 
be found in the online Supplementary Material.

As advised in the statistical literature on longitudinal models 
(see e.g. Moeller, 2015), sum–scores were not standardized 
but we analyzed the raw sum–scores as they were simulated. 
Consequently, sum–score analysis and IRT analysis were 
performed on different measurement scales and results were 
not comparable when not standardized (e.g., estimates of 
variances and covariances could not be directly compared). 
Therefore, we calculated standardized measures for all replicated  
data sets, consisting of heritability estimates at both times  
( hT1

2  and hT 2
2 ) and the correlation between additive genetic 

[ρ(A1, A2)] and unique-environmental [ρ(E1, E2)] influences. 
Comparable to the ACE model, heritability was defined as the 
proportion of the total phenotypic variance that can be explained 
by additive genetic variance (see Equations 14 and 15). Note that 
the total variance at both time points, σ P1

2  and σ P2
2  respectively, 

is composed of only two sources in the AE decomposition 
model (e.g., σ σ σ2 21 1

2
1P A E= +  and σ σ σP A E2

2
2

2
2

2= + ), 
resulting in a simulated heritability equal to 0.80 at both time 
points ( h hT T1

2
2

2 0 80= = . ). Averaged over 150 replications, the 
posterior means and standard deviations were calculated for all 
standardized measures. We also calculated the standard deviation 
of all posterior means of standardized measures, which can be 
compared to standard errors in terms of frequentist statistics.

The open-source software package R (R Development Core 
Team, 2008) was used to simulate data and analyze the results 
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of the simulation study. The MCMC estimation was done in the 
freely obtainable MCMC program JAGS (Plummer, 2003) and as 
an interface from R to JAGS, we used the rjags package (Plummer, 
2003). The JAGS script that was used can be found in the online 
Supplementary Material. With minor adoptions, this script can 
also be used in the free software packages WinBUGS (Lunn et al., 
2000) or OpenBugs (Thomas et al., 2006). After a burn-in phase of 
20,000 iterations, the characterization of the posterior distribution 
for the model parameters was based on an additional 15,000 
iterations from one Markov chain. The burn-in period was chosen 
based on earlier test runs with multiple chains and calculating the 
Gelman and Rubin diagnostic (Gelman and Rubin, 1992).

Results
Posterior point estimates and standard deviations of all relevant 
parameters, averaged over 150 replications, can be found 
in Tables 1–3. For every parameter, the standard deviation 
of posterior means (e.g., comparable to a standard error in 
frequentist statistics) can be found in the third row.

As the difference in phenotypic means at both time points (e.g. 
μT1 – μT2) as well as difficulty parameters (e.g., βk) were very close 
to their true values in every scenario, estimates are not displayed 
here but can be obtained from the first author.

Heritability estimates were underestimated at both time points 
when the sum–score approach was used. This bias was very 

TABLE 3 | Results of simulation study 1: ρ (A1, A2) fixed to 0.8 while ρ (E1, E2) is equal to 0.2, 0.5 and 0.8.

ρ (A1, A2) = 0.8; ρ (E1, E2)* = 0.2 ρ (A1, A2) = 0.8; ρ (E1, E2)* = 0.5 ρ (A1, A2) = 0.8; ρ (E1, E2)* = 0.8 

hT1
2 hT 2

2 ρ  
(A1, A2) 

ρ  
(E1, E2) 

hT1
2 ht

2
2

ρ  
(A1, A2) 

ρ  
(E1, E2) 

hT1
2 hT 2

2 ρ  
(A1, A2) 

ρ  
(E1, E2) 

True value 0.80 0.80 0.80 0.20 0.80 0.80 0.80 0.50 0.80 0.80 0.80 0.80
Sum–scores 0.62 

(0.02) 
0.62 
(0.02) 

0.76 
(0.03) 

0.07 
(0.04) 

0.62 
(0.02) 

0.62 
(0.02) 

0.76 
(0.03) 

0.20 
(0.04) 

0.62 
(0.02) 

0.62 
(0.02) 

0.76 
(0.02) 

0.31 
(0.04) 

0.02 0.02 0.03 0.04 0.02 0.02 0.02 0.04 0.02 0.03 0.03 0.04 
IRT 0.80 

(0.03) 
0.79 
(0.03) 

0.76 
(0.03) 

0.18 
(0.09) 

0.80 
(0.03) 

0.79 
(0.03) 

0.76 
(0.02) 

0.46 
(0.08) 

0.78 
(0.03) 

0.79 
(0.03) 

0.77 
(0.02) 

0.65 
(0.06) 

0.03 0.03 0.03 0.09 0.03 0.03 0.02 0.08 0.03 0.03 0.02 0.06 

Average posterior means (SD) averaged over 150 replications. Third line: Standard deviation of posterior means. Asterisk signifies the parameter value that was changed between 
simulation conditions.

