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Case–control genetic association studies are often used to examine the role of 
the genetic basis in complex diseases, such as cancer and neurodegenerative 
diseases. The role of the genetic basis might vary by nongenetic (environmental) 
measures, what is traditionally defined as gene–environment interactions (G×E). 
A commonly overlooked complication is that the set of clinically diagnosed cases 
might be contaminated by a subset with a nuisance pathologic state that presents 
with the same symptoms as the pathologic state of interest. The genetic basis of the 
pathologic state of interest might differ from that of the nuisance pathologic state. 
Often, frequencies of the pathologically defined states within the clinically diagnosed 
set of cases vary by the environment. We derive a simple and general approximation 
to bias in G×E parameter estimates when the presence of the nuisance pathologic 
state is ignored. We then perform extensive simulation studies to show that ignoring 
the presence of the nuisance pathologic state can result in substantial bias in G×E 
estimates and that the approximation we derived is reasonably accurate in finite 
samples. We demonstrate the applicability of the proposed approximation in a study 
of Alzheimer’s disease.

Keywords: Alzheimer’s disease, disease misclassification, bias, approximation, adaptive immune system

INTRODUCTION

Genetic association studies that estimate the relationship between gene–environment 
interactions (G×E) and a complex disease have the potential to provide valuable clues to the 
underlying etiology of complex diseases, such as cancer and neurodegenerative disease. Case–
control studies sample a set of cases and a set of healthy controls conditionally on the disease 
status that is often defined based on the observed clinical diagnosis. A commonly overlooked 
complication is that multiple pathologic mechanisms might share symptoms and hence result 
in the same clinical diagnosis; i.e., the set of cases might be contaminated by a subset with a 
nuisance pathologic diagnosis. Frequencies of the pathologic diagnosis of interest within the set 
of clinically diagnosed cases might vary by the environment.
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Our motivating study is a genome-wide association 
study (GWAS) of late-onset Alzheimer’s disease (AD), a 
neurodegenerative disorder that is clinically characterized by 
progressive mental decline but histopathologically defined by 
highly abundant amyloid deposits and neurofibrillary tangles 
in the brain (Potter and Wisniewski, 2012). Recent biomarker 
studies of AD (Salloway et al., 2014; Salloway and Sperling, 
2015) reported that 36% of ApoE ε4 noncarriers and 6% of 
ApoE ε4 carriers clinically diagnosed with AD do not have 
evidence of amyloid deposition and hence do not qualify for 
the pathologic (true) diagnosis of AD.

We are interested in estimating the association between 
the genetic variants serving adaptive immune systems and the 
true, pathologically confirmed, AD status. The effect of the 
genetic variants might vary by the ApoE ε4 status, and in the 
context of this study, we define ApoE ε4 to be the environment. 
It is possible that the symptoms resulting in the clinical 
diagnosis are manifestations of an underlying polygenic 
mechanism, and hence, the clinical diagnosis is a surrogate 
of the true diagnosis. It is also possible that the symptoms 
with and without the amyloid deposition evidence represent 
diverse mechanisms each with a distinct genetic basis. In the 
latter case, the usual logistic model with the clinical diagnosis 
as an outcome is based on a misclassified disease status and 
hence misspecifies the link between G×E and the AD status.

Traditionally, case–control GWASs are analyzed in a logistic 
regression model as if the data are collected prospectively based 
on a justification provided by Prentice and Pyke (1979). In the 
situation when the disease status is misclassified with frequencies 
varying by the environment, the result of Prentice and Pyke 
(1979) does not naturally extend.

Extensive literature (Carroll et al., 2006; Buonaccorsi, 2010; 
Demidenko, 2013) reports on how the estimates of the main 
genetic effects can be biased in situations when the disease 
status is misclassified. We have recently examined bias in G×E 
when misclassification probabilities vary by the environment 
and proposed a solution that alleviates the bias (Lobach et 
al., 2018). This solution requires optimization of a complex 
nonlinear function. Interestingly, Neuhaus (1999) derived a 
general approximation to the bias in a univariate setting when 
the data are collected prospectively and are analyzed in the 
logistic regression model. We extend the literature by deriving 
a general theoretical bias and a convenient approximation to 
the bias for G×E when the data are collected retrospectively 
and hence in a logistic regression model where both the design 
of data collection and presence of the nuisance pathologic 
diagnosis in the set of cases are ignored. The approximation 
that we have derived does not require optimization of a 
complex nonlinear function and provides a convenient 
understanding about the magnitude and directionality of 
the bias.

