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Esophageal squamous cell carcinoma is a leading cause of cancer death. Mapping the 
transcriptional landscapes such as isoforms, fusion transcripts, as well as long noncoding 
RNAs have played a central role to understand the regulating mechanism during malignant 
processes. However, canonical methods such as short-read RNA-seq are difficult to 
define the entire polyadenylated RNA molecules. Here, we combined single-molecule 
real-time sequencing with RNA-seq to generate high-quality long reads and to survey 
the transcriptional program in esophageal squamous cells. Compared with the recent 
annotations of human transcriptome (Ensembl 38 release 91), single-molecule real-time 
data identified many unannotated transcripts, novel isoforms of known genes and an 
expanding repository of long intergenic noncoding RNAs (lincRNAs). By integrating with 
annotation of lincRNA catalog, 1,521 esophageal-cancer-specific lincRNAs were defined 
from single-molecule real-time reads. Kyoto Encyclopedia of Genes and Genomes 
enrichment analysis indicated that these lincRNAs and their target genes are involved 
in a variety of cancer signaling pathways. Isoform usage analysis revealed the shifted 
alternative splicing patterns, which can be recaptured from clinical samples or supported 
by previous studies. Utilizing vigorous searching criteria, we also detected multiple 
transcript fusions, which are not documented in current gene fusion database or readily 
identified from RNA-seq reads. Two novel fusion transcripts were verified based on real-
time PCR and Sanger sequencing. Overall, our long-read single-molecule sequencing 
largely expands current understanding of full-length transcriptome in esophageal cells and 
provides novel insights on the transcriptional diversity during oncogenic transformation.

Keywords: heterogeneity, long reads sequencing, esophageal squamous cell carcinoma, transcriptome, alternative 
splicing, lincRNA, transcript fusion
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INTRODUCTION

Esophageal squamous cell cancer (ESCC) is a serious malignancy 
with poor prognosis and mortality rate (Lin et al., 2013; Chen 
et al., 2016). Recently, large-scale sequencing studies have revealed 
the substantial genomic heterogeneity within and among ESCC 
patients, which hampered the development of effective target 
therapies (Hao et al., 2016; Yan et al., 2019). While genetic alterations 
initiate tumorigenesis, how they affect the transcriptional program 
and ultimately drive the malignant phenotype remains elusive. In 
order to find the altered signaling pathways and novel functional 
transcripts such as long intergenic noncoding RNAs (lincRNAs), 
several short-read based transcriptome sequencing studies have 
been conducted during the past several years (Cancer Genome 
Atlas Research et al., 2017; Li et al., 2017). However, typical RNA-seq 
captures a large number of contiguous short reads (about 100–250 
bp) and reconstructs the transcripts by statistical modeling. Thus, it 
is difficult to completely describe RNA molecules from 5′ to 3′ end 
and to annotate novel isoforms or genes using short reads (Au et al., 
2013; Steijger et al., 2013). On the contrary, PacBio single-molecule 
real-time (SMRT) platform is capable to sequence long circular-
consensus sequence reads of several thousand base pairs and have 
a good opportunity to capture full-length transcripts de novo. In 
addition, hybrid sequencing algorithms have been developed to 
correct sequencing errors by utilizing high accurate short reads. 
Thus, hybrid PacBio SMRT sequencing provides a powerful tool to 
survey the transcriptional landscape in cells (Sharon et al., 2013; 
Tilgner et al., 2014; Weirather et al., 2015).

In this study, we selected one normal immortalized 
esophageal squamous epithelial cell line and four ESCC cell lines, 
which represent major cell types of esophageal squamous cell 
carcinoma (ESCC) and investigated the cellular heterogeneity 
at transcriptome level. Using hybrid PacBio SMRT platform, 
our de novo sequencing of these five representative esophageal 
cell lines yields ~210 Gb of clean data or ~2,000,000 full-length 
nonchimeric (FLNC) reads. All of these FLNC reads have clear 
5′ and 3′ messenger RNA (mRNA) canonical structure and with 
an average length of >2.5 kb, which are well suitable to describe 
the full transcript structures. We detected many new transcripts 
such as novel isoforms, esophageal cancer specific lincRNAs and 
gene fusions; we also cataloged the shifted alternative splicing 
(AS) feature between cancer and normal esophageal cells, which 
collectively highlighting the true heterogeneity and complexity.

