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With the development of high-throughput sequencing technologies as well as various 
bioinformatics analytic tools, microbiome is not a “microbial dark matter” anymore. 
In this review, we first summarized the current analytical strategies used for big-data 
mining such as single-cell sequencing and metagenomics. We then provided insights 
into the integration of these strategies, showing significant advantages in fully describing 
microbiome from multiple aspects. Moreover, we discussed the correlation between gut 
microbiome with host organs and diseases, confirming the importance of big-data mining 
in clinical practices. We finally proposed new ideas about the trend of big-data mining in 
microbiome using multi-omics approaches and single-cell sequencing. The integration 
of multi-omics approaches and single-cell sequencing can provide full understanding 
of microbiome at both macroscopic level and microscopic level, thus contributing to 
precision medicine.
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STRATEGIES FOR BIG-DATA MINING

The human gut microbiome has been confirmed to highly correlate with human health and diseases, 
through influencing human metabolism, nutrition, physiology, and immune function (Hooper and 
Gordon, 2001; Bäckhed et al., 2005; Manichanh et al., 2012). Hence, the characterization of the 
human gut microbiome, as well as its correlation with diseases, has fascinated a great number of 
researchers to explore. However, the human gut microbiome consists of approximately 15,000 to 
36,000 species of bacteria (Frank et al., 2007), with the total number of bacterial cells ranging from 
1013 to 1014, which is of the same order as the number of human cells (3.0 × 1013) (Sender et al., 2016). 
The gut microbiome also contains more than 100 times more genes, compared with 25,000 genes 
in humans (Gill et al., 2006). Considering this big data of the gut microbiome, sequencing would 
be a promising technology for mining it, rather than the traditional cultural methods. Sequencing 
is the precondition for obtaining raw genetic materials of the gut microbiome, followed by genetic 
assembly and taxonomic and functional annotations. Several strategies are currently used for big-
data mining in microbial communities from different perspectives as follows (Table 1).
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Amplicon Sequencing
Amplicon sequencing uses specific marker genes of microbes 
such as 16S ribosomal RNA for bacteria and Internal Transcribed 
Spacer (ITS) for fungi. This sequencing method mainly answers 
“who is there” in an uncultured microbial community by 
assigning reads to reference reads. However, low-resolution level 
(cannot reach to species or strain level) of amplicon sequencing, 
as well as its disability in functional annotation, largely limits 
its application. Therefore, current solution for this problem is 
to combine the amplicon sequencing and the metagenomic 
sequencing. Researchers can first use relatively low-cost 
amplicon sequencing to have a preliminary understanding of 
the composition of the targeted microbial community, thus 
determining the hypothesis. Subsequently, they can perform 
metagenomic sequencing to confirm the hypothesis from a 
perspective of both phylogeny and functions.

Metagenomic Sequencing
The shotgun metagenomic sequencing process consists of DNA 
extraction from all cells in a community, DNA fragmentation, 
DNA sequencing, and sequence analysis such as marker gene 
analysis, binning, or contig assembly to obtain the taxonomic 
composition. Metagenomic sequencing not only can shed 
light on “who is there” at a high resolution to strain level, but 
also “what are they doing.” The metagenomic reads encoding 
proteins can be predicted for functional annotation, through 
various ways including gene fragment recruitment, protein 
family classification, and de novo gene prediction (Sharpton, 
2014). The disadvantages of metagenomics sequencing are as 
follows. First, there are limitations of short reads produced by 
next-generation sequencing and the complexity in sequence 
assembly, especially when multiple strains are present (Sczyrba 
et al., 2017). For instance, the closely related genomes in 
a community might represent genome-sized approximate 
repeats. Second, metagenomic sequencing cannot obtain high 
genome coverage and might even lose genomes of low abundant 
microbes, owing to the high genomic richness and evenness in a 
community (Mende et al., 2016). Third, functional genes of one 

microbe cannot be fully linked to its phylogeny. There are two 
solutions for these problems. First, long-read sequencing can 
solve the ambiguity in sequence assembly (Bertrand et al., 2019). 
A recent method named OPERA-MS (Bertrand et al., 2019), 
which combines nanopore-sequenced long reads and Illumina-
sequenced short reads through a hybrid metagenomic assembler, 
succeeds to promote the accuracy of strain-resolved assembly 
and obtains genomes with higher coverage. The second solution 
is to combine metagenomics with single-cell sequencing, which 
can reconstruct how DNA is compartmentalized into cells and 
link functions to their corresponding species (Tolonen and 
Xavier, 2017).