Our paper proceeds as follows. We first describe the setting 
and the approximation that we have derived in the Results section. 
We next describe a series of simulation experiments showing that 
the approximation that we have derived is accurate relative to the 
empirical estimates and apply the approximation to the study of 
AD. We conclude the paper by a brief discussion.

RESULTS

We define G as the genotype, e.g. single-nucleotide 
polymorphisms (SNPs) measured at multiple locations. Let X 
be the environmental variable that interacts with G. For clarity 
of presentation, we base the development on binary variables, 
G and X. We assume that the genotype is independent of all 
environmental variables and the genotypes follow the Hardy–
Weinberg equilibrium: G ~ Q(g, θ).

If θ is the frequency of minor allele a when the major allele is 
A, then the Hardy–Weinberg equilibrium model (Hardy, 1908) 
states
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We define DCL = {0, 1} as the observed clinical disease status 
defined based on a set of symptoms. Suppose that the same set 
of symptoms can be caused by two distinct pathophysiologic 
mechanisms. Let D be the true disease status defined based on 
the underlying pathology, where D = 1 indicates the disease of 
interest, while D = 1* is the nuisance disease. Thus, pr(D = 1) + 
pr(D = 0) + pr(D = 1*) = 1. For ethical and/or budgetary reasons, 
it might not be possible to measure the underlying pathology on 
all patients; hence, D is latent.

In the setting of AD, D = 1 indicates the true AD state, 
i.e. the clinical diagnosis and evidence of amyloid deposition, 
and D = 1* indicates the nuisance disease state, e.g. vascular 
dementia, Lewy body disease, and hippocampal sclerosis 
(Salloway and Sperling, 2015), clinically diagnosed as AD. In 
the setting of breast cancer, for example, the disease state of 
interest might be an estrogen receptor (ER)+ breast cancer, 
while the nuisance disease state is an ER− cancer. A hypothesis 
then could be that a set of the genetic variants is associated 
with the ER+ disease state, but not the ER− disease state.

Instead, an evaluation might be performed on a subset of 
patients or in an external reliability study. We define τ(X) = pr(D = 
1|DCL = 1, X) to be the frequency of the true diagnosis of interest 
within the clinically diagnosed set that varies by the environmental 
variable X. In our setting, the clinical diagnosis of healthy 
controls corresponds to D = 0; hence, pr(D = 0|DCL = 0, X) = 1, 
and pr(D = 1|DCL = 0, X) = 0. We let probabilities of the clinical and 
true diagnoses in the population be π d D dcl pr CL cl= =( )  and πd = 
pr(D = d), respectively. Let 𝒮(X) = pr(D = 0|DCL = 1, X). For clarity of 
presentation, we suppose that all variables are binary. The setting can 
be easily extended to accommodate multilevel categorical variables.

We first consider a binary setting where the risk parameters are 
defined in terms of D = 1 vs. D = 1* and D = 0 combined. Then, the 
true risk model in terms of coefficients B = (β0, βG, βX, βG×X) is
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In the second setting, we consider that the risk model is 
defined separately for D = 1 vs. D = 0 in terms of B = (β0, βG, βX, 
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βG×X) and for D = 1* vs. D = 0 in terms of Β∗ ∗ ∗ ∗
×

∗= ( )β β β β0 , , ,G X G X  
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In equation (2), B and B* might share coefficients, e.g. if 
β βX X= ∗ . While we define the parameters of interest to be B = 
(β0, βG, βX, βG×X), these parameters are independent and are 
different in models (1) and (2).

Suppose that the clinical–pathological diagnosis relationship 
is ignored and the clinical diagnosis is used as the outcome 
variable. Then, the risk model is
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Derivations provided in the Online (Kullback, 1959) Methods 
show that
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Remarks on Formulas (4)–(7)

1. The Online Methods section provides formulas (A11)–(A15) 
for the setting with environmental variable Z that does not 
interact with the genetics.