TABLE 1 | Results of simulation study 1: ρ (A1, A2) fixed to 0.2 while ρ (E1, E2) is equal to 0.2, 0.5 and 0.8. 

ρ (A1, A2) = 0.2; ρ (E1, E2)* = 0.2 ρ (A1, A2) = 0.2; ρ (E1, E2)* = 0.5 ρ (A1, A2) = 0.2; ρ (E1, E2)* = 0.8

hT1
2 hT 2

2 ρ 
(A1, A2) 

ρ 
(E1, E2) 

hT1
2 hT2

2 ρ 
(A1, A2) 

ρ 
(E1, E2) 

hT1
2 hT 2

2 ρ 
(A1, A2) 

ρ 
(E1, E2) 

True value 0.80 0.80 0.20 0.20 0.80 0.80 0.20 0.50 0.80 0.80 0.20 0.80 
Sum–scores 0.62 

(0.02) 
0.62 
(0.02) 

0.19 
(0.04) 

0.09 
(0.04) 

0.62 
(0.02) 

0.62 
(0.02) 

0.20 
(0.04) 

0.21 
(0.04) 

0.62 
(0.02) 

0.62 
(0.02) 

0.20 
(0.04) 

0.30 
(0.04) 

0.03 0.02 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.03 0.04 0.04 
IRT 0.79 

(0.03) 
0.79 
(0.03) 

0.20 
(0.04) 

0.21 
(0.10) 

0.79 
(0.03) 

0.79 
(0.03) 

0.21 
(0.04) 

0.45 
(0.09) 

0.79 
(0.03) 

0.79 
(0.03) 

0.22 
(0.04) 

0.62 
(0.07) 

0.03 0.03 0.04 0.09 0.03 0.03 0.04 0.08 0.03 0.03 0.04 0.06 

Average posterior means (SD) averaged over 150 replications. Third line: Standard deviation of posterior means. Asterisk signifies the parameter value that was changed between 
simulation conditions.

TABLE 2 | Results of simulation study 1: ρ (A1, A2) fixed to 0.5 while ρ (E1, E2) is equal to 0.2, 0.5 and 0.8.

ρ (A1, A2) = 0.5; ρ (E1, E2)* = 0.2 ρ (A1, A2) = 0.5; ρ (E1, E2)* = 0.5 ρ (A1, A2) = 0.5; ρ (E1, E2)* = 0.8

hT1
2 hT 2

2 ρ 
(A1, A2) 

ρ 
(E1, E2) 

hT1
2 hT 2

2 ρ 
(A1, A2) 

ρ 
(E1, E2) 

hT1
2 hT 2

2 ρ 
(A1, A2) 

ρ 
(E1, E2) 

True value 0.80 0.80 0.50 0.20 0.80 0.80 0.50 0.50 0.80 0.80 0.50 0.80 
Sum–scores 0.62 

(0.02) 
0.62 
(0.02) 

0.50 
(0.03) 

0.07 
(0.04) 

0.62 
(0.02) 

0.62 
(0.02) 

0.50 
(0.03) 

0.21 
(0.04) 

0.62 
(0.02) 

0.62 
(0.02) 

0.50 
(0.03) 

0.31 
(0.04) 

0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.04 0.02 0.03 0.03 0.04 
IRT 0.79 

(0.03) 
0.79 
(0.03) 

0.51 
(0.03) 

0.17 
(0.10) 

0.79 
(0.03) 

0.79 
(0.03) 

0.51 
(0.03) 

0.45 
(0.08) 

0.78 
(0.03) 

0.78 
(0.03) 

0.52 
(0.03) 

0.64 
(0.07) 

0.03 0.03 0.03 0.09 0.03 0.03 0.03 0.08 0.03 0.03 0.03 0.05 

Average posterior means (SD) averaged over 150 replications. Third line: Standard deviation of posterior means. Asterisk signifies the parameter value that was changed between 
simulation conditions.
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consistent: Regardless of scenario or time point, the heritability 
estimate was equal to 0.62 opposed to the true value of 0.80. 
When the IRT approach was used, heritability estimates were 
either equal to the true value or the difference between simulated 
value and estimated value was negligibly small. The largest bias 
was equal to 0.02 in the conditions in which both ρ (A1, A2) and 
ρ (E1, E2) were large.

When ρ (A1, A2) was simulated to be equal to 0.2, there was a 
small bias in the estimates of the sum–score approach when ρ (E1, 
E2) was equal to 0.2 and a small bias in the results of the IRT approach 
when ρ (E1, E2) was equal to 0.5 or 0.8. In both cases, however, 
this bias was negligibly small [e.g., ρ (A1, A2) was estimated 0.19 
instead of 0.20 in case of the sum–score approach and 0.21 and 0.22 
respectively when the IRT approach was used]. When the true value 
of ρ (A1, A2) was equal to 0.5, there was no bias in the sum–score 
approach and a small bias in the IRT approach [e.g., 0.51 and 0.52 
instead of the simulated value of ρ (E1, E2) = 0.50]. When ρ (A1, 
A2) was simulated to be equal to 0.80, the amount of bias in both 
approaches was more severe and fairly comparable (e.g., in most 
cases, the estimated value was approximately 0.76).