METHODS

Sample Preparation
Four human ESCC cell lines [KYSE140, KYSE510, TE5, and 
Shantou human embryonic esophageal carcinoma (SHEEC)] 
and one normal immortalized esophageal squamous epithelial 
cell line (SHEE) were used in this study. Among the five cell 
lines in this study, KYSE140, KYSE510, and TE5 are established 
from the resected specimens of patients with ESCC (Shimada 
et al., 1992; Nishihira et al., 1993). We chose these three ESCC 
patient-derived cell lines as they cover all three types of cell 
differentiation of primary tumor: KYSE140 is derived from a 

patient with moderately differentiated squamous cell carcinoma, 
KYSE510 is derived from a patient with well-differentiated 
squamous cell carcinoma, and TE5 is derived from a patient with 
poorly differentiated squamous cell carcinoma. The SHEE and 
SHEEC cell lines were previously established by our labs. SHEE 
cell line was a HPV18 E6E7-immoltalized human embryonic 
esophageal epithelial cell line (Shen et al., 2001), and SHEEC cell 
line is tumor cell line established by malignant transformation of 
SHEE induced by 12-O-tetradeeanoyl-phorbol-13-acetate (TPA) 
(Shen et al., 2000). The cell lines were authenticated by short-
tandem repeat analysis in 2018. Briefly, KYSE140 and KYSE510 
cells were cultured in RPMI 1640 medium (Thermo) containing 
10% fetal bovine serum (GIBCO). TE5 cell was cultured in 
Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific) 
supplemented with 10% fetal bovine serum. SHEEC and SHEE 
cells were cultured in Dulbecco’s modified Eagle’s medium/
F12 medium (Thermo Fisher Scientific) with 10% newborn 
bovine serum (Excell Biology). All cell lines were tested without 
mycoplasma contamination before RNA isolation. Total RNA 
was isolated with TRIzol (Invitrogen) as per the manufacturer’s 
instructions and then treated with DNase and purified with 
PureLink®RNA Mini Kit (Life Technology). RNA was purified 
according to the following criteria: (1) with concentration ≥300 
ng/µl, (2) OD260/280 = 2.0–2.2 and OD260/230 = 1.8–2.1, and 
(3) RNA integrity number (RIN) ≥9, which is assessed on the 
Agilent Bioanalyzer 2100 system.

Library Preparation and Sequencing
The SMRTbell™ libraries were prepared according to the 
Isoform Sequencing protocol (Iso-Seq) as described by Pacific 
Biosciences (PN100-092-800-03). First, the complementary 
DNA (cDNA) was synthesized by total mRNAs for each sample 
using the Clontech SMARTer PCR cDNA Synthesis Kit. To 
increase the sequencing yield of long transcripts, the Blue Pippin 
Size Selection System protocol was used to select the >4-kb 
fragments for each sample after the PCR amplification of the 
cDNAs. Then, the equimolar mixture of long cDNA fragments 
(>4 kb) and normal cDNAs was used subsequently for SMRT 
sequencing. For Illumina transcriptome library preparation and 
sequencing, a total amount of 3 µg RNA per sample was used 
as input material for the RNA sample preparations. Sequencing 
libraries were generated using NEBNext® UltraTM RNA Library 
Prep Kit for Illumina® (NEB, USA) following manufacturer’s 
recommendations. The Illumina PE150 libraries were sequenced 
on Hiseq 4000 platform.

Raw Data Processing and Mapping to 
Reference Genome
SMRT data were processed using the SMRTlink 5.0 software 
(Pacific Biosciences). Circular consensus sequence was 
generated from subread BAM files with the default parameters. 
The nonchimeric reads, which include nonfull-length and full-
length transcripts, were then clustered by isoform level clustering 
algorithm. The produced clusters were finally polished using 
ARROW software (Pacific Biosciences). Additional nucleotide 
errors in consensus reads were corrected using the Illumina 
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RNA-seq data by the LoRDEC software (Salmela and Rivals, 
2014). Consensus reads were aligned to reference annotations 
(Ensemble 38 release 91) using GMAP (Wu and Watanabe, 2005) 
with the following parameters –no-chimeras –cross-species –
expand-offsets 1 -B 5 -K 50000 -f samse -n 1.

For Illumina RNA-seq reads mapping, reference genome and 
gene model annotation files were downloaded from genome website 
directly (ftp://ftp.ensembl.org/pub/release-91/fasta/homo_sapiens/
dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz). Hisat2, 
which is a fast-spliced aligner with low-memory requirements, was 
used to build the index of the reference genome, and paired-end 
clean reads were mapped against the reference genome (https://
github.com/infphilo/hisat2). HTSeq v0.6.1 was used to count the 
read numbers mapped to each gene. Then, read per kilobase of 
exon per million mapped reads of each gene was calculated based 
on the length of the gene and reads count mapped to this gene 
(http://htseq.readthedocs.io/en/release_0.9.1/).

