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Heat stress represents a major environmental factor that negatively affects the health 
and performance of dairy cows, causing huge economic losses to the dairy industry. 
Identifying and selecting animals that are thermotolerant is an attractive alternative for 
reducing the negative effects of heat stress on dairy cattle performance. As such, the 
objectives of the present study were to estimate genetic components of milk yield, fat 
yield, and protein yield considering heat stress and to perform whole-genome scans and 
a subsequent gene-set analysis for identifying candidate genes and functional gene-sets 
implicated in milk production under heat stress conditions. Data consisted of about 254k 
test-day records from 17,522 Holstein cows. Multi-trait repeatability test day models 
with random regressions on a function of temperature-humidity index (THI) values were 
used for genetic analyses. The models included herd-test-day and DIM classes as fixed 
effects, and general and thermotolerance additive genetic and permanent environmental 
as random effects. Notably, thermotolerance additive genetic variances for all milk traits 
increased across parities suggesting that cows become more sensitive to heat stress as 
they age. In addition, our study revealed negative genetic correlations between general 
and thermotolerance additive effects, ranging between -0.18 to -0.68 indicating that high 
producing cows are more susceptible to heat stress. The association analysis identified 
at least three different genomic regions on BTA5, BTA14, and BTA15 strongly associated 
with milk production under heat stress conditions. These regions harbor candidate genes, 
such as HSF1, MAPK8IP1, and CDKN1B that are directly involved in the cellular response 
to heat stress. Moreover, the gene-set analysis revealed several functional terms related to 
heat shock proteins, apoptosis, immune response, and oxidative stress, among others. 
Overall, the genes and pathways identified in this study provide a better understanding of 
the genetic architecture underlying dairy cow performance under heat stress conditions. 
Our findings point out novel opportunities for improving thermotolerance in dairy cattle 
through marker-assisted breeding.
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INTRODUCTION

Dairy cattle selection programs have traditionally focused 
on increasing milk yield and milk solids. For example, 
average milk yield of US dairy cattle has increased by more 
than double in the last 50 years, and more than half of that 
improvement is due to genetic selection (Vanraden, 2004). 
The intense selection for production, however, has led to 
increased sensitivity to environmental changes in dairy cattle. 
Today’s high producing dairy cows tend to be more heat 
susceptible which negatively impacts health, fertility, and 
lactation performance (Aguilar et  al., 2010b; Nardone et al., 
2010; Biffani et al., 2016). Heat stress is an important economic 
issue in dairy farming. Economic losses due to heat stress are 
estimated between $897 million to $1,500 million per year for 
the US dairy sector (St-Pierre et al., 2003). Heat stress is costly 
for dairy producers, especially in the southern states of the US 
where climate is subtropical and subject to extended periods 
of high ambient temperature and humidity. In Florida, dairy 
cows experience approximately 250 heat stress days during 
the year and lose about 1,200 kg of milk in the subsequent 
lactation if they are not cooled during the dry period (Ferreira 
et al., 2016). Given that heat stress is a costly problem, different 
approaches such as physical modifications of the environment, 
and improved nutritional and management practices have been 
used to alleviate the negative effects of heat stress. However, 
these practices increase production costs, and in general, they 
cannot eliminate heat stress completely. One complementary 
strategy for reducing the effects of heat stress on dairy cattle 
performance is the identification and subsequent selection of 
animals that are genetically more thermotolerant. Selective 
breeding of dairy cattle for thermotolerance is permanent, 
cumulative, and, therefore, it probably represents the most 
cost-effective approach for mitigating heat stress effects.