There was bias in the estimates of ρ (E1, E2) in both approaches, 
but this bias was clearly more severe when the sum–score approach 
was used. For example, when the true value of ρ (A1, A2) was equal 
to 0.2, the estimated values were respectively 0.08 when the sum–
score approach was used and 0.21 when the IRT approach was used. 
For both approaches, this bias increased with increasing correlation 
among unique-environmental influences: When the true value was 
equal to 0.5, the estimates were equal to 0.21 (sum–score approach) 
and 0.45 (IRT approach) respectively and equal to 0.30 (sum–score 
approach) and 0.62 (IRT approach) when the correlation was 
simulated to be equal to 0.8. Here and there, this bias was larger or 
smaller, but overall, the same pattern could be observed when ρ (A1, 
A2) was simulated to be equal to either 0.5 or 0.8.

SIMULATION STUDY 2

Based on the results of the first simulation study, in the second 
simulation study, the worst case scenario (e.g., the combination of 
correlations among additive genetic and unique-environmental 
influences that lead to the largest bias) was selected and, under 
this scenario, an ACE model was used for the data generation. 
In order to investigate the performance of the ACE model, 
we manipulated the magnitude of the covariance that can be 
explained by common-environmental influences, σ CC

2 .

Data Generation
To have reasonable values, in this simulation study, variance 
explained by additive genetic influences was set to 0.6 at both 
time points (e.g., σ σA A1

2
2

2 0 6= = . ) and variance due to common-
environmental and unique-environmental influences to 0.2 at 
both time points (e.g., σ σ σ σC C E E1

2
2

2
1

2
2

2 0 2= = = = . ), leading to 

variance–covariance matrices equal to ΣΣ
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


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0 60 0 12
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X
 and ΣΣE =


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


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0 20 0 16
0 16 0 20

. .

. .
 where X 

was set to either 0.04, 0.10, or 0.16 to create a correlation of 0.2, 
0.5, and 0.8 between common-environmental influences at the 
different time points. As in the first simulation study, under every 
scenario, 150 datasets were simulated. The number of items was 
fixed to 20 and the Rasch model was used to simulate responses 
to dichotomous items at both time points. The same difficulty 
parameters were used as in the first simulation study for every 
scenario and every time point. Due to the higher complexity of 
the ACE model, the total number of twins was increased to a total 
of 3,000 but the ratio between MZ and DZ twin pairs was the 
same as in the first simulation study (e.g., 2160 (72% of total N) 
DZ twin pairs and 840 (28% of total N) MZ twin pairs). Again, 
the phenotypic mean was assumed to be equal to zero at both 
time points and the same item parameters were used to simulate 
the item data. Cronbach’s alpha was equal to 0.79 and 0.78 at 
the first and second time point respectively and (Spearman 
Brown corrected) split-half reliability was equal to 0.80 at both 
time points.

Data Analysis
As in the first simulation study, the simulated data was analyzed 
with both the IRT approach and the sum–score approach. For 
the IRT-based analysis, item-level data was analyzed using the 
Rasch model where the first time point was fixed to 0 to identify 
the model. Under the sum–score approach, sum–scores were 
calculated for the first and second time point respectively. 
Instead of performing the ACE decomposition based on the θ 
values of every twin j (see Equations 6 and 7 for MZ twins and 
Equations 12 and 13 for DZ twins) as is done in the latent state 
model, the decomposition was done on the sum–scores directly. 
Comparable to Equations 19 and 20, for MZ twins, this yields:

 

S
S

MVN
C A
C A

i

i

i i

i i

11

12

1

2

1 1
2 2

∼
+ +
+ +

















µ
µ

, ΣΣE







  Twin1  (21)

 

S
S

MVN
C A
C A

i

i

i i

i i

21

22

1

2

1 1
2 2

∼
+ +
+ +

















µ
µ

, ΣΣE







  Twin 2  (22)

where Si11 and Si12 represent the phenotypic trait of the first twin 
of family i at time point t (here: two time points) respectively 
and are calculated by adding up the item scores of that twin at 
the particular time point (e.g., for the first time point and the 
first twin from family i, S Yi i k

K

11 11
1

= ∑  where Yi11k denotes the 
answer of the first twin of family i to item k at the first time point 
and K denotes the total number of items). The same logic applies 
to DZ twins, but here the expected value of the multivariate 
normal distribution included the unique additive genetic effects 
of every individual twin j from family i (see Equations 12 and 
13). The sum–scores were then analyzed using the same JAGS 
script but instead of estimating a Rasch model, sum–scores 
were directly decomposed into additive genetic, common-
environmental, and unique-environmental influences. Instead of 
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fixing the phenotypic mean at the first time point to zero (e.g., μ1 
= 0), a normal prior distribution was used [e.g., μ1 ~ N(0, 10)]. 
Both JAGS scripts can be found in the online Supplementary 
Material.