Gene Structure Analysis and Novel 
Transcript Annotations
The GMAP output BAM format file and GTF format genome 
annotation file were used for gene and transcript structure 
determination. Long read clusters were overlapped with gene 
models to find novel isoforms and genes as previously reported 
(Abdel-Ghany et al., 2016). We also compared the transcription 
start sites (TSS) of each transcript with the Cap Analysis of 
Gene Expression (CAGE) promoter tags and epigenetic marks 
that are typically associated with actively transcribed promoters 
(H3K4me1, H3K4me3, and H3K27ac). TSSs are defined as 
the first genomic position of each transcript structure. We 
downloaded peak calls of CAGE promoter tags from FANTOM5 
(FANTOM Consortium and the RIKEN PMI and CLST (DGT) 
et al., 2014) and epigenetic marks (adult esophagus) from the 
Roadmap Epigenomics Consortium (Bernstein et al., 2010). 
LiftOver was used when necessary (https://genome.ucsc.edu/
cgi-bin/hgLiftOver).

Unmapped transcripts and novel gene transcripts were 
scanned and annotated by Diamond BLASTX with parameter e 
value “1e−5” in the following protein/peptide databases (Buchfink 
et al., 2015): NR (NCBI nonredundant protein sequences), KOG/
COG (Clusters of Orthologous Groups of proteins), Swiss-Prot, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog 
database. Similarly, novel transcripts were also searched against 
the Pfam database (Finn et al., 2016) by Hmmscan software 
(http://hmmer.org/download.html).

Analysis of Alternative Splicing Patterns
Alternative events were analyzed by SUPPA (Trincado et al., 
2018). To quantify the differential isoform usage between cells, 
we defined the score D of each gene as follows:

 D c
d

c a b d a bj
i

i
= − = ∩ = ∪

=∑ ( ) ,1
1

4
whereas  

suppose gene j has isoform set a and set b, respectively, in cell 
line X and Y; c is the number of isoform intersection for set a and 
set b; d is the number of isoform union for set a and set b. Thus, D 

sums up scores when comparing the four esophageal squamous 
carcinoma cells with SHEE. Genes with a higher D value are more 
diversely spliced. A set of differentially spliced genes, which was 
identified from TCGA clinical esophageal samples, were used 
in this study to verify the altered splicing pattern (Mao et  al., 
2019). Enrichment analysis of spliced genes was conducted by 
DAVID against GO Biological Processes terms with a cutoff false 
discovery rate ≤ 0.05 (Huang da et al., 2009).

lncRNA Analysis Pipeline
SMRT transcripts were first analyzed by CNCI and PLEK with 
default parameters to predict the coding potential of transcripts. 
These two software adopted support vector machine algorithms 
to effectively distinguish protein-coding and noncoding 
sequences independent of known protein annotations (Sun 
et al., 2013, Li et al., 2014a). In order to strictly identify the 
lncRNA candidates, SMRT transcripts were also scanned 
against known protein sequence databases subsequently. CPC 
software was used to assess the extent and quality of the open 
reading frame in a transcript and search the sequences against 
NCBI eukaryotes’ protein database to clarify the coding and 
noncoding transcripts (Kong et al., 2007). Pfam-scan translated 
each transcript in all three possible frames to identify occurrence 
of any of the known protein family domains documented in the 
Pfam database (Finn et al., 2016). Finally, transcripts predicted 
with coding potential by any of the above four tools were filtered 
out, and those without protein coding potential were candidate 
set of lncRNAs. The Cabili’s reference set, which catalogs 
lincRNAs across 24 human tissues and cell types (but without 
esophageal tissue), were downloaded from supplemental files of 
the publication (Cabili et al., 2011). Candidate lincRNAs from 
four esophageal cancer cells, but not expressed in SHEE cells 
and Cabili’s reference set, were defined as esophageal cancer cell 
specific lincRNAs.

The interacting target genes of lncRNAs are predicted based 
on an approach using the coexpression and colocalization pattern 
(Dempsey et al., 2018, Gao et al., 2019). Briefly, the expression 
correlation was calculated between lncRNAs and coding genes. 
Genes with a Pearson correlation coefficient >0.95 (p < 0.001) 
and reside in 100k upstream or downstream of lncRNA were 
identified as target genes of that lncRNA.

All microRNA (miRNA) hairpin sequences were downloaded 
from miRBase database (http://www.mirbase.org) and were 
blasted against the sequences of esophageal cancer cell specific 
lincRNAs to identify potential pre-microRNA.

Transcripts Fusion Detection and 
Comparison With Known Gene Fusion in 
Database or Predicted From RNA-Seq
SMRT transcripts were determined as transcript fusions according 
to the following criteria:(1) SMRT transcripts were mapped to 
two or more long-distance range separate loci, and each locus 
must map at least 10% of the query transcript; (2) total combined 
alignment coverage is at least 99%; (3) minimum distance 
between each mapped locus is above 100 kb; and (4) at least two 
Illumina reads were found spanning the junction to support the 
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candidate fusion transcripts. SMRT transcripts, which meet all of 
above criteria, were regarded as fusion transcripts. The overviews 
of fusion events between locations in chromosomes are drawn in 
R package “RCircos” (Zhang et al., 2013).