2. When the clinical diagnosis and pathologic disease status 
correspond, i.e. (X) = 0 for X = 1 and X = 0, then all 
parameter estimates are unbiased.

3. If βG = 0, then γG = 0. Hence, the usual logistic regression 
yields the correct estimate of the null βG.

4. βG = 0 does not necessary result in γ0 = 0. Similarly, if βX = 0, 
then γX might not be zero, and if βG×X = 0, then γG×X might not 
be zero. Hence, the usual logistic regression does not yield the 
correct estimate of the null effect β0, βX, βG, and βG×X.

5. If βG = 0 and βG×X = 0, then γG = 0 and γG×X = 0. Hence, the 
usual logistic regression yields the correct estimate of the null 
βG and βG×X.

6. If the misclassification is nondifferential, i.e. 𝒮(0) = 𝒮(1), then 
if βX = 0, then γX = 0. That is, the usual logistic regression 
model yields the correct estimate of the null effect βX.

7. If the misclassification is nondifferential, i.e. 𝒮(0) = 𝒮(1), then 
if β0 = 0, βX = 0, βG = 0, and βG×X = 0, then γG×X = 0. That is, the 
usual logistic regression model yields the correct estimate of 
the null effect of βG×X.

We next suppose that the true model is (2), while the 
parameters are estimated based on a misspecified model (3).

Derivations provided in the Appendix show that
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Remarks on Formulas (8)–(11):

1. The Online Methods section provides formulae (A19)–(A23) 
for the setting with environmental variable Z that does not 
interact with the genetics.

2. If β0 = 0 and β0 0∗ = , then γ0 = 0. That is, the usual logistic 
regression yields the correct estimate of the null β0.
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3. If βG = 0 and βG
∗ = 0 , then γG = 0. Hence, in this case, the 

usual logistic regression yields the correct estimate of the null 
βG.

4. If βX = 0 and βX
∗ = 0 , then γX = 0. Hence, in this case, the usual 

logistic regression yields the correct estimate of the null βX.
5. If βG = 0 and βG×X = 0, then βG

∗ = 0  and βG X×
∗ = 0 . Hence, the 

usual logistic regression yields the correct estimate of the null 
βG and βG×X.

6. If βG = 0, βG
∗ = 0, βX = 0, βX

∗ = 0, βG×X = 0, and βG X×
∗ = 0, then 

γG×X = 0. Hence, if all these parameters are zero, the usual 
logistic regression yields the correct estimate of the null βG×X.

Simulation Experiments
We perform a series of simulation experiments to evaluate the 
accuracy of the proposed approximation. We set our other 
parameters to be similar to the values observed in our GWAS 
of AD. We let the genotype (G) be a Bernoulli random variable 
with a frequency of 0.10 to mimic a SNP and allow its effect to 
follow a recessive or dominant model. We simulated age (Z1) to 
be Bernoulli with a frequency of 0.50, e.g. corresponding to a 
median split. Sex (Z2) is Bernoulli with pr(Z2 = 1) = 0.52. The 
binary variable X = {ε4+, ε4−}, which represents the ApoE ε4 
status according to the presence or absence of the ε4 allele that 
occurs in approximately 14% of the population. Similarly to 
Salloway et al. (2014), we define the proportion of the nuisance 
disease within the clinical diagnosis as pr(D = 1*|DCL = 1, ε4−) = 
0.36 and pr(D = 1*|DCL = 1, ε4+) = 0.06.

Setting A
We first simulate data according to model (1) while we estimate 
parameters in model (3) where the clinically diagnosed status is 
the outcome variable. The disease status is simulated according 
to model (1) with βG×ε4 varying from log(1) to log(8), and we set 
βZ1

 to be 0, 0.5, 1, or 1.5. The other risk coefficients are β0 = −1, 
βG = −0.41, βZ2

0 08= − . , and βε4 = log(8) = 2.1. We simulated 
500 datasets with 3,000 cases and 3,000 controls. Shown in 
Table S1 are parameter estimates when βG×ε4 = 0, obtained as an 
average (empirical estimate) and standard deviation (SD) across 
the 500 simulated datasets, theoretical values, and the simple 
approximation derived in (A11)–(A15). For all parameters, the 
empirical values are close to the approximation, with the average 
difference across all parameters being 0.11. The approximation 
was furthest away from the empirical estimate of the main effect 
of ApoE ε4 status, with the empirical estimate being 1.80, while 
the approximation is 1.30.