There is growing evidence that there is substantial genetic 
variation underlying cow response to heat stress, and hence, 
genetic selection for improved thermotolerance is possible in 
dairy cattle (Ravagnolo and Misztal, 2000; West, 2003; Nguyen 
et al., 2017). Some indicator traits, such as rectal temperature, 
exhibit a sizable genetic component. For instance, Dikmen 
et al. (2012) estimated heritability of rectal temperature in 
US Holsteins between 0.13 and 0.17. The magnitude of the 
heritability estimate suggests that genetic selection for response 
to heat stress is possible. However, the inclusion of this indicator 
trait in a national genetic evaluation is both expensive and 
cumbersome. An alternative methodology to evaluate heat 
stress is to examine the decline in production per unit increase 
in temperature-humidity index (THI) as THI increases above 
a given threshold (Ravagnolo and Misztal, 2000). In this 
context, a linear regression of a performance trait such as milk 
yield on environmental variable (THI) is fitted to predict the 
relationship between production and weather conditions. This 
model assumes that production is unaffected until a certain 
threshold level of THI, and above that level, production declines 
linearly with increasing THI, and the slope can be considered 
as a measure of susceptibility to heat stress. Genetic variation is 
associated with the amount of production loss above a certain 

threshold level. Using this approach, Nguyen et al. (2016) 
estimated breeding values for heat tolerance in Australian dairy 
cattle which provides opportunity to breed cows that are more 
thermotolerant and have lower decline in milk yield during heat 
stress conditions.

There are few studies that have reported associations 
between genomic regions and thermotolerance in dairy cattle. 
For instance, Dikmen et al. (2013) identified a genomic region 
on BTA24 to be significantly associated with rectal temperature 
in dairy cows. Olson et al. (2003) reported the Slick gene as a 
major candidate gene influencing hair length and regulating 
thermotolerance in Bos taurus cattle. Recently, Macciotta 
et al. (2017), using principal component analysis, detected a 
genomic region on BTA26 associated with milk yield under 
heat stress conditions. Srikanth et al. (2017) identified genes 
involved in apoptosis, immune response, and metabolism as 
major genes implicated in the heat stress response of Holstein 
bull calves subjected to heat stress conditions for 12 hours. 
Moreover, several studies have reported heat shock factors as 
principal molecular chaperones involved in cellular response 
to heat stress in dairy cattle, including protection from protein 
aggregation, misfolding, and thermal insults (Collier et al., 
2008; Min et al., 2015; Min et al., 2017). On the other hand, 
there is limited knowledge on individual genes and functional 
pathways implicated in cow’s ability to produce milk under 
heat stress conditions. Therefore, the first objective of this 
study was to estimate genetic components of yield traits across 
lactations considering heat stress using random regressions 
as a function of THI values. The second objective of this 
study was to perform whole-genome scans and a subsequent 
gene-set enrichment analyses in order to identify genes and 
gene networks responsible for milk production under heat 
stress conditions.

MATERIALS AND METHODS

Phenotypic and Genotypic Data
Data consisted of about 254k milk, fat, and protein test-day 
records on 17,522 Holstein cows calved from 2006 through 
2016 on two dairy herds in the state of Florida, United States 
(Table 1). Lactation records were required to have at least 
6 test-days and to be between 5 and 305 DIM. Please note 
that we only worked with datasets and never directly with 
animals, so ethics approval for the study was not needed. 
Pedigree was created by tracing the pedigree of cows back to 
five generations. The pedigree file included 35,006 animals 
including 3,478 sires.

Genotype data for 60,671 single nucleotide polymorphism 
(SNP) markers were available for 4,753 cows with test-day 
records and 1,590 sires in the pedigree file. The SNP data were 
kindly provided by the Cooperative Dairy DNA Repository and 
the Council on Dairy Cattle Breeding. Those SNP markers that 
mapped to sex chromosomes, were monomorphic, or had minor 
allele frequency less than 1% were removed from the genotype 
data. After data editing, a total of 58,046 SNPs were retained for 
subsequent genomic analyses.
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Weather data were obtained from Florida Automated Weather 
Network for Alachua County (https://fawn.ifas.ufl.edu/). Hourly 
THI values were calculated as proposed by Ravagnolo and 
Misztal (2000) as

 THI temp rh temp= ⋅ + − − ⋅ ⋅ −( . ) ( . . )( . )1 8 32 0 55 0 55 1 8 26  

where temp is the temperature in degree Celsius and rh is the 
relative humidity in percentage. Mean daily THI of 3 days prior 
the test day was assigned to each test-day record as suggested by 
Bohmanova et al. (2007).

A function of THI, denoted as f (THI), was created to estimate 
the reduction in yield traits under heat stress conditions, as 
follows:

 

f THI
if THl THl

THl THl if THl THl
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where the value of THIthr was set to 68, and thus f(THI) was equal 
to max(0, THl − THlthr).