Illumina RNA-seq reads were also used to detect gene 
fusion events by STAR-Fusion with default parameter (https://
github.com/STAR-Fusion). Furthermore, based on comparing 
the number of Illumina RNA-seq reads spanning the junction 
(denoted as s) and reads adjacent to it on both sides (denoted 
as a and b, respectively), a set of candidate fusion transcripts 
with a

s
b
s

< ∩ <2 2  were filtered, then manually inspected 

for follow-up experimental verification. For comparison of 
detected fusions with known records in gene fusion database 
or predictions from RNA-seq data, we first transform the gene 
symbols to Ensemble Ids (which are used in ChimerDB 3.0); 
then, gene level match is considered as an overlap result.

KEGG Pathway Enrichment Analysis
The KOBAS software was used for statistical enrichment of gene 
list based on KEGG pathways (Wu et al., 2006).

Fusion Transcripts Verification and 
Sequencing
cDNA was prepared by SuperScript III (Invitrogen). Primers 
were designed to span the junctions and are listed in Table S6. 
Quantitative real-time PCR were conducted as previously reported 
(Xu et al., 2011). The expected PCR products for individual fusion 
were determined via melting curve analysis. PCR products 
were run on gels and then gel purified and subjected to Sanger 
sequencing (Shanghai Sangon Biotech Co., Ltd.).

Four RNA-seq projects (PRJNA140847 with 6 ESCC tumor 
tissue samples, PRJNA298963 with 15 tumor tissue samples, 
PRJNA435587 with 7 tumor tissue samples, and PRJNA147913 
with 7 tumor tissue samples) were collected. Blast with default 

parameters was used to align fusion sequences to all of  
RNA-seq reads.

RESULTS

Full-Length Transcriptome Sequencing of 
Esophageal Cells
The analysis pipeline for transcriptional landscape of esophageal 
cells is illustrated in Figure 1. According to Pacbio protocols, 
total RNA was purified to prepare for cDNA library for each 
cell line. Transcripts were simultaneously sequenced with 
SMRT cells on the PacBio Sequel and on the Illuminia Hiseq 
4000 platforms. Totally, we identified 445,983, 477,033, 491,354, 
327,459, 259,482 FLNC reads from KYSE140, KYSE510, SHEE, 
SHEEC, and TE5 cells, respectively, which cover ~80% of all 
circular-consensus sequences in each cell line (Table 1). These 
high-quality FLNC reads were clustered by Arrow algorithm 
to obtain the consensus sequences. Short Illumina RNA-seq 
reads from the same RNA samples were also produced for each 
cell line. After trimming the sequencing adapter, poly(A) tail, 
and low-quality bases, the filtered RNA-seq reads were utilized 
to further correct FLNC reads by LoRDEC using the default 
parameters. After error correcting, the mean length of reads was 
within 2.3–3.2 kbp in esophageal cells, indicating good quality 
of the SMRT dataset (Table S1A).

Characterization of Full-Length 
Transcripts in Esophageal Cells
Novel Gene and Isoforms Identified From  
Full-Length Transcripts
We aligned long sequencing reads to the human Ensembl 38 
release 91 genome using GMAP. We found an average alignment 
identity of ~90%, with ~80% transcripts uniquely mapping to the 
reference genome in each esophageal squamous cell (Table  S1B). 

FIGURE 1 | The analyses pipeline for transcriptional landscapes in esophageal cells.
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Similarly, short Illumina RNA-seq reads were also mapped to 
reference genome with a mapping rate >92% by HISAT2 mapper 
(Table S1C). According to the recent annotations, over 80% of 
SMRT transcripts are novel genes or isoforms of known genes 
(Figure 2A left panel). Compared with known isoforms of 
known genes, the expression of the novel isoforms from known 
or novel genes are relatively low (Figure 2A right panel). The 
numbers of novel transcripts sharing among different cell lines 
are demonstrated in Figure 2C.

To support the accuracy of obtained full-length transcripts 
and the analysis pipeline, we performed a transcriptome-
wide comparison of TSSs detected in PacBio dataset with 
CAGE promoters and active epigenetic marks from Roadmap 
Epigenomics Project. Although these external datasets are 
generated from adult esophagus tissue, they are reasonable 
approximation for esophageal cells. As shown in Figure 2B, ~50% 
of TSSs detected by long read sequencing were within 10 bp to 
their counterpart in the FANTOM5 CAGE dataset. They are 
even closer to the three epigenomics marks, and the majority 
of TSSs have a mean distance of 1 bp. The concordance 
between CAGE tags and epigenetic marks datasets with 5′ ends 
detected in PacBio dataset confirmed the validity of  identified 
full-length transcripts.

