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Sirtuins (SIRTs) 1–7 are a family of intracellular enzymes, which possess nicotinamide 
adenine dinucleotide-dependent deacetylase activity. Emerging evidence suggest that 
SIRTs play vital roles in tumorigenesis by regulating energy metabolism, DNA damage repair, 
genome stability, and other cancer-associated cellular processes. However, the distinct 
roles of the seven members in ovarian cancer (OC) remain elusive. The transcriptional 
expression patterns, prognostic values, and genetic alterations of seven SIRTs in OC 
patients were investigated in this study using a range of databases: Oncomine and Gene 
Expression Profiling Interactive Analysis, Kaplan–Meier plotter, the Cancer Genome 
Atlas, and cBioPortal. The protein–protein interaction networks of SIRTs were assessed 
in the String database. Gene Ontology enrichment and Kyoto Encyclopedia of Genes 
and Genomes pathway were analyzed in Database for Annotation, Visualization, and 
Integrated Discovery. The mRNA expression levels of SIRT1–4 and 7 were downregulated, 
while that of SIRT5 was upregulated and SIRT6 exhibited both expression dysregulation 
in patients with OC. Dysregulated SIRTs mRNA expression levels were associated with 
prognosis. Moreover, genetic alterations primarily occurred in SIRT2, 5, and 7. Network 
analysis indicated that SIRTs and their 20 interactors were associated with tumor-related 
pathways. This comprehensive bioinformatics analysis revealed that SIRT1–4, 6, and 7 
may be new prognostic biomarkers, while SIRT5 is a potential target for accurate therapy 
for patients with OC, but further studies are needed to confirm this notion. These findings 
will contribute to a better understanding of the distinct roles of SIRTs in OC.
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INTRODUCTION

Ovarian cancer (OC) ranked eighth in incidence and seventh in mortality rates globally among 
all cancers in women in 2018 (WHO, http://gco.iarc.fr/today/home). Furthermore, the absence of 
incipient symptoms leads to over three quarters of patients being diagnosed at advanced stages 
(Zhou et al., 2018). Standard treatment for this disease involves surgical intervention combined 
with chemotherapy. Although the use of gene sequencing and targeted therapies have improved the 
survival of OC patients, the 5-year survival rate is still poor because of the complex tumor processes 
and pathological subtypes of OC and the shortage of more specific target biomarkers. Therefore, 
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enhancing therapy requires new biomarkers for prognosis and 
individualized treatment of OC.

Sirtuins (SIRTs) are a family of intracellular enzymes that 
possess nicotinamide adenine dinucleotide (NAD+)-dependent 
deacetylase activity and share a highly conserved 275-amino 
catalytic core domain. Seven members (SIRT1–7) in mammals 
are divided into the following four classes: SIRT1–3, I; SIRT4, 
II; SIRT5, III; and SIRT6-7, IV (O’Callaghan and Vassilopoulos, 
2017). Based on their subcellular localization, they can also be 
categorized as follows: SIRT1, 6, and 7 reside in the nucleus; 
SIRT2 is expressed in both the nucleus and cytoplasm; and 
SIRT3, 4, and 5 are in the mitochondria (Chalkiadaki and 
Guarente, 2015). Emerging evidence suggest that SIRTs play 
vital roles in tumorigenesis by regulating energy metabolism, 
DNA damage repair, genome stability, and various other 
cancer-associated cellular processes. Aberrant expression of 
SIRTs has been found in common human carcinomas such 
as breast, lung, liver, and gastrointestinal cancers, as well as 
OC and neurologic tumors (Chen et al., 2013; Chalkiadaki 
and Guarente, 2015; Osborne et al., 2016; O’Callaghan and 
Vassilopoulos, 2017).

Presently, the dysregulated expression of SIRTs and their 
prognostic value have been partly reported in OC. For example, 
the expression of SIRT1 was found to be higher in 68 OC tissue 
samples than it was in 16 normal ovaries (Mvunta et al., 2017). 
Consistent with this study, overexpression of SIRT1 was also 
reported in 90 OC tissue samples compared with 40 normal ovary 
tissues, and, interestingly, a high expression level of SIRT1 was 
associated with a favorable outcome (Jang et al., 2009). However, 
a converse finding that SIRT1 was downregulated in OC based on 
public datasets has also been reported (Hyde et al., 2018). SIRT2 
predicted poor survival when upregulated in patients with OC 
(Teng and Zheng, 2017), while reduced expression of SIRT2 was 
observed in 13 samples of serous ovarian carcinoma compared 
with 11 samples of normal ovarian surface epithelial tissues (Du 
et al., 2017). At least one copy of the SIRT3 gene was deleted in 40% 
of breast and OCs, and focal deletions of SIRT3 were especially 
frequent in ovarian tumors (Finley et al., 2011). In contrast, the 
region encompassing the SIRT5 locus was amplified in 30% of 
high-grade serous ovarian carcinomas (Bell et al., 2011a). SIRT3 
and SIRT5 expression were found to be significantly decreased 
and increased in primary serous OCs/tubal cancers compared 
with that in normal counterparts, respectively (Li et al., 2019). 
SIRT4 has been reported to function as a tumor suppressor in 
published studies, and reduced expression in OC was reported 
in a meta-analysis (Csibi et al., 2013).The mRNA expression of 
SIRT6 in 32 OC tissue samples was remarkably lower than that 
in paired normal ovarian tissues (Zhang et al., 2015), whereas 
there were higher SIRT7 mRNA levels in OC, although without 
statistical significant, which could have been due to the small 
sample sizes analyzed (Aljada et al., 2015).