Statistical Model
Multi-trait repeatability test-day models were used to estimate 
variance components of milk, fat, and protein yield, considering 
the first three lactations as different traits:

 

y HTD DIM a pe v f THI

q f THI

klmn kl m nl nl nl

nl

= + + + + +[ ( )]

[ ( ))]+ eklmn  

where yklmn is the record for the yield trait under consideration, 
HTDkl is herd-test-day k within parity l ( l = 1, 2, 3), DIMm is 
the mth DIM class with classes defined every 20 days, anl is the 
general random additive genetic effect (intercept) of animal n 
in parity l, penl is the general random permanent environmental 
effect (intercept) of cow n in parity l, f(THI) is a function of 
THI for herd test day k, vnl is the random regression additive 
genetic effect (slope) of the yield trait per degree of THI above 
threshold for the animal n in parity l (heat tolerance), qnl is the 
random regression permanent environmental effect (slope) of 
thermotolerance of the cow n in parity l, and eklmn is the random 
residual effect.

Let a a v= ′ ′ nl nl  be a vector of random additive genetic effects 
and pe pe q= ′ ′ nl nl  be a vector of random permanent effects for 
parities l = 1 to 3. The (co)variance structure was
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where A is the numerator relationship matrix, and Φ and ψ are 
6x6 (co)variance matrices of random regression coefficients for 
additive and permanent environment effects respectively (3 traits 
[3 parities] with 2 parameters representing the intercept and 
the slope for each trait), R is a 3x3 diagonal matrix of residual 
variances corresponding to each trait, and ⊗ denotes the 
Kronecker product of matrices.

Variance Component Estimation
Variance components for yield traits using multi-trait 
repeatability test-day models were estimated in a Bayesian 
framework using GIBBS2F90 (version 1.93). Initial values for 
multiple trait analyses were obtained from Aguilar et al. (2009). 
Genomic data were not included for variance components 
estimation. Of a total of 500,000 samples, first 100,000 were 
discarded as burn-in, and every 100th sample was retained to 
calculate posterior means and standard deviations of variance 
components. Convergence diagnostics of Markov chain Monte 
Carlo sampling output were carried out by visual inspection of 
trace plots of variance components.

Heritability (h2) for each yield trait at heat stress level f(i) was 
estimated as

 
h f i f i

f i f i
a v av

a v a

2
2 2 2

2 2 2
2

2
= + +

+ +
  ( ) ( )  

( )   ( )
σ σ σ

σ σ σ vv pe q pq ef i f i+ + + +σ σ σ σ2 2 2 22( )   ( )  

where σ a
2  the variance of general additive genetic effects; σσv

2  is 
the variance of thermotolerance additive genetic effects; σav is the 
additive genetic covariance between general and thermotolerance 
genetic effects; σ pe

2  is the variance of general environmental 
permanent effects; σ q

2  is the variance of thermotolerance 
environmental permanent effects; σav is environmental permanent 
covariance between general and thermotolerance effects, f(i) is a 
function of THI, and σ e

2  is the residual variance.

TABLE 1 | Summary statistics of Milk Yield, Fat Yield and Protein Yield by Parity.

Milk Yield (kg) Fat Yield (kg × 100) Protein Yield (kg × 100)

Par1 Par2 Par3 Par1 Par2 Par3 Par1 Par2 Par3

No. of cows 15,536 11,453 7,301 15,517 11,446 7,298 15,517 11,445 7,298
Test day 
records

115,790 84,663 53,762 126,279 92,240 58,771 130,628 95,038 60,698

Mean 
(SD)

33.03 
(6.35)

37.59 
(8.65)

39.23 
(9.31)

119.89 
(27.67)

143.82 
(40.95)

151.08 
(45.53)

99.55 
(18.62)

116.39 
(24.52)

119.96 
(25.86)
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The genetic correlation between general and thermotolerance 
additive effects was estimated as

 
corr a f i v f i

f i
av

a v

  , ( )     ( )