For every scenario, averaged over 150 replications, the 
posterior means and standard deviations were calculated for 
all standardized measures [e.g., hT1

2 , hT 2
2 , ρ (A1, A2), ρ (C1, 

C2) and ρ (E1, E2)]. We also calculated the standard deviation 
of all posterior means of standardized measures, which can be 
compared to standard errors in terms of frequentist statistics. 
Heritability was defined as the proportion of the total phenotypic 
variance that can be explained by additive genetic variance (see 
Equations 14 and 15). As in the first simulations study, we used 
the open-source software package R (R Development Core 
Team, 2008) to simulate the data and analyze the results, the 
open-source MCMC program JAGS (Plummer, 2003) for the 
MCMC estimation and the rjags package (Plummer, 2013) as an 
interface from R to JAGS. The JAGS script that was used can be 
found in the online Supplementary Material, which can also be 
used in the free software packages WinBUGS (Lunn et al., 2000) 
or OpenBugs after minor adoptions. As in the first simulation 
study, a burn-in period of 20,000 iterations was used and the 
characterization of the posterior distribution for the model 
parameters was based on an additional 15,000 iterations from 1 
Markov chain. This was chosen based on earlier test runs with 
multiple chains and calculating the Gelman and Rubin diagnostic 
(Gelman and Rubin, 1992).

Results
Posterior point estimates and standard deviations of all relevant 
parameters, averaged over 150 replications, can be found in 
Table 4. For every parameter, the standard deviation of posterior 
means (e.g., comparable to a standard error in frequentist 
statistics) can be found in the third row.

Since the difference between the phenotypic means 
(e.g., μT1 – μT2) and the item difficulty parameters (e.g., βk) were 
very close to their true values in all scenarios, results are not 
displayed here but can be obtained from the first author.

Both approaches resulted in biased heritability estimates 
at both time points. As could be expected based on the results 
from the first simulation study, in most conditions, heritability 
was underestimated when the sum–score approach was used and 

the bias was larger than under the IRT approach. A surprising 
exception to this is the condition where ρ (C1, C2) was simulated 
to be equal to 0.20, where the bias in hT1

2  was smaller for the 
sum–score approach than for the IRT approach. Note however 
that the difference is fairly minor (e.g., hT1

2  was simulated to be 
equal to 0.60 and estimated 0.56 under the sum–score approach 
and 0.65 when the IRT approach was used).

Concerning estimates of ρ (A1, A2), surprisingly, the sum–
score approach resulted in less bias than the IRT approach. The 
bias was the largest when ρ (C1, C2) was simulated to be equal to 
0.20 (e.g., 0.30 under the IRT approach and 0.24 under the sum– 
score approach). Estimates of ρ (C1, C2) were generally less 
biased when the IRT approach was used, except when ρ (C1, C2) 
was simulated to be equal to 0.20. Under both frameworks, the 
bias was the largest when ρ (C1, C2) was equal to 0.80 (estimate of 
0.24 and 0.61 for the sum–score and IRT approach respectively). 
Estimates of ρ (E1, E2), were biased under both approaches with 
less bias when the IRT approach was used. The severity of this 
bias was independent of the magnitude of the correlation.

APPLICATION

To further illustrate the differences and similarities between the 
classical approach (e.g., using sum–scores) and the psychometric 
approach (e.g., analyzing item-level data), we applied both 
approaches to longitudinal twin data consisting of two 
measurement occasions.

Data
As part of a much larger study (see e.g. Posner et al., 1996) 
conducted in Australia in 1980 (first wave) and 1988 to 1990 
(second wave), the dataset contained twins’ item answers on a 
scale developed by Wilson and Patterson (1968) that measures 
social attitudes related to the conservatism by means of 28 items. 
The total sample size was 8,016 twin pairs of which 4,541 were 
DZ twin pairs and 3,475 MZ twin pairs. Mean age was 31.61 
(SD = 14.28, range of 13–96) at the second wave and twins were 8 
years younger at the first wave (e.g., mean age of 23.61). The scale 
consists of very short catch-phrases, as for example “Liberals” 
and “Living together.” The test taker is given a list of these catch-
phrases and is instructed as follows: “Please indicate whether 

TABLE 4 | Results of simulation study 2. 