These findings indicate that SIRTs are closely associated with 
OC, and it is striking that even in the same tumor, the specific 
roles of individual SIRTs can be controversial, which may be 
partly ascribed to small sample sizes. A comprehensive analysis 
of the expression and mutation patterns and prognostic values 
of SIRTs in OC based on large database analysis would enhance 

the understanding of their potential roles in OC. Therefore, we 
conducted this study to investigate this phenomenon.

METHODS

Ethics Statement
The OC specimens and normal tissues were obtained from 
patients who were diagnosed with OC and underwent primary 
cytoreductive (debulking) surgery from Aug 2017 and May 
2018 in First Affiliated Hospital, China Medical University. The 
enrolled patients had signed informed consent. This study was 
approved by the Medical Research Ethics Committee of China 
Medical University and conducted according to the principles 
expressed in the Declaration of Helsinki. All the datasets were 
retrieved from the published literature, so it was confirmed that 
all written informed consent was obtained.

Oncomine Database
The Oncomine database (www.oncomine.org) (Rhodes et al., 
2004), an online cancer microarray database and web-based 
data-mining platform, was used to investigate the transcriptional 
levels of SIRTs in different clinical cancer specimens and 
corresponding normal controls. The search contents and 
thresholds were set as follows: keywords, SIRT1–SIRT7, primary 
filter, cancer vs. normal; cancer type, OC, the absolute value of 
log2 fold change >1.5, P < 0.05; and gene rank, 10%. The P value 
was calculated using the Student’s t test.

GEPIA Database
The Gene Expression Profiling Interactive Analysis (GEPIA) 
database (http://gepia.cancer-pku.cn/), a newly developed web-
based tool, provides key interactive and customizable functions 
including tumor vs. normal differential expression analysis, 
profiling plotting in accordance with cancer types or different 
pathological stages, correlation analysis, patient survival analysis, 
similar gene detection, and dimensionality reduction analysis 
based on the Cancer Genome Atlas (TCGA) and the genotype–
tissue expression data (Tang et al., 2017).

The Kaplan–Meier Plotter
The prognostic value of SIRTs in OC patients was evaluated using 
the Kaplan–Meier plotter (http://kmplot.com/analysis), an open 
online dataset that can be used to assess the effect of 54,675 genes 
on survival in 21 cancer types including breast, liver, ovarian, lung, 
and gastric cancer (Győrffy et al., 2012). To analyze the overall 
survival (OS) and progression-free survival (PFS) of patients with 
OC, samples were split into two groups based on median expression 
(high vs. low). The hazard ratio (HR) with 95% confidence intervals 
(CIs) and log-rank P values were calculated and displayed in 
survival plots. P < 0.05 was considered statistically significant.

TCGA Database and cBioPortal
The cBioPortal for Cancer Genomics (http://cbioportal.org) 
provides an open-access web resource for exploring, visualizing, 
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and analyzing multidimensional cancer genomic data from 
TCGA (Gao et al., 2013). In the present study, three TCGA 
datasets of OC, namely, “TCGA Nature 2011 (563 cases),” 
“TCGA PanCancer Atlas (585 cases),” and “TCGA Provisional 
(606 cases)” were selected for further analysis of SIRT gene 
mutations or copy number alterations (CNA). The OncoPrint, 
survival tabs were applied according to the online instructions 
of the cBioPortal.

String Database and DAVID
The interaction proteins network of SIRTs was constructed using 
the String Database (https://string-db.org/), which is an online 
database of predicted functional associations between proteins 
(von Mering et al., 2003). “Homo sapiens” was selected and 
interactions with a combined score >0.7 (high confidence) were 
considered significant. Seven SIRTs and 20 associate proteins 
were imported into Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/) 
to perform Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses (Huang et al., 2009a; 
Huang et al., 2009b). The human genome was selected as 
the background parameter, and a P < 0.05 was considered 
statistically significant.

Immunohistochemistry
Surgically excised normal and tumor specimens were fixed in 
10% neutral formalin, embedded in paraffin, and cut into 4-mm 
sections. The sections were incubated with commercial rabbit 
polyclonal antibodies against SIRT1, SIRT2, SIRT3, SIRT4, 
SIRT5, SIRT6, and SIRT7 (SIRT1, 2, 5–7 were purchased from 
Proteintech, China; SIRT3 and SIRT4 were purchased from 
Abcam, China) at 1/100 dilution overnight at 4°C. Then, the 
reaction was visualized using the Elivision super HRP IHC Kit 
(Maixin-Bio) and 3,3-diaminobenzidine (DAB); nuclei were 
counterstained with hematoxylin. The sections were dehydrated 
in ethanol before mounting.