  ( )
  = σ

σ σ2 2 2
 

Gene Mapping
The whole-genome association mapping was performed using 
single-step genomic BLUP methodology (ssGBLUP). The ssGBLUP 
model is similar to the classical BLUP model but it replaces the 
inverse of the pedigree relationship matrix (A–1) with the inverse of 
the realized relationship matrix (H–1) that combines both pedigree 
and genomic information (Aguilar et al., 2010a). The combined 
pedigree and genomic relationship matrix H–1 was calculated as

 
H A

G A
− −

− −= +
−













1  1
1

22
1

0 0
0

 
 

where G–1 is the inverse of the genomic relationship matrix and 
A22

1−  is the inverse of the pedigree relationship matrix of the 
animals with genotype information. Here, G–1 has the dimension 
of 6,343 × 6,343 which includes 4,753 cows with test day records 
and 1,590 sires in the pedigree. The A matrix has a dimension 
of 35,006 × 35,006 which is based on a five-generation pedigree.

Candidate genomic regions associated with both general 
additive genetic merit and thermotolerance additive genetic 
merit for milk production were identified based on the 
amount of genetic variance explained by 2.0 Mb moving 
windows of adjacent SNPs. Given the genomic estimated 
breeding values (GEBVs), the SNP effects can be estimated 
as ˆ ˆ[ ]s DZ ag= ′ ′ −ZDZ 1  where ŝ  the vector of SNP marker 
effects, D is a diagonal matrix of weight of SNPs, Z is a matrix 
relating genotypes of each SNP marker to observations, and 
âg  is the vector of GEBVs for genotyped individuals (Wang 
et al., 2012). The percentage of genetic variance explained by 
a given 2.0 Mb of moving window of adjacent SNPs was then 
calculated as

 

var var( )      u Z S
i

u

j
B

j j

uσ σ2

1

2100 100× =
( )

×
=Σ

 

where ui is the genetic value of the ith genomic region under 
consideration, B is the total number of adjacent SNPs within 
2.0 Mb region, Zj is the genotype code of jth marker, Sj is the 
marker effect of the jth SNP within the ith region. In this study, 
all the SNPs were equally weighted. All these calculations were 
performed using POSTGSF90 (version 3.08) of BLUPF90 family 
of programs (Aguilar et al., 2014).

Gene-Set Analysis
Whole-genome scans were complemented with gene-set 
enrichment analyses in order to obtain additional insights 

regarding biological pathways and molecular mechanisms 
underlying the genetic variability in milk production under heat 
stress conditions. As described in detail by Han and Peñagaricano 
(2016), a gene-set analysis consists basically of three steps:  i) 
the assignment of SNP markers to annotated genes, ii) the 
assignment of genes to functional gene-sets, and finally iii) the 
association between each gene-set and the phenotype of interest 
using Fisher’s exact test.

The UMD 3.1 bovine genome sequence assembly was used 
for SNP assignment using Bioconductor R package biomaRt 
(version 2.38.0, Durinck et al., 2009). The SNPs were assigned 
to genes if they were located within the genomic sequence 
of the gene or at most 15 kb either upstream or downstream 
the gene. An arbitrary threshold of 5% of the SNP effects 
distribution (in absolute value) was used to define the set 
of relevant SNP markers associated with thermotolerance; 
putative thermotolerant genes were defined as those genes 
that contained at least one relevant SNP. The Gene ontology 
(GO) database (Ashburner et al., 2000) and Medical Subject 
Headings (MeSH) databases (Nelson et al., 2004; Morota et al., 
2015) were used to define functional set of genes. Finally, 
the identification of relevant gene-sets was performed using 
Fisher’s exact test, a test of proportions based on the cumulative 
hypergeometric distribution (Peñagaricano et al., 2013).