Single-Cell Sequencing
The first step of single-cell sequencing is to isolate the individual 
cells, using serial dilution, microfluidics, flow cytometry, 
micromanipulation, or encapsulation in droplets (Bäckhed 
et al., 2005). The following steps include DNA extraction, whole-
genome amplification, DNA sequencing, and sequence analysis 
such as alignment and assembly. Owing to the fact that minimum 
requirement of high-throughput sequencing is micrograms, 
which is more than the femtograms of DNA a bacterial cell 
generally contains, amplification of the minute amounts of DNA 
of the cell is necessary (Xu and Zhao, 2018). For this purpose, 
a non–polymerase chain reaction–based DNA amplification 
method multiple displacement amplification (MDA) (Dean et al., 
2002) uses random hexamer primers annealed to the template 
and a high-fidelity polymerase of the Bacillus subtilis phage phi29 
(Blanco et al., 1989). The Phi29 DNA polymerase can work at a 
moderate isothermal condition, with a high-strand displacement 
activity and an inherent 3′–5′ proofreading exonuclease activity, 
thus ensuring enough genome coverage with lower amplification 
error for the following sequencing analysis.

The major advantage of single-cell sequencing is that it 
can generate a high-quality genome for species with low 
abundance, which might be lost by the metagenomic sequencing. 
Additionally, this method can discriminate and validate 
the functions of individuals within the community, linking 

TABLE 1 | The overview of pros and cons of current widely used methods for dissecting microbiome.

Methods Advantages Disadvantages Solution

Amplicon sequencing

(1) Relatively low cost;
(2) Taxonomic annotations of uncultured 
microbial communities.

(1) Low resolution: cannot identify microbes at 
species or stain level;
(2) Cannot realize functional annotations of 
microbial communities.

(1) Combined with metagenomics;
(2) Use PICRUSt to obtain predicted 
metagenomics and functional annotations.

Metagenomic 
sequencing

(1) Taxonomic and functional annotations 
of uncultured microbial communities;
(2) Obtain the full genetic repertoire of the 
microbial communities.

(1) Difficulties in metagenome assembly and 
taxonomically and functionally assign accurately;
(2) Lack of high genome coverage;
(3) Cannot link all the functional genes of one 
microbe to its phylogeny. 

(1) Long-read sequencing and improved 
algorithms for assembly;
(2) Combined with single-cell sequencing.

Single-cell 
sequencing

(1) Taxonomic and functional annotations 
of uncultured microbes at cell level;
(2) Generate a high-quality genome for 
microbes with low abundance;
(3) Dissect virus-host interactions of 
uncultured microbes.

(1) Difficulties in cell sorting;
(2) Easily influenced by contaminated DNA;
(3) Uneven read coverage, chimeric reads caused 
by MDA. 

(1) Combined with metagenomics;
(2) Improved experimental operation and 
various computational approaches to 
control DNA contamination and errors 
caused by MDA. 
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these functions to specific species. Moreover, the single-cell 
sequencing can simultaneously recover bacterial genomes and 
extrachromosomal genetic materials in a cell, dissecting virus–
host interactions at cell level (Yoon et al., 2011). Single-cell 
sequencing has already led to many novel findings such as the 
discovery of bacteria with an alternative genetic code (Campbell 
et al., 2013), the ability to observe which gut microbial cells use 
host-derived compounds (Berry et al., 2013), and the ability to 
quantify the absolute taxon abundances of the gut microbiome 
(Props et al., 2017).