Cell Culture and Quantitative Real-Time 
PCR Analysis
The A2780 and SKOV-3 human OC cell lines were used in this 
study. The cells were cultured in Dulbecco’s modified Eagle 
medium and RPMI-1640, respectively, supplemented with 
10% fetal bovine serum. These cells were grown at 37°C in a 
humidified atmosphere with 5% CO2.

Trizol (Invitrogen, Carlsbad, CA) was used to extract total RNA 
from OC cells. One microgram RNA was reverse transcripted 
using the PrimeScript RT Master Mix (TaKaRa) according to 
manufacturer’s instructions. Quantitative real-time PCR (qRT-
PCR) was done using Applied Biosystems Power SYBR Green 
on a qTOWER2.0. Real-time PCR system is as follows: 10 s at 
95°C, then 40 cycles at 95°C for 5 s, and 65°C for 34 s. The gene 
amplification specificity was shown by a melting curve generated 
in dissociation procedure. 2−ΔΔCt method was used to normalize 
the quantification of SIRT1-7 to glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). The specific primer sequences are 
performed as follows:

GAPDH Forward 
5′-CCACCCATGGCAAATTCC-3′

Reverse 
5′-GATGGGATTTCCATTGATGACA-3′

SIRT1 Forward 
5′-GTAGGCGGCTTGATGGTAATC-3′ 

Reverse 
5′-GACTCTGGCATGTCCCACTAT-3′

SIRT2 Forward 
5′-GCGGAACTTATTCTCCCAGAC-3′ 

Reverse 
5′-GCTCCCACCAAACAGATGAC-3′

SIRT3 Forward 
5′-CTGTGGGTGCTTCAAGTGTTG-3′ 

Reverse 
5′-CCCGAATCAGCTCAGCTACAT-3′

SIRT4 Forward 
5′- ACACTGGGCTTTGAGCACCT-3′

Reverse 
5′-GAGTCTGTTCCCCACAATCCA -3′

SIRT5 Forward 
5′-TCGTGGTCATCACCCAGAAC-3′ 

Reverse 
5′-GCCACAACTCCACAAGAGGTAC-3′

SIRT6 Forward 
5′-GCCAAGTGTAAGACGCAGTAC-3′ 

Reverse 
5′-TAGGATGGTGTCCCTCAGCT-3′

SIRT7 Forward 
5′-CATCGTGAACCTGCAGTGGA-3′ 

Reverse 
5′-GGGAGTCGCCAGTGAGAAAA-3′

RESULTS

Transcriptional Levels of SIRTs and Their 
Relationship With Clinicopathological 
Characters in Patients With OC
The dysregulated transcriptional levels of seven SIRTs have been 
identified in 20 different types of human cancers in the Oncomine 
database. As shown in Figure 1, SIRTs might act as either a tumor 
promoter or suppressor, in a context-specific manner. Especially, 
the mRNA expression levels of SIRT1 were significantly 
downregulated in patients with OC in Bonome’s dataset (Bonome 
et al., 2008) with a log2 fold change of −1.866, while SIRT5 and 
SIRT7 were higher in ovarian serous adenocarcinoma in two 
another datasets (Yoshihara Ovarian and TCGA datasets; log2 
fold changes, 1.929 and 1.626, respectively) (Yoshihara et al., 
2009) than in normal ovarian tissues (Table 1, bold font).

Moreover, the mRNA levels of SIRTs in different types of OC, 
which were available in Oncomine datasets, are summarized in 
Table 1. In Hendrix’s dataset, SIRT1, SIRT3, and SIRT4 expression 
levels were significantly lower in serous, endometrioid, mucinous, 
and clear cell adenocarcinoma than they were in normal ovarian 
tissues. SIRT2 expression was lower in serous and endometrioid 
adenocarcinoma in Lu’s dataset (Lu et al., 2004), whereas SIRT5 
was upregulated in those types of OC in Hendrix’s dataset 
compared with normal tissues (Hendrix et al., 2006). SIRT6 was 
expressed at higher levels in all types of OC than it was in normal 
tissues in Hendrix’s dataset except for serous adenocarcinoma. 
Interestingly, SIRT7 was downregulated in OC in Bonome’s dataset 
but upregulated in both TCGA and Hendrix’s datasets compared 
with normal tissues (Hendrix et al., 2006; Bonome et al., 2008).

In addition, the GEPIA database was also used to compare 
the mRNA expression of SIRTs between OC and normal tissues. 
The expression levels of SIRT1–3 were significantly lower, and 
levels of SIRT4, 6, and 7 were slightly more downregulated 
(P > 0.05) in OC than they were in normal tissues, while SIRT5 
exhibited contrasting expression (Figure 2A). The results were 
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consistent with those of the Oncomine database except for that 
of SIRT6. These findings were verified by immunochemistry 
(IHC), and as shown in Figure 2B, SIRT5 protein expression was 
higher in OC than in the counterpart normal tissues, while the 
protein expression difference of other SIRTs was not significant. 
Furthermore, the mRNA levels of SIRTs in two OC cell lines were 
detected by qRT-PCR, and the results were similar to the IHC 
(Figure 2C). The relationship between mRNA expression levels 
of SIRTs and different tumor stages of OC were also analyzed, 
and they were all significantly upregulated in stage II except for 
SIRT2 and SIRT4 (Figure 3).