RESULTS AND DISCUSSION

Genetic Parameter Estimation
Variance components for lactation performance without heat 
stress (intercept) and lactation performance under heat stress 
conditions (slope) for milk yield, fat yield, and protein yield 
using multi-trait repeatability test day models were estimated 
using pedigree BLUP (Table 2). Relevant genetic parameters 
include heritability estimates and genetic correlations at heat 
stress level equal to f (THI) = 10 (i.e., 10 units above THI 
threshold of 68) across the first three parities. We found that 
both additive genetic variances without heat stress and under 
heat stress conditions increased across parities. Additive 
genetic variances for milk yield under heat stress condition 
increased by 66% from parity one to parity two and 4% from 
parity two to parity three, suggesting that cows become 
more sensitive to heat stress as they age. Additive genetic 
variances under heat stress conditions also increased for milk 
components in multiparous cows compared to primiparous 
cows. The increase in additive genetic variances in 
multiparous cows compared to primiparous cows were in the 
range of 86% to 167% for fat yield and 16% to 55% for protein 
yield. Estimates of variance components for general additive 
genetic merit of milk production traits without heat stress 
and under heat stress conditions were comparable to those 
reported by Aguilar et al. (2009) who reported that additive 
genetic variances without heat stress increased by 25 to 35% 
from first to second parity and additive genetic variances 
under heat stress almost doubled from first to second parity. 
The increase in thermotolerance additive genetic variances 
across parities was also reported in Australian Dairy cattle 
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(Nguyen et al., 2016). Bernabucci et al. (2014) also reported 
an increase in heat tolerance additive genetic variances across 
first three parities in Italian Holstein cows. Overall, the 
increase in decline of yield traits under heat stress conditions 
across parities suggest that multiparous cows are more 
susceptible to heat stress than primiparous cows.

Heritability estimates for milk production at heat stress 
level f (THI) = 10 were between 0.17 and 0.31 across the 
first three parities, which is comparable with the heritability 
estimates reported by Ravagnolo and Misztal (2000). Similarly, 
heritability estimates for fat yield for the first three lactations 
were between 13 to 20% whereas heritability estimates for 
protein yield across the first three lactations were between 
18% and 26%. In general, heritability estimates decrease across 
parity, and this could be because phenotypic variances increase 
across parity as cows become more sensitive to heat stress in 
later lactations. 

Genetic correlations for milk yield between additive 
genetic effects without heat stress and under heat stress for 
the first three parities were all negative, ranging from -0.30 
to -0.55. Also, genetic correlations between general and heat 
tolerance additive effects for milk components were also 
negative, ranging from -0.18 to -0.68. This is in agreement 
with the findings of Aguilar et al. (2009) and Ravagnolo and 
Misztal (2000) in US Holsteins who reported negative genetic 
correlations between thermotolerance and general merit 
of milk production. Bernabucci et al. (2014) also reported 
negative genetic correlations between general and heat 
tolerance additive effects for yield traits across the first three 
parities in Italian Holstein. 

Overall, our study provides further evidence that production 
traits are antagonistic to heat tolerance, and that continued 

selection for milk yield and milk components without 
consideration for thermotolerance will result in greater 
susceptibility to heat stress.

Whole-Genome Mapping
Single-step genomic BLUP methodology was utilized to 
identify genomic regions and putative candidate genes 
implicated in milk production under thermoneutral and also 
heat stress conditions. This method combines all the available 
phenotypic, genotypic, and pedigree information, and fits all 
the SNPs simultaneously. Figure 1 displays Manhattan plots 
for milk production for the three lactations under study; 
the left plots show genomic regions associated with milk 
production under thermoneutral conditions while the right 
plots show genomic regions implicated in milk production 
under heat stress conditions. The results are presented in 
terms of the proportion of genetic variance explained by 2.0 
Mb SNP windows. As expected, left plots show a clear peak on 
BTA14 at 1.37–3.37 Mb; this region harbors DGAT1, a well-
known gene that affects milk yield. Gene DGAT1 encodes a 
key enzyme involved in the synthesis of milk triglycerides 
(Yen et al., 2008). This region on BTA14 that harbors DGAT1 
explained about 5.7%, 4.0%, and 3.0% of genetic variance for 
milk production across the first three parities.

Another 2.0 Mb SNP window on BTA20 (31.05–33.05 Mb) 
explained about 1.1% and 0.6% of the additive genetic variance 
for milk yield in first and second parity, respectively. Notably, 
this region harbors the gene GHR, the growth hormone receptor 
known to have a major effect on milk yield and milk composition. 
The GHR gene is implicated in lipid and carbohydrate metabolism 
and plays a pivotal role in the growth and development of 

TABLE 2 | General (σ a
2 ) and thermotolerance ( )100 2σv  additive genetic variances, genetic correlations ( )( ),r a v

G  and heritability estimates hf ( )10
2  at THI = 78.