To further establish the accuracy of the full-length transcripts, 
those unannotated transcripts were blasted against several 
peptide or protein databases including NR, Pfam, KOG, KEGG, 
and Swiss-Prot. Protein products from over 85% of the transcripts 
can be found in at least one of the above databases, suggesting 
that many of the novel transcripts are indeed translated into 
proteins (Figure 2D). Overall, multiple orthogonal datasets 
provide independent confirmations that reported transcripts are 
most likely full length.

Figure 3 provides two examples of these novel isoforms of 
known genes. For example, VIL2 (also known as Ezrin) encoded 
three transcript variants that differ in the transcriptional start 
site. We previously found that there are two variants of VIL2 
in the esophageal cancer cells (V1: ENST00000337147.11;V2:
ENST00000367075.3), and different transcriptional regulatory 
mechanisms regulated their transcription (Zhang et al., 2015; 
Zhang et al., 2018). From current SMRT data, it is clear that, 
except for the three annotated VIL2 variants in reference 
genome, other 24 VIL2 variants with different expressions are 
also transcribed but have not been annotated in KYSE510 cells 
(Figures 3A, C). We recently found that the AS of Tropomyosin I 
(TPM1) is regulated by its natural antisense TPM1-AS, resulting 
in specifically downregulation of TPM1variants (Huang et al., 
2017). Similarly, multiple novel isoforms of this gene were also 

detected from SMRT data (Figures 3B, D). For both VIL2 and 
TPM1 genes, there are plenty of cell-type-specific variants than 
those shared by multiple cells, suggesting that there may be 
specific splicing events in each cell (Figures 3C, D).

To investigate what kind of genes have more novel isoforms, 
we sorted all genes according to the number of its isoforms and 
conducted the KEGG pathway enrichment analysis of top 10% 
genes with the most isoforms. We found that these genes are 
significantly enriched in known cancer-associated pathways 
such as viral carcinogenesis, PI3K-Akt, and MAPK signaling 
pathway (Figure S1).

Mining Esophageal Cancer Cell Specific lincRNAs
LincRNAs are transcribed from intergenic regions between 
protein-coding genes. Recent studies have pointed out their 
critical function associated with the pathogenesis of ESCC (Li 
et al., 2014b; Shen et al., 2016). Based on collections of ~4 billion 
RNA-seq reads, Cabili et al. previously have defined a reference 
catalog of ~14,000 human lincRNAs with expression pattern 
across 24 human tissues and cell types (without esophageal 
tissue) (Cabili et al., 2011). To mine esophageal cancer cell 
specific lincRNAs, we selected the lncRNAs that were detected 
in four esophageal cancer cells but not in the normal-like SHEE 
cell and Cabili’s reference set. Under a stringent criterion (see 
Methods), 5,400, 5,210, 4,883, 4,756, and 2,274 lncRNAs were 
directly predicted from SHEE, KYSE140, KYSE510, SHEEC, 
and TE5 cells, respectively (Figure S2A). Totally, 1,521 specific 
lincRNAs were found in esophageal cancer cells (Table S2).

We also predicted that lncRNAs regulated target genes and 
found that they are significantly enriched in cancer-related 
signaling pathways and extracellular matrix receptor interactions, 
suggesting that the interacting lincRNAs may have similar 
biological functions (Figure S2B). Furthermore, 37 potential 
pre-miRNAs were detected by aligning known miRNA hairpin 
sequences against lincRNA sequences (Table S3).

Identification of Cell-Specific Isoform Usage in 
Esophageal Cells
Employing the SUPPA package, SMRT data were also used to 
analyze AS events, which are classified into several categories, such 
as skipped exon (SE), mutually exclusive exon, alternative 5′ splice 
site, alternative 3′ splice site, alternative first, alternative last exons, 
and retained intron. The results showed that SE is the richest 
events among all AS types in all esophageal cells. This is consistent 
with previous findings, in which SE is the most prevalent AS 
mechanism in human genome (Sultan et al., 2008; Wang et al., 
2008). In contrast, mutually exclusive exon only accounts for ~5% 

TABLE 1 | Quality control of single-molecule real-time (SMRT) raw data in esophageal cells.