Prognostic Value of SIRTs in Patients With 
OC
To further assess the prognostic value of SIRTs in all patients 
with OC, Kaplan–Meier plotter analysis was used. We initially 
assessed the relationship between the mRNA expression of 
individual SIRT and the survival of OC patients. The survival 

curves demonstrated that decreased SIRT1 and SIRT4 mRNA 
levels and increased expression of SIRT2, 3, 6, and 7 predicted 
favorable prognosis (OS and PFS). Interestingly, a higher level of 
SIRT5 was associated with shorter PFS but with longer OS. Then, 
we also wondered the prognostic value of the combined SIRTs, 
and the results showed that upregulated levels of their combined 
mRNA expression was correlated with poor outcome in patients 
with OC (Figure 4).

Moreover, we also assessed the prognostic values of SIRTs 
in different subtypes of OC, namely, different histology, clinical 
stages, pathological grades, and TP53 status, which are available 
in Kaplan–Meier plotter. As shown in Table 2, increased 
mRNA expression of SIRT3, 5, 6, and 7 in serous OC patients 
and decreased levels of SIRT4 in both serous and endometrioid 
OC patients were significantly related to improved OS. The 
overexpression of SIRT2–4 predicted shorter PFS in serous OC 
patients. As shown in Table 3, high mRNA expression of SIRT5 
and low expression of SIRT6, 7 were associated with poor OS in 
stage 1. Elevated mRNA levels of SIRT3, 5–7 and low levels of 

FIGURE 1 | The mRNA levels of sirtuins (SIRTs) in 20 different types of cancers (Oncomine). The number in each cell represents the number of analyses that 
satisfied the following threshold: P < 0.05, the absolute value of log2 fold change >1.5, and gene rank, 10%. The numbers in colored cells show the quantities of 
datasets with statistically significant mRNA overexpression (red) or downexpression (blue) of target genes.
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SIRT1, 4 were associated with better OS in stage 3, while high level 
of SIRT2 predicted poor OS in stage 4. In terms of pathological 
grades, high SIRT6 mRNA expression was linked to favorable 
OS. Interestingly, increased expression of SIRT3 predicted poor 
OS in mutated TP53 type, while it was associated with better OS 
in wild-type TP53. With respect to PFS (Table 4), high mRNA 
expression of SIRT1-3 and 7 were found to be correlated to 
shorter PFS in stage 1, whereas low levels of SIRT1, 5 and SIRT2, 
4, and 6 predicted longer PFS in stages 2 and 3, respectively. In 
stage 4, increased expression of SIRT2 and 3 were linked to poor 
PFS. With regard to pathological grades, decreased levels of 
SIRT2 and 4 predicted better PFS. Interestingly, SIRT3 exhibited 
opposite roles in different pathological grades. Additionally, 
elevated expression of SIRT1 and 2 were associated with poor PFS 
in both mutated and wild type of TP53, while increased levels of 
SIRT3, 6, and 7 were related to poor PFS in mutated TP53 status. 
Taken together, these results indicated that the mRNA expression 
levels of SIRTs may be potential biomarkers for the prediction of 
OC patient survival.

Genetic Alteration Analysis of SIRTs in 
Patients With OC
Next, the genetic alterations of SIRTs in OC patients were explored 
using the TCGA database and c-BioPortal online tool. SIRTs 
were altered in 1,754 samples of 1,742 patients from three TCGA 
databases of serous cystadenocarcinoma, and the alteration rates 
were 31.02% (188/606), 24.1% (141/585), and 16.7% (94/563), 
respectively, and the amplification accounted for most changes 
(Figure 5A). As shown in Figure 5B, the genetic SIRT alterations 
occurred in 423 (24%) of the queried samples, and the individual 
sequence alteration rates varied from 1.4 to 10%. SIRT2, SIRT5, 
and SIRT7 were ranked as the top 3 of the seven members, and 
their mutation rates were 10, 8, and 5%, respectively (Figure 5B). 
Using the “Survival” tab with the Kaplan–Meier plot and log-
rank test, the survival curves showed that cases with or without 
alterations in one of the SIRTs had no relationship with OS and 
PFS (Figures 5C, D).