However, the single-cell sequencing also has limitations as 
follows. First, cell sorting is a complicated and time-consuming 
process. Isolating cells from solid medium such as swabs, 
biopsies, and tissues remains challenging (Tolonen and Xavier, 
2017). Second, the amplification step using MDA might magnify 
the DNA contamination. DNA contamination is mainly from the 
tainted specimen at the step of cell sorting, polluted reagents or 
laboratory apparatuses, and microbes in the environment. The 
solution for the contamination is to keep strictly clean of the 
work area with extra precaution. In addition, the reaction volume 
can be moderately reduced to increase the ratio of targeted 
DNA to the contaminated DNA. Moreover, contaminated DNA 
can be partly removed by aligning the reads to the reference of 
potentially contaminated DNA of human and environment. The 
third limitation is that the MDA procedure would cause highly 
uneven read coverage and increased formation of chimera reads 
that links nonadjacent template sequences; thus, conventional 
genome-assembly algorithms are not suitable for single-cell data. 
The solution for uneven read coverage is to normalize the reads 
by trimming the reads according to their k-mer depth, which has 
been integrated to several assembly algorithms such as SPAdes 
(Bankevich et al., 2012). The solution for chimera reads is to 
identify and remove the chimeras. Owing to the lack of reference 
genome of a certain number of cells, metagenomic sequencing 
can provide the contigs as reference for identifying chimeras.

The Integration of Single-Cell Genomics 
and Metagenomics
The metagenomics represents the whole genome of all 
microbes in the environment, while single-cell genomics 
refers to the genomes of individuals cells that may or may not 
contain the full genetic repertoire in the microbiota. Hence, 
the integration of these two technologies can make up for 
each other’s shortcomings (Figure 1). For instance, reads and 
contigs of metagenomics can improve the genome assembly 
of single-cell genomics (Mende et  al., 2016). Conversely, 
single-cell genomics can serve as scaffolds for comparison 
or recruitment of metagenomics when reference genomes 
are unavailable (Swan et al., 2013; Roux et al., 2014). Several 
studies have generated much-improved microbe genome 
assemblies from a variety of microbial communities, using 
the integration of single-cell genomics and metagenomics 
(Dupont et al., 2012; Nobu et al., 2015). The disadvantage of 
this integration is that the potential errors of both methods 
would be gathered, thus requiring more sophisticated methods 
to deal with.

The Integration of Metagenomics and 
Three-Dimensional Genomics
Metagenomics can quantify the genetic materials of a microbial 
community, while the Hi-C sequencing can identify all chromatin 
interactions of the community, producing three-dimensional 
(3D) genome, reflecting both the genetic content and topological 
chromatin structures into digital information (Belaghzal et al., 
2017). The integration of metagenomics and 3D genomics can 
fully display the composition and structure of genomes of a 
microbial community. Moreover, a recent study performed Hi-C 
for single-cell analysis, to capture 3D genomes of individual cells 
(Nagano et al., 2017).

Microbial Multi-Omics Analysis
With advances in high-throughput sequencing technologies and 
bioinformatics approaches, researchers are now able to perform 
comprehensive analysis in microbial communities, named as 
“multi-omics analysis.” This analysis integrates metagenome, 
metatranscriptome, metaproteome, and metabolome. The 
metagenome displays the taxonomic composition in a 
microbial community and predicted functional expression. The 
metatranscriptome, metaproteome, and metabolome can confirm 
the predicted functions, further unveiling how microbes work in 
a community. These omics can provide significant information 
about a microbial community from different perspectives. For 
instance, the microbial communities of twins with Crohn disease 
have been analyzed at phylogenetic, functional, and metabolic 
levels, using 16S sequencing (Dicksved et al., 2008; Willing 
et al., 2009; Willing et al., 2010), metagenomics, proteomics 
(Erickson et al., 2012), and metabolomics (Jansson et al., 2009).
The subjects with Crohn disease contain a microbial community 
with lower microbial diversity, depletion of Faecalibacterium 
prausnitzii, and lower expression levels of proteins involved in 
butyrate metabolism (Erickson et al., 2012). At the metabolite 
level, thousands of metabolites such as the bile acids (BAs) that 
were detected higher in diseased subjects can distinguish healthy 
subjects from subjects with Crohn disease (Jansson et al., 2009). 
Therefore, the integration of these omics is necessary for fully 
detecting microbial community. In a recent study, researchers 
succeeded to correlate the process of permafrost thawing with 
microbial composition and functions, using “multi-omics 
analysis” (Hultman et al., 2015).