ρ (C1, C2) = 0.2 ρ (C1, C2) = 0.5 ρ (C1, C2) = 0.8

hT1
2 hT 2

2 ρ  
(A1, A2) 

ρ  
(C1, C2)

ρ  
(E1, E2)

hT1
2 hT 2

2 ρ  
(A1, A2) 

ρ  
(C1, C2) 

ρ  
(E1, E2) 

hT1
2 hT 2

2 ρ  
(A1, A2) 

ρ  
(C1, C2) 

ρ  
(E1, E2) 

True value 0.60 0.60 0.20 0.20 0.80 0.60 0.60 0.20 0.50 0.80 0.60 0.60 0.20 0.80 0.80 
Sum–scores 0.56 

(0.03) 
0.50 
(0.05) 

0.21 
(0.05) 

0.21 
(0.16) 

0.32 
(0.03) 

0.55 
(0.03) 

0.48 
(0.05) 

0.23 
(0.06) 

0.23 
(0.13) 

0.31 
(0.03) 

0.51 
(0.04) 

0.47 
(0.05) 

0.24 
(0.06) 

0.24 
(0.09) 

0.32 
(0.03) 

0.03 0.05 0.06 0.06 0.03 0.03 0.06 0.06 0.06 0.03 0.04 0.05 0.06 0.06 0.03 
IRT 0.65 

(0.04) 
0.56 
(0.06) 

0.24 
(0.06) 

0.25 
(0.06) 

0.65 
(0.05) 

0.63 
(0.05) 

0.56 
(0.06) 

0.28 
(0.06) 

0.55 
(0.06) 

0.65 
(0.06) 

0.58 
(0.05) 

0.55 
(0.06) 

0.30 
(0.06) 

0.61 
(0.06) 

0.65 
(0.05) 

0.03 0.06 0.04 0.08 0.04 0.04 0.06 0.05 0.09 0.04 0.05 0.05 0.06 0.08 0.05 

ρ(A1, A2) fixed to 0.2 and ρ(E1, E2) to 0.8 while ρ(C1, C2) is equal to 0.2, 0.5 and 0.8. Average posterior means (SD) averaged over 150 replications. Third line: Standard deviation of 
posterior means.
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or not you agree with each topic by circling “Yes” or “No” as 
appropriate. If uncertain, please circle “?.”

For a direct application of the model presented here, answer 
categories were recoded as 0 (“No”), missing (“?”) and 1 (“Yes”) 
to get dichotomously scored item data suitable for analysis under 
the Rasch model. Note however that IRT models that can handle 
ordinal data such as the partial credit model (PCM) or the 
graded response model (GRM), might be more suitable for the 
data at hand (see Schwabe et al., 2016). Before analyzing the data, 
a factor analysis and reliability analysis was performed to select 
items that form together a unidimensional and reliable scale. 
For the factor analysis, the psych rpackage (Revelle, 2018) was 
used which allows performing an exploratory factor analysis on 
dichotomous data based on the polychoric correlations among 
the individual items. Based on the results, a total of 16 items was 
selected. Four of these items were recoded since they showed 
a negative correlation with the sum–score. This resulted in a 
unidimensional scale with Cronbach’s alpha equal to 0.75 and 
(Spearman Brown corrected) split-half reliability equal to 0.81 
and 0.82 at the first and second time point respectively.

Analysis
To determine what genetic model fitted the data well, while, at 
the same time, being parsimonious, we first run both an ACE and 
AE model under the IRT approach and calculated the deviance 
information criterion (DIC, Spiegelhalter et al., 2002). The DIC 
is a measure that estimates the amount of information that 
is lost when a given model is used to present the process that 
generates the data while taking into account both goodness of fit 

and complexity of the particular model. Based on the results, the 
AE model was chosen and also analyzed under the sum–score 
approach. Under both approaches, we assumed that the missing 
data was missing at random (MAR). Under the IRT approach, we 
assumed measurement invariance.

For the data cleaning and analysis of results, we used the 
statistical software package R (R Development Core Team, 2008). 
The MCMC estimation was done in JAGS (Plummer, 2003) 
and the rjags package (Plummer, 2013) was used as a pipeline 
between JAGS and R. For both approaches, we used the same 
prior distributions and scripts as in the simulation study (see the 
online Supplementary Material). As in the simulation study, we 
chose the number of burn-in iterations that were needed to draw 
from the posterior distribution on earlier test runs with multiple 
chains and calculating the Gelman and Rubin diagnostic.

Sum–Score Approach
For the sum–score approach, we had to calculate the sum–score 
for every twin by adding up his or her answer on every item. As 
simple imputation methods (e.g., imputing all missing responses 
of an item by its mean or mode of the available responses) 
resulted in quite peaked distributions and will likely result in 
bias, we decided to calculate an individual’s twin sum–score 
based on all non-missing answers. The variance decomposition 
was then done directly on the sum–score (see Equations 19 
and 20). The distribution of sum–scores (MZ and DZ twins) 
at both time points can be seen in Figure 1. After an adoption 
phase of 5,000 iterations and 22,000 burn-in period iterations, 
the characterization of the posterior distribution was based on 
15,000 additional iterations from 1 chain.