Sample CCS Reads with 5′ primer Reads with 3′ primer Reads with Poly-A Flnc Average flnc read length Flnc/CCS

KYSE140 557777 501,590 516,189 504,004 445,983 2,539 0.8
KYSE510 602754 545,561 558,823 539,496 477,033 2,442 0.79
SHEE 620818 555,241 574,085 559,246 491,354 2,566 0.79
SHEEC 424278 376,723 392,202 386,314 327,459 2,228 0.77
TE5 308010 284,929 287,900 283,066 259,482 3,073 0.84

CCS, Circular Consensus Sequence; Flnc, Full-length nonchimeric reads.
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of all AS events and is the most infrequent AS type (Figure 4A). 
Compared with four other tumor cells, AS events in the normal-
like cell SHEE shows no particular preference and exclusion (÷2 test, 

P > 0.05, Figure 4A). Score D is constructed to quantitatively 
measure the isoform usage for each gene between tumor cells and 
the normal-like cell. From Figure 4B, it can be seen that the top 
500 diversely spliced genes are significantly enriched in three Gene 

Ontology (GO) terms “DNA repair,” “cellular response to DNA 
damage stimulus,” and “positive regulation of GTPase activity” 
(false discovery rate ≤0.05, Figure 4B and Table S4). Based on a 
set of differentially splicing genes identified from TCGA clinical 
sequencing dataset recently (Mao et al., 2019), we also verified that 
DNA damage and repair-related genes are significantly spliced in 
clinical esophageal patient samples (Table S5).

FIGURE 2 | Single-molecule real-time (SMRT) sequencing identifies novel genes or isoforms of known genes. (A) Left panel: bar chart illustrates the percentages 
of novel isoform of known genes (purple), isoform of novel genes (green), and novel isoform of novel genes (brown). Right panel: average counts of full-length 
nonchimerics (FLNCs) in each esophageal cell line. (B) Distances distribution of transcription start site (TSS) in each full-length transcript to the closest epigenetic 
marks and Cap Analysis of Gene Expression (CAGE) tags. (C) The numbers of novel transcripts sharing among different cell lines. (D) Unannotated transcripts were 
scanned in several peptide or protein databases for each esophageal cell line.
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FIGURE 3 | Examples of isoforms of known genes. Single-molecule real-time (SMRT) transcripts detected in each cell line for (A) VIL2 and (B) TPM1. (C) Novel 
isoforms of VIL2 gene in KYSE510 cells. (D) Novel isoforms of TPM1 gene in KYSE510 cells. Blue: Known transcript annotations; red: known isoforms identified 
from SMRT data; black: novel isoforms from SMRT data. The number of FLNCs detected is shown in brackets.
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Identification and Validation of Novel 
Fusion in Esophageal Cells
Based on searching criteria, 1,972 transcript fusions were 
identified from the full-length SMRT reads. The parental genes of 
fusion transcripts can be located from the same chromosome or 
from different one. However, the frequencies have no significant 
difference when comparing the esophageal tumor cells with the 
normal-like cell (÷2 test, P >  0.05, Figure S3A). KEGG pathway 
enrichment indicated that the fusion-occurring genes are 

in favor of biological function related with RNA processing 
(i.e., splicosome, ribosome, and RNA transport) and cancer 
signaling pathways(i.e., focal adhesion, cell cycle, and apoptosis) 
(Figure S3B).

Comparison of transcript fusion events identified by SMRT 
and RNA-seq assembly indicated that SMRT identifies much 
more fusions (Table 2). For example, in contrast to 39 splicing 
fusion found from Illumina short reads, 335 were identified from 
long reads in TE5 cell. ChimerDB 3.0 is an enhanced database 

FIGURE 4 | Shifted alternative splicing pattern in esophageal cells. (A) Percentage of splicing events in each esophageal cell line. SE, skipped exon; MXE, mutually 
exclusive exon; A5, alternative 5′ splice site; A3, alternative 3′ splice site; AF, alternative first; AL, alternative last exons; and RI, retained intron. (B) Differentially 
spliced genes between normal-like and malignant esophageal cells are significantly enriched in three Gene Ontology (GO) terms.
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for fusion genes from cancers (Lee et al., 2017). It archives 
thousands of gene fusions collected from published reports or 
predicted from RNA-seq transcriptome analysis. We compared 
the identified gene fusion pairs from PicBio SMRT data to all 
records in ChimerDB 3.0 (i.e., including fusions found in all 
cancer types). There are 2, 3, 2, 2, and 1 overlapped fusions found 
in TE5, SHEE, KYSE510, KYSE140, and SHEEC, respectively 
(Table 2). The fact that there were few overlaps between SMRT 
detection and the records in ChimerDB 3.0 suggests most fusions 
found from long reads are novel transcript fusions.