THE CONNECTION BETWEEN 
MICROBIOTA AND THE HUMAN BODY

The dietary intake (Wu et al., 2011; Liu et al., 2018) and 
environmental exposure such as administration of antibiotics 
(Pérez-Cobas et al., 2012; Raymond et al., 2016) can largely 
influence human gut microbiota. The gut microbiota would then 
respond to these factors, producing signals adjusting human 
distal organs including liver (Khalsa et al., 2017), brain (Dinan 
and Cryan, 2017), and lung (Budden et al., 2017), as described 
in Figure 2. Both of microbes’ own structural components and 
metabolites produced by them can serve as the signal molecules. 
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FIGURE 1 | The integration of single-cell sequencing and metagenomics makes them complement each other. Single-cell sequencing could provide metagenomics 
with reference scaffolds, while metagenomics could ameliorate the genome assembly of single-cell sequencing.
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These signals can affect distal organs metabolism either directly 
or by signaling through nerves or hormones from the gut 
(Schroeder and Bäckhed, 2016).

Gut–Liver Axis
The gut microbiota was confirmed to adjust liver metabolism 
(Kim et al., 2007; Khalsa et al., 2017). BAs, for example, derived 
from cholesterol in the liver, can be modified by microbiota in 
the distal small intestine and colon (Schroeder and Bäckhed, 
2016). Primary BAs will be deconjugated by the ileal gut 
microbiota after they are secreted into the small intestine, 
which makes them manage to escape the reabsorption and 
then be subjected to further chemical modification by colonic 
microbiota (Midtvedt, 1974; Swann et al., 2011). BAs are capable 
of activating nuclear receptors such as farnesoid X receptor 
(FXR) and G-protein–coupled receptors (GPCRs), which 
are associated with host metabolism (Fiorucci et al., 2009). 
The activation of FXR can suppress the rate-limiting step in 

BA synthesis through a gut microbiota–liver feedback loop, 
thus controlling the BA levels (Kim et al., 2007). Additionally, 
TGR5, one of GPCRs, predominately recognizes secondary 
BAs, which is associated with increased thermogenesis in brown 
adipose tissue (Broeders et al., 2015). The adjustment of the gut 
microbiota on the liver is important, while the response of liver 
cells is important as well, which can be described using single-
cell sequencing. A recent study used single-cell RNA sequencing 
on T cells from hepatocellular carcinoma patients to identify 11 
T-cell subsets with special molecular and functional properties, 
thus contributing to the prediction of their clinical responses in 
liver cancer (Zheng et al., 2017).

Gut–Brain Axis
The association between the brain and other organs depends 
on complex pathways consisting of the dual autonomic 
nervous system and endocrine. The gut–brain axis is defined 
to encompass afferent and efferent neural, endocrine, and 