Milk Yield (kg) Fat Yield (kg × 100)2 Protein Yield (kg × 100)2

Parameters Par1 Par2 Par3 Par1 Par2 Par3 Par1 Par2 Par3

σ a
2 9.26 10.03 10.55 119.76 205.77 252.33 55.65 63.80 76.01

100 2σv 0.94 1.56 1.62 18.19 48.61 33.78 8.57 9.98 13.30
10σav -1.21 -1.17 -2.31 -11.44 -37.90 -63.03 -6.31 -4.58 -12.81
σe

2 7.31 12.97 15.65 351.15 666.04 840.74 79.92 127.98 154.51
hf ( )10

2

(95% HPD)
0.31

(0.29,0.36)
0.24

(0.21,0.28)
0.17

(0.15,0.20)
0.20

(0.18,0.23)
0.17

(0.14,0.20)
0.13

(0.10,0.15)
0.26

(0.24,0.30)
0.21

(0.18,0.24)
0.18

(0.16,0.21)
r a v

G
( , )

(95% HPD)
-0.41

(-0.54,-0.28)
-0.30

(-0.46,-0.11)
-0.55

(-0.70,-0.42)
-0.25

(-0.42,-0.06)
-0.38

(-0.56,-0.19)
-0.68

(-0.86,-0.53)
-0.29

(-0.42,-0.15)
-0.18

(-0.38,-0.04)
-0.40

(-0.56,-0.22)
corht

(par1, parj)
0.78 0.65 0.46 0.34 0.36 0.55

corht

(par2, par3)
0.61 0.38 0.78

corgen

(par1, parj)
0.82 0.85 0.91 0.95 0.78 0.76

corgen

(par2, par3)
0.92 0.95 0.96

HPD, highest posterior density; σ a
2 , general additive genetic variance; 100 2σv, thermotolerance additive genetic variance at THI = 78; 10σav, additive genetic covariance between 

general and thermotolerance effect; r a v
G

( , ), genetic correlation between general and thermotolerance effect; corht, thermotolerance additive genetic correlation; corgen, general 
additive genetic correlation.
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mammary gland by initiating and maintaining lactation 
(Parmentier et al., 1999).

Table 3 reports candidate genes located in 2.0 Mb SNP 
windows that explained the highest additive genetic variances 
for milk production under heat stress conditions. One genomic 
region on BTA15 (75.59–77.59 Mb) was strongly associated 
with the level of milk yield under heat stress across all three 
parities. This region harbors candidate genes such as PEX16, 
MAPK8IP1, CREB3L1, and CRY2 that are all implicated 
in the cellular response to heat stress. Gene MAPK8IP1 is 
involved in controlling cellular response to heat shock, which 
in turn increases transcription activity of several heat stress 

responsive genes that control several functions, including cell 
survival, cell proliferation, and apoptosis. Reactive oxygen 
species (ROS) are produced as a response to heat stress at the 
cellular level and these ROS cause cellular necrosis leading 
to cell death. Interestingly, gene MAPK8IP1 is involved in 
suppressing heat stress induced ROS production and cellular 
apoptosis (Li et al., 2018). Gene PEX16 is involved in cell 
membrane biosynthesis and plays an important role in cell 
protection against heat shock (Farr et al., 2016). Gene CREB3L1 
is implicated in endoplasmic reticulum stress response caused 
due to the accumulation of misfolded proteins and promotes 
cell survival during heat stress (Greenwood et al., 2015). Gene 

FIGURE 1 | Manhattan plots showing the results of the whole-genome scans for milk production for the first three lactations (numbered vertically as parity 1, parity 
2, and parity 3). The left plots highlight genomic regions affecting milk production under thermoneutral conditions (general additive genetic effects), while the right 
plots highlight genomic regions implicated in milk production under heat stress conditions (thermotolerance additive genetic effects).
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CRY2 is involved in thermotolerance and the knockdown of 
CRY2 increases sensitivity to temperature (Sanchez-Bermejo 
et al., 2015).