FIGURE 1 | Data application: Distribution of the sum–scores of both MZ and DZ twins at the first (left side) and second (right side) time point.
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IRT Approach
Using the IRT approach, we were able to analyze the data on 
item-level such that we could immediately use the raw data as 
input in JAGS (Plummer, 2003) without having to impute data 
first. JAGS automatically imputes the missing item data from 
the parameter estimates (e.g., as derived from the observed 
outcomes) at every iteration. Note also that the IRT approach 
uses a different missing data treatment than the sum–score 
approach. This will impact the results additional to the different 
ways of dealing with measurement error. After an adoption phase 
of each 5,000 iterations and 5,000 burn-in period iterations, 
the characterization of the posterior distribution was based on 
15,000 additional iterations from 1 chain.

Under both approaches, we calculated heritability at both time 
points, hT1

2  and hT 2
2 , the correlation between additive genetic 

influences between additive genetic influences [e.g., ρ (A1, 
A2)] as well as the correlation between unique-environmental 
influences [e.g., ρ (E1, E2)] and the phenotypic stability, defined 
as the correlation between observed sum–scores at both time 
points (sum–score approach) and as the correlation between 
latent trait scores at both time points (IRT) approach. For every 
parameter, we also calculated the 95% highest posterior density 
interval (HPD, see, e.g., Bolstad, 2007), using the rpackage 
BayesTwin (Schwabe, 2017). The HPD can be seen as the 
Bayesian counterpart of a frequentist confidence interval.

Heritability was defined as the proportion of the 
phenotypic variance (at the respective time point) that can 
be explained by additive genetic variance and was calculated 
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Application Results
Estimated heritability at both time points (e.g., hT1

2  and hT 2
2 ), 

estimated correlation between additive genetic influences [e.g., 
ρ(A1, A2)] and between unique-environmental influences [e.g., 
ρ(E1, E2)] are displayed in Table 5 for both the IRT-based (first 
part of the table) and sum–score based (second part of the table) 
analysis. In the first row of every analysis part, the posterior mean 
and standard deviation is displayed and in the second row the 

95% highest posterior density interval (HPD, see, e.g., Bolstad, 
2007). The IRT approach resulted in a much higher estimate 
of phenotypic stability than the sum–score approach: The 
correlation between observed sum–scores at both time points 
(sum–score approach) was equal to 0.50 and the correlation 
between latent trait scores at both time points (IRT) was equal 
to 0.95.

It can be seen that heritability estimates were the same for the 
first time point under both approaches. The IRT approach however 
resulted in a higher heritability estimate at the second time 
point (e.g., 68% and 85% respectively). By using a longitudinal 
design instead of two cross-sectional analyses, we can also draw 
conclusions on the (relative importance of) additive genetic and 
unique-environmental influences in creating covariance between 
the personality measures at the two waves. Both approaches 
resulted in higher estimates of ρ (A1, A2) compared to ρ (E1, E2), 
meaning that additive genetic influences were more important 
in creating covariance between the two time points. However, 
estimates were generally higher under the IRT approach [e.g., ρ 
(A1, A2) = 0.95 and ρ (E1, E2) = 0.83] than under the sum–score 
approach [e.g., ρ (A1, A2) = 0.58 and ρ (E1, E2) = 0.23].

Note that the IRT approach leads to different conclusions than 
the sum–score approach. While the IRT-based analysis resulted 
in comparable estimates at both time points, the sum–score 
approach resulted in a lower heritability estimate at the second 
wave, suggesting that additive genetic influences were more 
important in creating individual differences at an earlier age 
than at a later age. Furthermore, the results of the IRT approach 
suggested that both, additive genetic and unique-environmental 
influences, were important in explaining covariance among the 
two waves (e.g., both estimates are above 0.80). Contrarily, the 
sum–score based results indicated that additive genetic influences 
were more important in explaining covariance between the two 
waves than unique-environmental influences [e.g., with ρ (A1, 
A2) being almost twice as big as ρ (E1, E2)].