GO Enrichment and KEGG Pathway 
Analysis of Protein–Protein Interaction of 
SIRTs
A network of seven SIRT members and 20 proteins that 
significantly interacted with SIRTs was constructed using 
the String database [protein–protein interaction (PPI) 
enrichment P < 1.0E−16]. The network graphic showed that 
cell metabolism-related genes tumor protein 53 (TP53), Fork 
head box O 1/3/4 (FOXO1/3/4), and superoxide dismutase 
2 (SOD2), and histone posttranscriptional modification-
related genes histone deacetylase 1/2/4 (HDAC 1/2/4), E1A 
binding protein p300 (EP300), and suppressor of variegation 
3–9 homolog 1 (SUV39H1) were associated with SIRTs 
(Figure 6A). Then, using “correlation analysis” in GEPIA, the 
Pearson correlation coefficients were calculated between SIRTs 
(Figure 6B), ranging from 0.073 (SIRT1 vs. SIRT2) to 0.39 
(SIRT1 vs. SIRT3).TA
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FIGURE 2 | The mRNA and protein expression of SIRTs in patients with ovarian cancer (OC). (A) Box plots of SIRTs mRNA expression based on GEPIA database. 
(B) The representative immunohistochemical staining images of SIRTs protein expression in ovarian cancer and normal tissues (magnification, ×400; scale bar = 
20 μm). (C) The mRNA levels of SIRTs in A2780 and SKOV-3 ovarian cell lines by quantitative real-time PCR (qRT-PCR).*P < 0.05, **P < 0.01,***P < 0.001, ****P < 
0.00001.
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Next, GO enrichment and KEGG pathway analysis of SIRTs 
and their interactors were performed using DAVID. Cellular 
components, biological process, and molecular functions 
were the three main functions of target host genes in the GO 
enrichment analysis. The nucleoplasm, nucleus, and cytoplasm 
were the major cellular components of target genes (Figure 7A). 
Regulation of transcription from RNA polymerase II promoter 
and DNA templated were mainly associated with SIRTs and 
their interacting neighbors while binding to DNA, chromatin, 
and transcription factor were their primary molecular functions 
predicted online (Figures 7B, C). The top 10 KEGG pathways for 
target genes are shown in Figure 7D, and the Notch, FOXO, and 
cancer pathways were found to be invoved in OC.

DISCUSSION

Emerging evidence suggest that SIRTs play vital roles in 
tumorigenesis mediated by their ability to regulate energy 
metabolism, DNA damage repair, genome stability, and other 
cancer-associated cellular processes. However, the distinct roles 
of seven SIRT members in OC are yet to be elucidated. In the 
current study, the mRNA expression patterns, prognostic values, 
genetic alterations, and PPI networks of SIRTs in OC patients 
were investigated through various large databases, including 
Oncomine and GEPIA, Kaplan–Meier Plotter, cBioPortal, and 
String. Moreover, GO enrichment and KEGG pathway were also 
analyzed via DAVID.

SIRT1 is the most studied of these seven SIRT members in 
human cancer and plays dual roles in numerous malignancies 
including OC (Chalkiadaki and Guarente, 2015). For example, 
the expression of SIRT1 was significantly higher in endometrioid, 

mucinous, and clear-cell OC than it was in normal ovaries in IHC 
analysis, and its overexpression predicted shorter survival in OC 
(Mvunta et al., 2017). Moreover, overexpression of nuclear SIRT1 
was also found to induce chemoresistance and poor prognosis 
in 63 OC patients (Shuang et al., 2015). Consistently, SIRT1 
was found to be involved in the high expression of cancer stem 
cell markers, chemoresistance, tumorigenesis, and epithelial to 
mesenchymal transition (EMT) phenotype (Qin et al., 2017). In 
contrast to these findings, SIRT1 was downregulated in OC based 
on public datasets and acts as a tumor suppressor (Hyde et al., 
2018). In our study, the mRNA expression of SIRT1 was markedly 
lower in OC tissues than it was in normal tissues. Interestingly, 
a higher mRNA expression of SIRT1 was significantly associated 
with poor outcome in OC.

SIRT2 was initially implicated in mitotic progression and 
serves as a cell cycle regulator (Dryden et al., 2003). Recently, 
several studies have highlighted the critical roles of SIRT2 in 
maintaining genome stability (Kim et al., 2011; Serrano et al., 
2013), suggesting that this SIRT mainly functions as a tumor 
suppressor (Chalkiadaki and Guarente, 2015). For example, 
SIRT2 expression in serous OC was significantly lower than it 
was in ovarian surface epithelium as determined using Western 
blotting and IHC. Reduced expression of SIRT2 upregulated 
cyclin-dependent kinase 4 (CDK4) expression, which eventually 
accelerated cell proliferation, migration, and invasion, indicating 
that SIRT2 plays a tumor-suppressor role in OC (Du et al., 2017). 
Consistently, in the present study, the mRNA expression of 
SIRT2 was considerably more decreased in OC, especially serous 
and endometrioid subtypes, than it was in normal tissues and 
increased levels predicted favorable OS and PFS in patients with 
OC. However, overexpression of SIRT2 was previously reported 
to have been related to a poor prognosis in 491 patients with OC 

FIGURE 3 | The relationship between SIRTs mRNA expression and tumor stages in patients with OC [Gene Expression Profiling Interactive Analysis (GEPIA)]. *P < 0.05.
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(Teng and Zheng, 2017). We assumed that this discrepancy may 
be due to the high mutation rate of SIRT2 (10%) in OC, which 
was identified in our study.