With the help of RNA-seq short reads, we further employed 
a reads filter to select six candidate fusion transcripts, which 
expressed comparably with their parental genes (i.e., no less 
than twofold of their parental genes). After manual inspection, 
one fusion transcript was discarded due to ambiguous sequence 
mapping. We evaluated the prevalence of the remaining 
transcript fusions in esophageal cells by real-time PCR followed 
by Sanger sequencing (Table S6). Two novel transcript fusions, 
ring finger and CCCH-type domains 1–aldo-keto reductase 
family 1 member B10 (RC3H1-AKR1B10) and NEK9-TTC21B, 
could be verified (Figure 5A and Figure S4). We focused on 
RC3H1-AKR1B10 since this transcript fusion is differentially 
expressed in esophageal cells, with the lowest expression in 
normal-like SHEE cell (Figure 5B). The RC3H1 protein consists 
of a Roquin domain, which is required for constitutive decay 
element-dependent RNA binding. At both N- and C-terminal 
sides of Roquin domain, there are regions used for nucleotide-
binding. RC3H1 also contains two zinc finger motifs (Schuetz 
et al., 2014). AKR1B10 encodes aldo/keto reductase, which can 
efficiently reduce aliphatic and aromatic aldehydes (Gallego et al., 
2007). The last 3′ untranslated region exon of RC3H1 fused with 
the first 5′ untranslated region exon of AKR1B10; thus, the fused 
protein is expected to retain intact functional regions from both 
of two parental genes (Figure 5A). Blast with default parameters 
was used to align the two fusion sequences to several public 
available RNA-seq datasets from ESCC patients. We did not find 
positive results from these clinical samples (data not shown).

DISCUSSION

Esophageal cancer is a common and highly heterogeneous 
malignancy. Thus, uncovering the transcriptome-wide complexity 

and heterogeneity will provide clues for target therapies. The 
median length of human gene transcripts is ~2,500 bp; however, 
RNA-seq reads are only about 100–200 bp long. This indicates 
that novel isoforms or genes cannot be reliably inferred from 
short reads directly. Long reads sequencing can directly capture 
thousands of base pairs from single molecules, thus greatly 
expanding the sequencing capability. However, it is usually 
with lower accuracy comparing with short reads sequencing. 
In this study, we adopted a hybrid strategy, which combines 
RNA-seq and SMRT long reads sequencing, to investigate the 
transcriptional landscape in well-characterized ESCC cells.

Compared with the high-quality Ensembl 38 annotation of 
the human transcriptome, ~15% of the spliced mappings in our 
results are from known gene transcripts, ~70% are from novel 
isoforms of known genes, and the remaining ~15% transcripts 
may represent novel isoforms of novel genes. These results 
suggest that isoform and gene identification are likely far from 
complete in esophageal squamous cells.

LincRNAs have been shown to play important roles in diverse 
cellular processes such as regulating key cellular pathways and 
recruiting the chromatin-modifying complex to specific genomic 
loci (Rinn and Chang, 2012). Previously, we and others have 
delineated several lincRNAs which are critical determinants in 
ESCC tumorigenesis and development (Shen et al., 2016; Lin 
et al., 2018; Zhang et al., 2018). Among the novel full-length 
transcripts, we have identified a set of esophageal cancer specific 
lincRNAs and pre-miRNAs potentially transcribed from them 
(Tables S2 and S3). Furthermore, coexpressed coding genes 
are also found. KEGG enrichment analysis indicated that these 
lincRNA-regulated mRNAs are involved in a variety of cancer 
signaling pathways, which suggested that these cancer cell 
specific lincRNAs, together with its interacting partners, may be 
actively involved in cells transformation.

During the onset of carcinogenesis, shifted splicing of DNA 
repair genes has previously been documented in several cancer 
studies, such as BRCA1 and FANCM in breast cancer and ERCC1 
in ovarian cancer (Sun et al., 2009; Sevcik et al., 2013; Peterlongo 
et al., 2015). However, whether or not this mechanism is active 
in esophageal cancer cells is largely unknown. Based on SMRT 
data, we found that isoform usage of DNA damage response 
related genes is significantly different between esophageal tumor 
cells and the normal-like cell (Table S4). Importantly, this feature 

TABLE 2 | Comparison of transcript fusions detected from PacBio data with those from Illumina reads or ChimerDB.

TE5 SHEE KYSE510 KYSE140 SHEEC

PacBio unique fusion 335 553 415 377 292
Illumina unique fusion 39 59 31 61 49
Found in both Illumina and 
PacBio 