Shown in Figures S1A–S1D are the estimates [empirical 
estimate that is the average across 500 simulated datasets (AVE), 
theoretical estimate (TH) (A11)–(A15), and approximation 
(APX) (A11.1)–(A15.1)] across the levels of βZ2  that are 
indicated by color and across values of βG×ε4 across the panels of 
each graph. In all of these settings, the theoretical values and the 
approximations are accurate relative to the empirical estimates. 
The furthest from the empirical estimates are approximation for 
the main effect of the ApoE ε4 status with the difference mainly 
driven by the approximation.

To examine robustness of the theoretically derived 
magnitude of bias to misspecification of proportions of the 
nuisance disease, we calculated the theoretical values while 
underestimating the frequencies to be pr(D = 1*|DCL = 1,  
ε4−) = 0.30 and pr(D = 1*|DCL = 1, ε4+) = 0 (Figures S2A–
S2C for γG, γε4, and γG×ε4, respectively). The approximation to 
bias is robust to this misspecification while overestimating 
the frequencies to be pr(D = 1*|DCL = 1, ε4−) = 0.42 and  
pr(D = 1*|DCL = 1, ε4+) = 0.12 (Figures S3A–S3C for γG, γε4, 
and γG×ε4, respectively).

Setting B
We next simulate the data according to risk model (2) while 
estimating parameters based on model (3). We simulate the 
disease status D = 1 vs. D = 0 based on parameters β0 = −1, 
βG = −0.69, βZ1

0 10= . , βZ2
0 083= − . , βε4 = 1.3, and βG×ε4  = 

1.099; and we simulate D = 1* vs. D = 0 using β0 1 7∗ = − . , 
βG

∗ = 0, βε4 0 5∗ = . , and β εG×
∗ =4 0  with main effects of Z1 

and Z2 that are the same as those for D = 1 vs. D = 0. 
With these parameters, the frequencies of the disease of 
interest and the nuisance disease are pr(D  =  1)  =   5.1%, 
pr(D = 1*) = 12.5%, pr(D = 1|ε4+) = 45.4%, pr(D =  
1*|ε4+) = 16.1%, pr(D = 1|ε4−) = 20%, and pr(D = 1*|ε4−)  = 
16.1%. Table  S2 (n0 = n1 = 3,000) presents empirical 
estimates, theoretical values (A16–A22), and approximations 
(A16.1–A22.1).

We first note that when the presence of the nuisance disease is 
ignored, estimates of β0, βε4, βG×ε4, and βG are substantially biased. 
The approximation that we derived is accurate relative to the 
empirical averages of the parameter estimates. For example, the 
empirical estimate of γε4 is 1.08, while the approximation is 1.08. 
The empirical estimate of γG×ε4 is −0.10, while the approximation 
is −0.05.

Shown in Figures S4A, S4B are the estimates [empirical 
estimate that is the average across 500 simulated datasets 
(AVE) and approximation (A20)–(A23) across values of βG X×

∗  
along the x-axis when βG×ε4 = 0 (Figure S4A) and when βG×ε4  = 
−0.9 (Figures S4B). In all of these settings, the theoretical 
values and the approximations are accurate relative to the  
empirical estimates.

Setting C
We next simulate the data with a smaller sample size and unequal 
number of cases and controls, i.e. 1,000 controls and 2,000 
cases, with the rest of the setting being the same as Setting   B.  
Table S3 presents empirical estimates, theoretical values (A16–
A22), and approximation (A16.1–A22.1). We note here that when 
the nuisance disease is ignored, the estimates of the coefficients are 
substantially biased. The approximation that we derived is reasonably 
accurate relative to the empirical averages of the estimates.