SIRT3 primarily serves as a tumor suppressor by limiting 
reactive oxygen species levels and antagonizing hypoxia-inducible 
factor 1-α, which fights against a metabolic switch to aerobic 
glycolysis (Bell et al., 2011b; Finley et al., 2011; Chalkiadaki 
and Guarente, 2015). SIRT3 was reported to be downregulated 
in both metastatic tissues and cell lines of OC and inhibit EMT 

by interacting with and repressing Twist (Xiang et al., 2016). 
Moreover, SIRT3 was reported to be activated by S1, a novel pan 
B-cell lymphoma-2 inhibitor, and then it exerted a proapoptotic 
effect in SKOV3 OC cells (Dong et al., 2016). SIRT3 was identified 
to decrease and function as an independent favorable prognostic 
factor for OS in serous OC (Li et al., 2019). Similarly, our study 
demonstrated that the transcription levels of SIRT3 in different 
subtypes of OC were remarkably lower than those in normal 
samples, and its increased mRNA expression was significantly 

FIGURE 4 | The prognostic value of mRNA level of SIRTs in patients with OC (Kaplan–Meier plotter). *P < 0.05.
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associated with tumor stage II and favorable outcome in OC. In 
addition, our results showing that the genetic alteration rate of 
SIRT3 was 2.4% and extensive deletion predominately occurred 
were in line with the findings that at least one copy of the SIRT3 
gene was deleted in 40% of breast cancers and OC, and focal 
deletions of SIRT3 were especially frequent (Finley et al., 2011).

SIRT4 has been largely reported to have protective roles 
against cancer by repressing glutamine metabolism and 
maintaining genomic stability (Fernandez-marcos and 
Serrano, 2013; Chalkiadaki and Guarente, 2015). However, 
its expression pattern and prognostic value in OC have been 
rarely reported. Only one meta-analysis suggested that lower 
expression of the SIRT4 gene was found in a series of solid 
carcinomas including OC than in corresponding normal 
tissue (Csibi et al., 2013). Likewise, our results showed that 
a lower mRNA expression of SIRT4 was found in OC than in 
normal tissues. Interestingly, a decreased level of SIRT4 was 
associated with unfavorable OS and PFS in OC, especially 
in serous subtypes. Although it is not clear, we ascribed the 
contradictory findings to the background heterogeneity 
between different databases.

SIRT5 is a unique member of the SIRT family, which possesses 
multiple enzymatic activities including NAD-dependent histone 
deacetylase (Nakagawa et al., 2009), potent lysine demalonylase, 
desuccinylase (Du et al., 2011), and lysine glutarylase (Tan et al., 
2014), now known to play controversial roles in tumorigenesis. 
However, an understanding of the distinct role of SIRT5 in OC 
is still in its infancy. An analysis of human high-grade serous 
ovarian carcinomas revealed that the region encompassing the 
SIRT5 locus was amplified in 30% of these tumors (Bell et al., 
2011a). Consistently, our results showed SIRT5 gene alteration 
in 8% of queried OC patients and amplifications accounted 
for most CNAs. Moreover, SIRT5 was found to increase in 
primary serous OCs/tubal cancers compared with that in normal 
tissues, and high expression of it was associated with better OS 
by univariable analysis (Li et al., 2019). Similarly, in our study, 
a higher mRNA level of SIRT5 was found in OC, especially in 

serous adenocarcinoma, and it was related to poor PFS in OC. 
Interestingly, increased expression of SIRT5 predicted superior 
OS, and this may be partly due to its marked overexpression in 
early tumor stages.

SIRT6 and SIRT7 are both nuclear proteins with deacetylase 
activity and function as both tumor suppressor and promotor 
in cancer, including OC (Chen et al., 2013; Chalkiadaki and 
Guarente, 2015). The mRNA expression of SIRT6 in 32 OC 
tissue samples was remarkably lower than that in the paired 
normal tissues, and SIRT6 inhibited the proliferation of OC 
cells by suppressing Notch 3 expression (Zhang et al., 2015). 
Conversely, the expression of SIRT6 was associated with higher 
tumor stage, higher histological grade, platinum resistance, 
and predicted shorter OS in 104 patients with OC. Moreover, 
SIRT6 was overexpressed in omental metastases compared 
with corresponding primary counterparts (Li et al., 2019) 
and facilitated the invasiveness of OC cells by regulating 
EMT signaling, but it did not inhibit their proliferation (Bae 
et al., 2018).

SIRT7 was overexpressed in OC tissues and cell lines (Barber 
et al., 2013), omental metastasis tissues (Li et al., 2019), and 
promoted tumor cell proliferative potential via regulating 
apoptosis (Wang et al., 2015). However, SIRT7 was significantly 
reduced in cultured chemoresistant OC cells (Aljada et al., 2014) 
and was considered a tumor suppressor based on its inhibition 
of the activity of HIF-1 and HIF-2 transcription factors (Hubbi 
et al., 2013). The present study demonstrated that SIRT6 and 
SIRT7 levels were slightly lower in OC than normal conditions 
based on the GEPIA database analysis (P > 0.05) but significantly 
upregulated in the Oncomine database. Moreover, overexpression 
of SIRT6 and SIRT7 was associated with tumor stage II and a 
better outcome.

In addition to the individual prognostic values of the 
investigated SIRTs, we further determined the simultaneous 
increase in the mRNA expression of all SIRTs predicted poor 
prognosis and whether the genes altered or not had no relationship 
with OS and PFS. In addition, the enrichment analysis indicated 

TABLE 2 | The prognostic values of SIRTs in different pathological subtypes OC (Kaplan–Meier plotter).