Additionally, our whole-genome scans detected one genomic 
region located on BTA14 (1.65–3.65 Mb) that explained more 
than 0.5% of the additive genetic variance of milk yield under 
heat stress conditions for first and second parity. Notably, this 
region harbors genes HSF1, EEF1D, VPS28, TONSL which are 
also involved in cellular response to heat stress. Gene HSF1, 
upon heat stimulus, binds gene promoters containing heat 
shock elements and activates the expression of these genes that 
act as molecular chaperones and promote cell survival under 
heat stress conditions (Calderwood et al., 2010). Gene EEF1D 
regulates the expression of heat shock responsive genes through 
the association with heat shock transcription factors (Cui et al., 
2016). Gene VPS28 is a vacuolar protein sorting gene involved 
in heat shock resistance (Jarolim et al., 2013). Gene TONSL is 
involved in DNA repair and maintenance of genome stability 
in the presence of DNA damaging stimulus such as heat shock 
(Saredi et al., 2016).

Another genomic region on BTA5 (96.94–98.94 Mb) 
explained more than 0.5% of the additive genetic variance for 
milk yield under heat stress for the third parity. This region 
harbors candidate genes CDKN1B and DUSP16. Gene CDKN1B 
is an oxidative stress related gene which is upregulated during 
heat stress and is involved in apoptosis by selectively removing 
heat-induced protein aggregates, and hence reducing cellular 
proteotoxic stress (Logan and Somero, 2011). Gene DUSP16 is 
another gene which is specifically induced during cellular heat 
stress. Indeed, gene DUSP16 has a protective function against 
oxidative stress of cells during heat stress thereby promoting cell 
survival (Kapila et al., 2016).

Overall, our whole-genome scans have detected several 
genomic regions implicated in milk production level under heat 

stress conditions. Interestingly, these regions harbor candidate 
genes that are directly involved in the heat shock response, 
apoptosis, and oxidative stress.

Gene-Set Analysis
Of the 58,046 SNP markers evaluated in the whole-genome 
association mapping, a total of 27,488 SNPs were located 
either within annotated genes or at most 15 kb upstream or 
downstream from annotated genes. This set of SNPs marked 
a total of 17,238 genes annotated in the UMD 3.1 bovine 
reference genome. A subset of 798 of these 17,238 genes were 
flagged by at least one relevant SNP (top 5% of the SNP effects 
distribution) in at least two parities, and hence, these 798 genes 
were defined as associated with milk production under heat 
stress conditions. 

Figure 2 shows a set of GO terms that were significantly 
enriched with genes affecting milk production under heat 
stress conditions. Several of these GO terms are related to 
the heat shock protein family. For instance, cellular response 
to heat (GO:0034605) and regulation of cellular response to 
stress (GO:0080135) are among the most significant gene-sets. 
These functional terms harbor several heat stress responsive 
genes, including HSF1 which is directly implicated in cellular 
protection by maintaining proper protein folding and 
preserving cytoskeleton integrity during heat stress conditions. 
Notably, a recent transcriptome analysis revealed that the GO 
term cellular response to stress was significantly enriched with 
genes differentially expressed in blood of Holstein bull calves 
subjected to heat stress (Srikanth et  al., 2017). Similarly, Li 
et al. (2015) reported GO term response to temperature 
stimulus being significantly enriched with genes differentially 
expressed in heat-treated bovine memory epithelial cells 
(BMECs) as a response to heat stress conditions. Hence, 
our study provides further evidence of a close relationship 

TABLE 3 | Putative candidate genes located in 2.0 Mb SNP windows that explain the highest genetic variance for milk yield under heat stress conditions across the first 
three parities.

Chr. Pos. (Mb) Genetic Variance (%) Candidate genes Functions

Par 1 Par 2 Par 3

BTA5 96.9-98.9 – – 0.85 CDKN1B 
DUSP16

removal of misfolded 
proteins, regulation of 
oxidative stress

BTA14 1.65-3.65 1.40 1.27 – HSF1, EEF1D, 
VPS28, TONSL

molecular chaperone, 
promotion of cell 
survival under heat 
stress, DNA repair 
and maintenance of 
genome stability

BTA15 75.6-77.6 0.57 0.83 0.63 PEX16, MAPK8IP1, 
CREB3L1, 
CRY2

cellular response 
to stress, DNA 
replication, activation 
of heat stress target 
genes involved in 
cell survival, cell 
proliferation 
and apoptosis
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between thermotolerance, in this case measured as level of 
milk yield, and the stress response pathway.