DISCUSSION

Earlier research has shown that heritability estimates of 
univariate twin analyses can be biased when questionnaire 
items are aggregated into a single score such as is done in the 
commonly used sum–score approach. van den Berg et al. (2007) 
illustrated this potential bias and showed that the problem 
can be solved by, instead, analyzing item-level data through 
integrating an explicit measurement item response theory 
(IRT) model into the twin model. However, these results only 
apply to the case where the phenotype was measured at a single 
occasion. Here, we investigated how these results generalize to 
the longitudinal twin design, where the phenotype is assessed 
at multiple time points. Besides heritability estimates at all time 
points, this design allows us to estimate the magnitude of the 
covariance across time that can be explained by additive genetic 
and environmental influences respectively. After introducing 
a latent state longitudinal twin A(C)E model that integrates a 
Rasch IRT model into the longitudinal twin design, in this paper, 
we investigated 1) how large the bias is when the sum–score 

TABLE 5 | Longitudinal analysis of social attitudes related to conservatism. 
Results of the latent state model and the sum–score approach. 

hT1
2 hT 2

2 ρ (A1, A2) ρ (E1, E2) 

IRT-based analysis: 
Posterior 
mean (SD) 

0.85 (0.01) 0.84 (0.01) 0.95 (0.01) 0.83 (0.03) 

95% HPD [0.83;0.88] [0.81;0.86] [0.94;0.97] [0.77;0.88] 
Sum–score based analysis: 
Posterior 
mean (SD) 

0.85 (0.01) 0.68 (0.01) 0.58 (0.01) 0.23 (0.01) 

95% HPD [0.85;0.88] [0.66;0.69] [0.56;0.59] [0.20;0.26] 

Posterior mean (standard deviation) and the 95% HPD of the variance components 
and of the inter-temporal correlations for the AE model at two time points. Based on 
N = 8,016 twin pairs (4,541 DZ twin pairs and 3,475 MZ twin pairs).
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approach is used in the longitudinal design, and 2) if we can solve 
the potential bias by using the latent state longitudinal model. To 
this end, two simulation studies were conducted.

In the first simulation study, a fixed number of twin pairs and 
items was simulated while the magnitude of covariance that was 
due to additive genetic- and unique-environmental influences 
was manipulated. Since the the latent state longitudinal twin 
model is computationally demanding, we used a simple AE 
model in the first simulation study which allowed us to simulate 
and analyze a broader range of scenarios. As expected, results 
showed that heritability estimates were underestimated when 
the sum–score approach was used compared to only little bias 
when the simulated data was analyzed with the latent state 
model. Surprisingly, under some conditions, estimates of the 
sum–score approach concerning the correlation between 
additive genetic influences at both time points [e.g., ρ (A1, A2)] 
were closer to the simulated values than the estimates of the IRT-
based approach. This bias was, however, only small. Regarding 
covariance that can be explained by unique-environmental 
influences, there was bias in both approaches. The severity of 
this bias was clearly larger in the sum score approach, but not 
negligibly low in the IRT approach either. This bias increased 
with increasing magnitude of the correlation. A similar picture 
emerges in the field of multitrait–multimethod research. Here, 
it has been shown that the correlated trait- correlated-methods  
model (Jöreskog, 1974; Widaman, 1985), which technically 
resembles the latent state twin model, is affected by identification 
and estimation problems, especially when trait and method 
factors are highly correlated among each other (Marsch, 1989; 
Marsh and Bailey, 1991; Kenny and Kashy, 1992; Marsh et al., 
1992). Translated to the case of the latent state twin model, 
this means that estimation problems are to be expected when 
the additive genetic- and unique-environmental influences are 
rather stable across time.

Based on the results of the first simulation study, the worst 
case scenario was selected (e.g., the one with the largest bias) 
and then this scenario was replicated in the second simulation 
study while the magnitude of covariance between the two points 
due to common-environmental influences was manipulated 
[e.g., estimating an ACE model with varying ρ (C1, C2)]. As 
in the first simulation study, heritability at both time points 
was underestimated when the sum–score approach was used. 
Although there was more bias under the sum–score approach, 
compared to the first simulation study, there was also non-
negligible bias in the heritability estimates when the IRT 
approach was used. While ρ (A1, A2) and ρ (E1, E2) were less 
biased when the IRT approach was used, surprisingly, there was 
less bias in the results of the sum–score approach in estimates 
of ρ (C1, C2). This bias can be related to our choice of prior 
distributions. Although the inverse Wishart distribution is a 
common choice for variance-covariance matrices (van Erp et al., 
2018), research has shown that this prior setting also comes with 
disadvantages, such that the uncertainty for all parameters of the 
variance–covariance matrix is controlled by a single degree of 
freedom parameter (Gelman et al., 2004). One of the proposed 
alternatives to overcome these problems consists of using 
hierarchical inverse Wishart priors where hyperpriors are used, 

meaning that also for the diagonal elements of the scale matrix 
(Huang and Wand, 2013) or both the diagonal elements of the 
scale matrix and the degrees of freedom of the inverse Wishart 
prior (Bourina and Feron, 2013), prior distributions are used. 
In an additional simulation study, we investigated the effect of a 
couple of different prior settings where we directly followed the 
approach by Ulitzsch et al. (2019) who provide JAGS syntax for 
a different but similar application. However, the model would 
not converge (even after 500,000 burn-in iterations), which 
might have to do with the increase in parameters that had to be 
estimated. More research is needed to fully explore this option. 
Details and results of this additional simulation study can be 
obtained from the first author of this paper.