Sirtuins Histology OS PFS

Cases HR(95% CI) P value Cases HR(95% CI) P value

SIRT1
218878_s_at

Serous 1,207 1.15(0.99–1.34) 0.074 1,104 0.88(0.75–1.03) 0.1
Endometrioid 37 4.94(0.82–29.69) 0.053 51 0.56(0.22–1.43) 0.22

SIRT2
220605_s_at

Serous 1,207 1.13(0.95–1.33) 0.17 1,104 1.4(1.2–1.63) 1.6E−05
Endometrioid 37 3.84(0.43–34.41) 0.10 51 2.08(0.82–5.27) 0.11

SIRT3
221913_at

Serous 1,207 0.82(0.7–0.95) 0.0096 1104 1.21(1.03–1.41) 0.019
Endometrioid 37 0.46(0.08–2.75) 0.38 51 4.92(0.65–36.99) 0.086

SIRT4
220047_at

Serous 1,207 1.22(1.05–1.42) 0.011 1104 1.26(1.09–1.45) 0.0019
Endometrioid 37 9.36(1.04–84.6) 0.016 51 0.64(0.21–1.94) 0.42

SIRT5
229112_at

Serous 523 0.78(0.62–0.98) 0.036 483 1.17(0.94–1.47) 0.17
Endometrioid 30 3.01(0.31–29) 0.32 44 1.51(0.47–4.83) 0.48

SIRT6
219613_s_at

Serous 1,207 0.81(0.69–0.94) 0.0062 1104 1.14(0.97–1.33) 0.11
Endometrioid 37 0.17(0.02–1.5) 0.069 51 1.97(0.7–5.55) 0.19

SIRT7
218797_s_at

Serous 1,207 0.8(0.69–0.93) 0.0044 1104 1.1(0.93–1.3) 0.28
Endometrioid 37 – 0.18 51 1.99(0.79–5.03) 0.14

The bold font indicates the difference was significant statistically. “–”, not available;
OC, ovarian cancer; OS, overall survival; PFS, progression-free survival.
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TABLE 3 | The relationship between SIRTs and OS in other different subtypes of OC (Kaplan–Meier plotter).

SIRT1 SIRT2 SIRT3 SIRT4 SIRT5 SIRT6 SIRT7

Subtypes Cases HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P

Stage 1 74 2.38 
(0.75–7.54)

0.13 0.34 
(0.11–1.08)

0.056 2.31 
(0.62–8.55)

0.2 0.51 
(0.14–1.88)

0.3 5.65 
(1.13–
28.18)

0.017 0.31 
(0.1–0.96)

0.033 0.28 
(0.09–0.88)

0.02

2 61 1.68 
(0.56–5.06)

0.35 0.64 
(0.21–1.9)

0.42 0.55 
(0.18–1.66)

0.28 0.38 
(0.12–1.18)

0.082 0.27 
(0.05–1.44)

0.1 0.3 
(0.07–1.36)

0.099 0.52 
(0.18–1.51)

0.22

3 1044 1.21 
(1.03–1.42)

0.024 0.92 
(0.77–1.09)

0.33 0.75 
(0.63–0.88)

0.0005 1.29 
(1.08–1.54)

0.005 0.7 
(0.55–0.91)

0.0064 0.77 
(0.65–0.91)

0.0017 0.79 
(0.66–0.94)

0.0093

4 176 0.82 
(0.55–1.21)

0.31 1.48 
(1.02–2.14)

0.036 1.28 
(0.88–1.87)

0.19 1.31 
(0.86–2)

0.21 0.69 
(0.36–1.34)

0.27 0.66 
(0.43–1)

0.046 1.27 
(0.84–1.92)

0.26

Grade 1+2 380 1.28 
(0.95–1.73)

0.1 1.15 
(0.85–1.56)

0.37 0.59 
(0.44–0.79)

0.0004 0.8 
(0.58–1.1)

0.17 0.61 
(0.39–0.94)

0.024 0.62 
(0.46–0.83)

0.0011 0.76 
(0.57–1.02)

0.064

3 1015 1.18 
(0.99–1.41)

0.072 1.1 
(0.92–1.33)

0.3 0.84 
(0.7–1)

0.052 1.32 
(1.1–1.58) 

0.003 0.81 
(0.61–1.08)

0.16 0.82 
(0.69–0.97)

0.018 0.73 
(0.61–0.88)

0.0008

TP53 Mutated 506 1.21 
(0.95–1.53)

0.13 1.55 
(1.22–1.97)

0.0003 1.42 
(1.1–1.84)

0.0072 1.19 
(0.94–1.49)

0.14 0.5 
(0.32–0.77)

0.0015 1.17 
(0.92–1.49)

0.21 1.19 
(0.94–1.5)

0.15

WT 94 1.53 
(0.85–2.76)

0.15 0.64 
(0.37–1.12)

0.12 0.54 
(0.29–0.99)

0.043 1.69 
(0.95–3.02)

0.072 0.51 
(0.16–1.64)

0.25 0.67 
(0.38–1.18)

0.17 1.3 
(0.72–2.34)

0.38

The bold font indicates the difference was significant statistically. OC, ovarian cancer; OS, overall survival; WT, wild type.

TABLE 4 | The relationship between sirtuins and PFS in other different subtypes of OC (Kaplan–Meier plotter).