UQCC1–C22orf39
ARHGAP21—SVIL

KIF13A–TPMT

HNRNPUL2–C11orf49
ARHGAP42–CNTN5
INCENP–GUCY2EP

CTPS1–KCNQ4
SPAG9–LINC02071

ASAP1–KB-1568E2.1
KANSL1–ARL17B

IKBKAP–MRRF
MRRF–IKBKAP
GLI3–MRPL48

TNRC6B–PRR5
CERK–LINC02036
MB21D2–ATP13A4

HCG18–ERP29

–

Found in both ChimerDB 
and PacBio 

KIF13A–TPMT
NBPF1–NBPF15

KANSL1–ARL17B
NBPF1–NBPF15
SLC16A3–FTH1

NBPF1–NBPF15
CDH12–HSPD1

CPSF6–C9orf3
CDH12–HSPD1

PDE4D–
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can be recaptured from clinical esophageal samples (Table S5). 
In addition, we also provided evidence that activators of GTPase 
activity are differentially spliced between tumor and normal 
cells (Figure 4B). Although the altered splicing pattern of this 
group of genes is not clear in clinical samples currently, several 
investigations have confirmed that a few regulators of GTPase 
use different variants in cancers. For example, Wang et al. found 
that the splicing pattern of fibroblast growth factor receptor 
substrate 3, tuberous sclerosis 2, and RAS guanyl releasing 
protein 2 has significant race-related differences among prostate 
cancer patients (Wang et al., 2017). Furthermore, a spliced 
variant of ARF6 guanine nucleotide exchange factor was found 
to regulate the cancer cell migration and invasion (Ratcliffe 
et al., 2018). Intriguingly, fibroblast growth factor receptor 
substrate 3, tuberous sclerosis 2, and several ARF GEF and 
GTPase-activating protein family members are all listed at the 
top of spliced genes in this study (Table S5). Collectively, our 
results suggested that shift AS of genes associated with DNA 
damage response and GTPase signaling may contribute to ESCC 
pathogenesis and should be exploited for detailed mechanism in 
the future.

Oncogenic fusions have been found in many cancers. 
Growing interests have linked transcript fusion to diverse 
clinical applications ranging from tumor subclassification, early 

diagnostics, to development of effective treatment targeted this 
lesion (Shaw et al., 2013; Mertens et al., 2015; Yoshihara et al., 2015). 
However, until now, little is known for their role in ESCCs. In this 
study, we cataloged many novel transcript fusions and expanded 
the gene fusion repository in esophageal cells. We detected 1,972 
novel transcript fusions from SMRT sequencing data, which are 
much more than those archived in cancer fusion database or 
fusions predicted from RNA-seq short reads. Based on RT-PCR 
and Sanger sequencing, we verified two novel fusion transcripts. 
Interestingly, our analyses uncovered a new fusion transcript 
between the genes RC3H1 and AKR1B10. Previous reports 
indicate that RC3H1 activates the deadenylation and degradation 
in constitutive decay elements containing mRNAs (Leppek et al., 
2013; Schuetz et al., 2014). AKR1B10 is nicotinamide adenine 
dinucleotide phosphate-dependent aldo-keto reductase. It is highly 
expressed in several human cancer types such as hepatocarcinoma, 
nonsmall cell lung cancer and breast cancer and may play an 
important role in carcinogenesis (Fukumoto et al., 2005; Ma et al., 
2012; Cheng et al., 2018). We demonstrated that this novel fusion 
is highly expressed in ESCC cells compared with the normal 
immortalized esophageal squamous cell (Figure 5B). However, 
they did not occur in a few ESCC patients when searching these 
fusions from publicly available tumor samples. One possibility is 
that the searched ESCC patient datasets are limited, a total of 35 

FIGURE 5 | Ring finger and CCCH-type domains 1–aldo-keto reductase family 1 member B10 (RC3H1-AKR1B10) is a differentially expressed transcript fusion in 
esophageal cells. (A) Schematic of RC3H1-AKR1B10 chimeric RNA in esophageal cells. Fusion transcripts are predicted to retain intact functional regions from both 
parental genes. Zn: zinc finger; ROQ: Roquin domain; HN and HC: N- and C-terminal nucleotide-binding sites of Roquin domain; Aldo_ket_red: aldo/kept reductase 
domain. (B) Representative RT-PCR reactions demonstrating the differentially expressed fusion in 5 esophageal cell lines.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Transcriptome-Wide Complexity in Esophageal CellsCheng et al.

11 October 2019 | Volume 10 | Article 915Frontiers in Genetics | www.frontiersin.org

patients from 4 investigations. Thus, if the above two fusions are 
rare (i.e., <1%), they are hardly to be detected in clinical cohorts 
with small size. Another possibility is that the two fusions are cell 
specific; thus, they cannot occur in clinical samples. The functional 
consequence and clinical relevance need further investigation 
when larger ESCC cohorts are publicly available.

CONCLUSIONS

Sequencing technology is currently rapidly evolving. Combining 
PacBio SMRT platform with short reads sequencing, we have 
defined a large number of full-length transcripts and significantly 
increased the gene and isoform annotation for esophageal 
cells. Specifically, our investigations into the AS diversity, 
cancer cell specific lincRNAs, and detection of novel transcript 
fusions enlighten current understanding of transcriptional 
heterogeneity and complexity during oncogenic transformation 
in esophageal cells.
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