Setting D
We next performed a study where we misspecified rates of 
the nuisance disease state within the clinical diagnosis by 5%, 
with the rest of the setting being the same as Setting C. We 
considered three settings: 1) when the rate is overestimated by 
5% for both ε4 carriers and ε4 noncarriers; 2) when the rate is 
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underestimated by 5% for both ε4 carriers and ε4 noncarriers; 
and 3) when the rate is overestimated by 5% in ε4 carriers 
and overestimated by 5% in ε4 noncarriers. In settings 1 and 
2, the rate is equally misspecified between cases and controls; 
hence, the degree to which the rate is differential, i.e. varies by 
ε4 status, is preserved. In setting 3, however, we also increased 
the degree to which the rate is differential, which would likely 
have more impact. In settings 1 and 2, we observed no impact 
on the estimates, as shown in Table S4. In setting 3, however, 
the estimates changed slightly. Hence, the estimates are more 
robust to misspecification that does not increase the degree to 
which the rate is differential.

Analyses of Genetic Variants Serving 
Adaptive Immune System in AD
We applied the proposed analyses to a dataset collected as part of 
the Alzheimer’s Disease Genetics Consortium. The data consist of 
1,245 controls and 2,785 cases. The average age (SD) of cases and 
controls are 72.1 (9.1) and 70.9 (8.8) years, respectively. Among 
cases, 1,458 (52.4%) are men; among controls, 678 (63.9%) are 
men. At least one ApoE ε4 allele is present in (64.5%) of cases and 
365 (29.1%) of controls.

Illumina Human 660K markers have been mapped 
onto human chromosomes using the National Center for 
Biotechnology Information (NCBI) dbSNP database (https://
www.ncbi.nlm.nih.gov/projects/SNP/). Chromosome location, 
proximal gene or genes, and gene structure location [e.g. intron, 
exon, intergenic, and untranslated region (UTR)] have been 
recorded for all SNPs. We inferred the adaptive immune system 
pathways based on the information from the Kyoto Encyclopedia 
of Genes and Genomes (www.genome.jp/kegg) (KEGG), Gene 

Ontology (GO) Consortium (www.geneontology.org), and 
Ariadne Genomics (www.ariadnegenomics.com). From these 
data with quality control measures (observed frequency of 
minor allele >5%), we inferred 133 SNPs to reside in genes 
serving the adaptive immune system.

It is of interest to examine a relationship between the pathologic 
diagnosis and each of the 133 SNPs (G), ApoE ε4 status (X), age 
(Z1), and sex (Z2). The effect of SNPs might vary by ApoE ε4; 
hence, we included the interaction between the genotype and 
ApoE ε4 status. The genetic variables are modeled using a binary 
indicator of the presence or absence of a minor allele.

We estimate parameters using the standard logistic model 
(3) that uses the clinical diagnosis as a surrogate of the 
pathophysiology. We assume that the proportion of nuisance 
disease is as estimated by the Salloway, S., and Sperling, R. 
(2015) study; i.e. the proportion of the nuisance disease 
within the clinically diagnosed set of cases is 36% in ApoE ε4 
noncarriers and 6% in ApoE ε4 carriers. We first assume that 
the true model is (1); i.e. the susceptibility model is defined 
for amyloid-related AD symptoms vs. healthy controls 
and nonamyloid AD symptoms combined. In this setting, 
we estimate the magnitude of bias using approximation 
(A11.1–A15.1). We next assume that the true model is (2); 
i.e. the susceptibility model is defined for amyloid-related AD 
symptoms vs. controls and for non-amyloid-related symptoms 
vs. controls. We then estimate the magnitude of bias using 
(A19.1)–(A25.1).

Shown on Figures 1 and 2 are the estimated biases in the main 
effect of each SNP, ApoE ε4, and interaction between the SNPs 
and ApoE ε4 status. We first note that the bias in the estimate can 
be substantial. For example, in the usual logistic regression with 
the clinical diagnosis as an outcome variable, the main effect of 

TABLE 1 | Estimate of the main effect of single-nucleotide polymorphisms (SNPs) ( )γ G
  and their interaction effect with ApoE ε4 status in the Alzheimer disease study.