SIRT1 SIRT2 SIRT3 SIRT4 SIRT5 SIRT6 SIRT7

Subtypes Cases HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P HR(95% 
CI)

P

Stage 1 96 3.74 
(1.17–11.99)

0.018 3.17 
(1.06–9.52)

0.03 4.26 
(1.33–13.62)

0.0077 2 
(0.67–5.97)

0.21 3.11 
(0.89–10.8)

0.06 0.43 
(0.14–1.31)

0.13 2.85 
(0.95–8.51)

0.0498

2 67 2.04 
(0.99–4.21)

0.049 0.74 
(0.36–1.52)

0.41 0.52 
(0.24–1.14)

0.096 0.63 
(0.31–1.3)

0.21 2.64 
(1.03–6.76)

0.036 0.6 
(0.3–1.21)

0.15 0.63 
(0.28–1.41)

0.26

3 919 0.88 
(0.75–1.04)

0.13 1.42 
(1.21–1.66)

1.5e−05 1.15 
(0.99–1.34)

0.069 1.27 
(1.09–1.48)

0.0025 1.13 
(0.89–1.43)

0.3 1.27 
(1.08–1.51)

0.0048 1.19 
(1–1.43)

0.056

4 162 0.88 
(0.59–1.3)

0.52 1.88 
(1.27–2.8)

0.0015 1.77 
(1.21–2.59)

0.0028 0.73 
(0.5–1.08)

0.11 1.68 
(0.98–2.86)

0.056 0.71 
(0.48–1.06)

0.096 0.8 
(0.55–1.16)

0.24

Grade 1+2 293 1.31 
(0.99–1.74)

0.061 1.45 
(1.08–1.94)

0.012 0.7 
(0.51–0.95)

0.023 1.57 
(1.16–2.12)

0.0032 0.73 
(0.48–1.09)

0.12 0.78 
(0.59–1.04)

0.085 0.79 
(0.58–1.1)

0.16

3 837 0.85 
(0.71–1.01)

0.064 1.31 
(1.09–1.57)

0.0039 1.24 
(1.05–1.46)

0.012 1.31 
(1.11–1.55)

0.0015 1.29 
(0.99–1.68)

0.063 0.88 
(0.73–1.06)

0.17 0.89 
(0.74–1.07)

0.22

TP53 mutated 483 1.33 
(1.05–1.68)

0.018 1.65 
(1.32–2.06)

1.1e−05 1.53 
(1.21–1.94)

0.00042 1.17 
(0.94–1.47)

0.16 0.75 
(0.5–1.11)

0.15 1.43 
(1.12–1.82)

0.0037 1.36 
(1.05–1.76)

0.019

WT 84 1.84 
(1.07–3.18)

0.026 1.91 
(1.01–3.63)

0.043 0.67 
(0.36–1.23)

0.19 1.66 
(0.97–2.86)

0.063 1.78 
(0.65–4.86)

0.26 1.51 
(0.86–2.66)

0.15 1.44 
(0.85–2.45)

0.17

The bold font indicates the difference was significant statistically. OC, ovarian cancer; PFS, progression-free survival; WT, wild type.
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FIGURE 5 | The genetic alteration analysis of SIRTs in patients with OC (cBioPortal). (A) Summary of alteration in SIRTs. (B) OncoPrint tab summary of alteration on 
a query of SIRTs. Kaplan–Meier plots comparing (C) overall survival (OS) and (D) progression-free survival (PFS) in cases with/without SIRTs gene alterations.

FIGURE 6 | The protein–protein interaction (PPI) of SIRTs. (A) The network of 7 SIRT members and 20 proteins that significantly interacted with SIRTs (String). (B) 
The Pearson correlation coefficients between SIRTs (GEPIA).
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that SIRTs and their 20 interactors were mainly correlated with 
cancer-related pathways such as the Notch and FOXO pathways.

Despite the numerous findings, there are some limitations 
to this study. First, this was a bioinformatics analysis mainly 
based on transcriptional data, whereas proteins are the primary 
mediators of the various functions. Moreover, although SIRTs 
showed distinct prognostic values in OC, the multivariable 
analyses of molecules such as breast cancer type 1, human 
epididymis protein 4, and cancer antigen 125 are needed for 
further identification. Thus, the utility of SIRT expression as 
independent prognostic indicators in OC is yet to be further 

confirmed. Finally, since all the data were obtained from different 
databases with inevitable background heterogeneity, our results 
may contain some inconsistency. To address these issues, we are 
planning to perform well designed studies to verify these findings 
in the near future.

In conclusion, the mRNA expression patterns, prognostic 
values, genetic alterations, and PPI networks of SIRTs in OC 
patients were investigated. This comprehensive bioinformatics 
analysis revealed that SIRT1–4, 6, and 7 may be new prognostic 
biomarkers, and SIRT5 may be a potential target for precision 
therapy for patients with OC. However, further studies are needed 

FIGURE 7 | Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of SIRTs and their interactors (DAVID). 
GO enrichment analysis of target genes based on following three aspects: (A) cellular component, (B) biological process, and (C) molecular function. (D) KEGG 
pathway enrichment analysis of target genes.
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to confirm this notion. Finally, these findings would contribute 
to a better understanding of the distinct roles of SIRTs in OC.
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