Two other GO terms implicated in the level of milk 
production under heat stress conditions are regulation of 
DNA repair (GO:0006282) and regulation of response to DNA 
damage stimulus (GO:2001020). These functional gene-
sets promote efficient DNA repair through recruitment of 
heat shock proteins and maintenance of genomic integrity 
during heat stress conditions. Interestingly, Collier et al. 
(2006) reported upregulation of genes associated with DNA 
repair when bovine mammary epithelial cells were exposed 
to heat stress.

The term inositol phosphate mediated signaling pathway 
(GO:0048016) was another GO term significantly enriched with 
genes implicated in maintaining milk production under heat 
stress. Notably, this gene-set harbors gene ITPR2 which is directly 
implicated in sweating (Klar et al., 2014). Other significant GO 
terms include insulin receptor signaling pathway (GO:0008286), 
JNK cascade (GO:0007254), stress activated MAPK cascade 
(GO:0051403), and glutamine metabolic process (GO:0006541). 
It is well-documented that heat stress causes the accumulation 
of reactive oxygen species in the cells, which in turns mediates 
MAPK activation pathway that is directly implicated in regulating 
apoptosis (Wada and Penninger, 2004).

Three GO terms classified into the molecular function 
domain showed an overrepresentation of genes associated 
with heat stress response including Hsp90 protein binding 
(GO:0051879), zinc ion binding (GO:0008270), and gated 
channel activity (GO:0022836). These pathways are closely 
related with sweat production, molecule and ion transport, 
and improving integrity of mammary epithelium under heat 
stress conditions. Additionally, there were two GO terms 
classified into cellular components domain that showed an 
overrepresentation of candidate genes, namely cell junction 

(GO:0030054) and microtubule cytoskeleton (GO:0015630). 
Interestingly, Collier et al. (2006) reported upregulation 
of genes associated with junctional adhesion and Hsp90-
organizing protein during the heat shock response in bovine 
mammary epithelial cells. These functional terms harbor genes 
that are important for maintaining the permeability of the cells, 
preventing the leakage of the cells, preserving cytoskeleton 
integrity and cell morphology during heat stress.

Figure 3 shows a panel of MeSH terms that were enriched with 
genes underlying milk production under heat stress conditions. 
These significant MeSH terms include body temperature 
(D001831), lipid peroxidation (D015227), multiprotein complexes 
(D046912), and chemokines (D018925).

CONCLUSIONS

Heritability estimates for milk yield, fat yield, and protein yield 
at heat stress conditions ranged between 0.13 to 0.31, while 
genetic correlations between general and thermotolerance 
additive genetic effects were negative and ranged from 
-0.18 to -0.68. Our findings reinforce the idea that there 
is a negative genetic relationship between production 
and thermotolerance. Our results also support the initial 
hypothesis that continued selection for milk volume and milk 
components without considering thermotolerance will result 
in greater susceptibility to heat stress. We also performed 
whole-genome scans and gene-set enrichment analyses with 
the purpose of identifying individual genes and functional 
gene-sets affecting milk production under heat stress 
conditions. We found that thermotolerance is a quantitative 
trait affected by several regions across the genome, with some 
prominent peaks on BTA5, BTA14, and BTA15. Moreover, 
the gene-set analysis revealed significant functional terms 
including the heat shock protein family, cellular response to 

FIGURE 2 | Gene ontology (GO) gene-set terms significantly enriched with genes associated with milk yield under heat stress conditions. The bars show the total 
number of genes associated with heat stress response per each significant term, and numbers within parenthesis show total number of genes in the GO term. The 
significance level was set at P-value ≤ 0.05 (Fisher’s exact test).
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stress, and response to DNA damage stimulus. Overall, this 
study contributes to a better understanding of the genetics 
underlying milk production under heat stress and points 
out novel opportunities for improving thermotolerance in 
dairy cattle.
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