SNP Gene/intergenic 
region Bias in γG γG  from model (3) Bias in γ ε



G× 4 γ ε


G× 4  from model (3)

(1) is the 
true model

(2) is 
the true 
model

Estimate p-value (1) is the 
true model

(2) is the 
true model

Estimate p-value

rs401904 CD1D | CD1A 0.08 −0.05 −0.08 0.64 −0.08 0.25 0.83 0.04
rs1748383 N4BP2 | RHOH 0.07 −0.39 −0.07 0.69 −0.07 −0.68 0.82 0.04
rs13386118 CXCR4 | THSD7B 3.9 1.4 −3.6 0.003 2.9 −1.2 0 0.99
rs12692222 LOC100419686 | 

LOC151171
0.04 −0.06 0.01 0.96 −0.05 0 1.3 0.04

rs1645732 FYB | C9 −0.21 0.56 1.1 0.0496 0.21 −4.5 −1.5 0.06
rs10059242 HTR4 | ADRB2 −0.90 1.8 1.5 0.04 0.89 −2.1 −2.0 0.04
rs12111032 HLA-C | HLA-B −0.04 −0.17 0.78  <0.0001 0.04 0.23 −0.27 0.45
rs9275383 HLA-DQB1 | HLA-DQA2 −0.28 0.78 2.3 0.002 NA 4 NA 0.99
rs2551698 GSR 3.4 0.07 −0.60 0.003 −4.5 0.41 0.32 0.43
rs12543466 ANGPT1 | RSPO2 −0.17 0.84 0.53 0.26 0.18 −1 −1.6 0.03
rs597587 MYEOV | CCND1 2.9 −0.25 −1.1  <0.0001 −2.9 1.0 2.0 0.008
rs1586910 DCN | BTG1 0.12 −0.75 −0.14 0.38 −0.13 0.64 1.1 0.006
rs6018027 SRC 2.7 −1.8 −0.26 0.08 −3.4 0.35 0.65 0.04
rs4969754 RPS6KA3 | CNKSR2 6.6 0.29 −0.53 0.02 −4.9 −0.09 0.03 0.94

The estimates and p-values are obtained using the usual logistic regression model with the clinically diagnosed status as an outcome variable (model 3). Magnitude of bias is 
estimated using approximations (A11.1)–(A15.1) assuming the true model is (1) and using approximations (A19.1)–(A25.1) assuming the true model is (2). Boldfaced values are the 
results with a p-value < 0.05/13.
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FIGURE 1 | Bias in parameter estimates in Alzheimer's disease study assuming that the true model is (1) while parameters are estimated using model (3). 
Magnitude of bias is approximated using (A11.1)-(A15.1). (A) approximation to the bias in the main effect of genotype estimate, (B) approximation to the bias in the 
main effect of ApoE allele estimate, (C) approximation to the bias in the interaction between the genotype and ApoE allele estimate.

FIGURE 2 | Bias in parameter estimates in Alzheimer's disease study assuming that the true model is (2) while parameters are estimated using model (3). 
Magnitude of bias is approximated using (A19.1)-(A23.1). (A) approximation to the bias in the main effect of genotype estimate, (B) approximation to the bias in the 
main effect of ApoE allele estimate, (C) approximation to the bias in the interaction between the genotype and allele estimate.
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rs597587 is statistically significant with Bonferroni correction 
(p < 0.05/133). The estimate is γG = −1 1. , while if model (1) 
is the true model, the bias is approximated to be 2.9 and the 
interactive effect is estimated to be γG× =ε4 2 0. , p < 0.008, which 
means if the model was incorrectly specified, both main and 
interactive effects would be mistakenly interpreted. For another 
SNP, rs12111032, the main effect estimate is γG = 0 78.  with p < 
0.05/133, while the bias is −0.04 if model (1) is the true model 
and −0.17 if model (2) is the true model.

Table 1 presents the estimates of main effects of SNPs and 
p-values obtained using the usual logistic regression model with 
the clinically diagnosed disease status as an outcome variable for 
SNPs with a p-value <0.05 for γG  or γG×ε4

. We also mapped the 
genes from Table 1 to the amyloid pathway using KEGG and 
GO. A SNP, rs10059242, residing in an intergenic region between 
HTR4 and ADRB2 (ADRB2 is found to be in the amyloid pathway) 
has the main effect of γG = 1 5.  (p = 0.04) with bias almost equal to 
−0.9 (1) and 1.8 (2) and the G×E interaction of γ ε



G× = −4 2 0. , (p = 
0.04) with bias almost equal to −0.9 (1) and −2 (2).