Even with the presence of some bias, given the available 
options, we would still argue for the use of latent variable 
modelling, as it comes with many further advantages not 
illustrated here (see also Eaves et al., 2005). These include the 
possibility to treat missing values using sophisticated methods. 
Also, when some items in a questionnaire change across birth 
cohorts or across different age range, a sum–score approach 
may no longer be appropriate, but in many cases, the analysis 
can still be meaningfully carried out under the IRT framework 
(van den Berg et al., 2014). Furthermore, earlier research has 
shown that the use of an aggregated score as the sum–score 
can lead to the spurious finding of a genotype by environment 
interaction in case of heterogeneous measurement error while 
an IRT-based approach is unbiased (Wray et al., 2008; Molenaar 
and Dolan, 2014; Schwabe and vanden Berg, 2014; Schwabe 
et al., 2017). A further advantage of the IR approach is the 
possibility to investigate group differences (e.g., differential item 
functioning, DIF).

It has to be noted that the simulated data does not necessarily 
reflect the complex structure seen in real data. For example, in 
practice, questionnaire data is seldom normally distributed (see 
e.g. Hertzog and van Alstine, 1990) and questionnaires often 
consist of only a limited number of items. Gorter et al. (2015) 
used a simulation study to compare IRT-based plausible value 
techniques to the results of sum–score based analyses in a multilevel 
longitudinal design. This design can be seen as a simple form of 
the longitudinal twin AE decomposition model (e.g., without 
different genetic correlations and more individuals in every 
group). In their simulations, they also manipulated the number 
of questionnaire items, the sample size, and the skewness of the 
questionnaire data distribution. They found that the difference 
between both methods becomes consistently larger for the more 
extreme conditions of the simulation, indicating that IRT-based 
plausible value techniques are quite robust against more extreme 
data situations while the bias in the sum–score approach becomes 
even worse. These results of course do not generalize one by one 
to a twin design, but based on these results we expect that also in 
the framework of the longitudinal twin design the IRT approach 
will be more robust than the sum–score approach.

To illustrate the difference between the classical approach (e.g., 
using sum–scores) and psychometric genetic modelling (e.g., 
using an IRT model and analyzing item-level data), we analyzed 
data of a two-wave twin study, consisting of the answers of 8,016 
twins on scale developed to measure social attitudes related to 
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conservatism. The data was analyzed using both approaches, the 
sum–score approach and the IRT approach. The IRT approach 
resulted in a higher heritability estimate at the second time point 
and higher covariance estimates, which is in line with the results of 
the simulation studies. Also, intuitively, these results make sense: 
When not taken into account, measurement error will lead to an 
attenuation of correlations [see also van den Berg et al. (2007) for 
the univariate case]. While the IRT approach suggested that both, 
genetic and environmental influences, are important in explaining 
covariance between the two waves, estimates of the sum–score 
approach were 1) generally smaller (suggesting less covariance in 
general) and 2) suggested that additive genetic influences are more 
important in explaining covariance between the two waves than 
unique-environmental influences. Note that the two analyses do 
not only differ in how measurement error was accounted for, but 
also in how missing values were treated. IRT modeling allows for 
more sophisticated approaches for dealing with missing data. Of 
course, in real empirical examples, a more thorough psychometric 
analysis would be needed. We used a Rasch and AE model here, 
but the syntax can easily be changed to IRT models that can 
handle ordinal data (see Schwabe et al., 2016).

A limitation of this paper is that we did not model any residual 
correlations within twin pairs that cannot be explained by 
genetic or environmental influences (e.g., accommodated by the 
application of the ACE model) but are due to model violations 
of local independence. It is important to note that, depending 
on the phenotype of interest, this assumption might not hold, 
since responses of twins of the same twin pair, conditional on the 
latent variables, can still be correlated due to shared item-specific 
genetic and environmental influences. Molenaar and Dolan 
(2014) show how possible violations of conditional independence 
can be modeled by introducing additional latent variables in the 
univariate case (e.g., one measurement point). Note however 
that this will result in a more complex model which potentially 
introduces estimation problems.

In this paper, we only considered the latent state model 
for longitudinal genetic data. There are, however, also other 
longitudinal models such as the genetic simplex model (Boomsma 
and Molenaar, 1987). The choice of a model depends on the specific 
hypotheses a researcher has for the data at hand. Regarding the 
modelling of the phenotype, similar results to those found in 
this paper are expected for these models. IRT models will surely 

enable a more sophisticated way to deal with measurement error, 
missing values, measurement invariance, and changing items.
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