For three SNPs, rs401904, rs1748383, and rs12692222, the 
estimates in the usual logistic model (3) are nearly zero, while 
biases estimated assuming model (1) is true are nearly zero as 
well. This is correct with the theoretical observations that the null 
effect estimate based on the logistic regression can be unbiased.

DISCUSSION

We derived a simple and general approximation to bias in G×E 
parameter estimates when multiple pathologic mechanisms 
present with the same set of symptoms. The approximation 
to the bias relies on the estimates of the frequencies of the 
pathologic disease state within the clinical diagnosis. The 
approximation that we derived complements a recent study 
(Lobach et al., 2018) where we developed a pseudolikelihood 
method to incorporate uncertainty about the clinical–
pathological diagnosis relationship, where the solution 
requires optimization of a complex nonlinear function. The 
approximation that we derived provides a simple formula that 
is intuitive and easy to apply.

We observed that parameter estimates could be substantially 
biased when the presence of the nuisance pathology is ignored. 
This observation has been also made by Manchia et al. (2013), 
where the simulation studies and data analyses on the main effect 
of genotype showed that the risk parameter estimates attributable 
to the genetics could be largely underestimated.

We define the bias to be a difference between the estimates 
obtained with the clinically diagnosed disease status as an 
outcome variable and the estimates with respect to the disease 
states. Within the notation of this study, bias is the difference 
between Γ and B. For example, from approximations (4)–(7), 
we see that the bias of a coefficient is a function of the true 
value of the coefficient, frequencies of the disease states within 
the clinical diagnosis, and also values of the other coefficients. 
Often, but not always, the null effect is correctly estimated, 
as we describe in the Remarks. When the proportions of the 
disease state of interest within the clinical diagnosis are the 

same in subpopulations by the environmental variable, in 
large samples, the estimates with the clinical diagnosis as an 
outcome variable are nearly unbiased. Even then, in practical 
settings, however, the estimates that ignore the presence of the 
nuisance disease might still have notable bias.

In our analysis of AD, the reliability study is based on 
1,121 carriers of the ApoE ε4 allele and 1,331 noncarriers 
of the ApoE ε4 allele. Hence, we suppose that the clinical–
pathological diagnosis relationship is estimated reasonably 
reliably well. Moreover, the reliability study is performed 
on the same patient population, i.e. patients followed up by 
the AD centers. There is a substantial, although not exactly 
known, overlap between the set with genotypes and the 
reliability set. In general, we advocate sensitivity analyses that 
examine potential differences in the parameter estimates due 
to misspecifications of frequencies of the pathologic diagnosis 
within the set of clinically defined cases.

Our derivations are based on a logistic model with a linear 
disease risk function. The same line of arguments might 
be extended to more complex relationships when, e.g., the 
link is not logit and when the interaction is nonlinear (Wu 
and  Cui,  2013; Wu et al., 2018). These extensions might be 
the natural extensions of the current study. Another possible 
extension is to consider the setting when the disease states 
are the stages of the disease. Then the disease stage can be 
an outcome variable in a multilevel proportional logistic 
regression model.

In the context of gene–environment interaction analyses, 
model selection is often needed. While the current study does 
not provide a mechanism for model selection, in our previous 
work, we devised a pseudolikelihood model to correct for 
bias (Lobach et al., 2018) that can be used as a basis for  
model selection.

Though in the data analyses, we extracted the 113 SNPs for 
a better illustration of the application of proposed methods, 
the current method can be easily extended to all SNPs 
measured in a GWAS. Many of the SNPs would probably be 
not associated with the disease status, however, since as we see 
in the data analyses and theoretical derivations, null effects 
are often correctly estimated.

While our study is motivated by a specific example of AD, 
the application of the approximation that we derived is readily 
applicable to other diseases. For example, recent studies report 
that the underlying biologic mechanisms of breast cancer 
vary by expression of progesterone and estrogen measured 
in the ER/PR/HER2 status. Frequencies of subtypes can be 
estimated based on the SEER database (https://seer.cancer.
gov/). Another possible application is when disease states of 
cancer are estimated by the mutation patterns available in the 
Cancer Genome Atlas.
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