FIGURE 2 | Communications between the gut microbiome and distal organs. Various factors such as environmental exposure and dietary intake can modulate gut 
microbiota. The change of gut microbiota will bring a certain number of effects on distal organs through signals molecules consisting of their structural components 
such as lipopolysaccharide (LPS) and their metabolites such as SCFAs.
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nutrient signals between the central nervous system and the 
gastrointestinal system (Romijn et al., 2008). Several studies have 
shown that the gut microbiota influences our brain morphology 
and stress response and even causes the stroke (Schroeder and 
Bäckhed, 2016) via the gut–brain axis. As for brain morphology, 
most studies were performed using mice due to the challenges 
in humans. Through the comparison between germ-free mice 
and colonized mice, the gut microbiota has been found to 
cause alterations in the structural integrity of the amygdala and 
hippocampus (Luczynski et al., 2016). Germ-free mice displayed 
increased hippocampal neurogenesis and hypermyelination 
of the prefrontal cortex (Hoban et al., 2016). Moreover, a 
more permeable blood–brain barrier (BBB) in germ-free mice 
suggests that the gut microbiota is also capable of modulating 
the BBB (Braniste et al., 2014). In respect to stress response, 
Bifidobacterium longum was observed to activate the vagus 
nerve to reduce anxiety-like behavior independently of brain-
derived neurotrophic factor (Bercik et al., 2011). Moreover, 
different community members may have distinct influences on 
the stress response. For instance, when young germ-free mice 
with originally elevated stress response were colonized with 
Bifidobacterium infantis at an early developing stage, the stress 
response was then diminished. But when they were colonized 
with enteropathogenic Escherichia coli, their stress responses 
were observed to aggravate (Sudo et al., 2004). As to the stroke, 
87% are ischemic and caused by interruption of the blood supply 
to the brain. A study displayed that ischemic brain injury in 
mice can be reduced by antibiotic-induced alterations in the 
gut microbiota (Benakis et al., 2016), which provided us with a 
potential therapeutic method in the future. The characterization 
of brain cells is important for researchers to further explore 
the gut–brain axis. Recently, a study performed single-cell 
sequencing, integrated with multi-omics on the human brain, 
providing new insights into complex processes in the brain (Lake 
et al., 2018).

Gut–Lung Axis
The conception of the gut–lung axis has emerged these years, 
which still needs more investigations to excavate mechanisms. 
First, dietary intake can shape both the gut microbiota and the 
airway microbiota (Marsland et al., 2015). On the one hand, 
dietary fiber intake leads to an increased level of short-chain 
fatty acids (SCFAs), which is associated with shifts in both gut 
microbiota and airway microbiota (Trompette et al., 2014). 
On the other hand, a high-fat diet has been confirmed to 
correlate with compositional changes in intestinal microbiota 
and elevated allergic airway inflammation (Myles et al., 2013). 
Second, the gut–lung axis contains several interactions among 
microbiota, metabolites, immune cells, and the lung. Bacterial 
metabolites such as SCFAs, with the ability to reach other organs 
via the bloodstream, are able to exert their anti-inflammatory 
properties. Additionally, the microbial seeding from the 
intestinal microbiota into the airways makes these bacteria able 
to act on local immune cells to shape their responses (Marsland 
et al., 2015). Moreover, migrating immune cells are capable 
of acquiring information directly from microbiota and the 

concomitant local cytokine response to adjust inflammatory 
response, which shapes immune responses at distal sites such as 
the lung (Trompette et al., 2014; Budden et al., 2017). Scientists 
have correlated allergic asthma, one of the lung diseases, with the 
gut microbiota. A study displayed that a fecal transplant from 
a child at risk of asthma into germ-free mice resulted in severe 
lung inflammation after challenge with ovalbumin (Arrieta et al., 
2015). Moreover, another study showed that the impacts by 
recurrent antibiotic treatment on the diversity of the microbiota 
early in life (Fouhy et al., 2012) have been confirmed to strongly 
correlate with the development of an asthmatic phenotype later 
in life (Fanaro et al., 2003). There are still a certain number of 
unknown mechanisms in the gut–lung axis, which provides us 
with a lot of potential therapeutic methods against lung diseases.

MICROBIOTA AND CLINICAL MEDICINE

Gastrointestinal Disease
The intestine is a critical organ in the human’s body, whose 
functions involve the uptake of nutrients and water. The 
intestinal barrier (Figure 3), as the essential barrier of the 
intestine, prevents the transfer of harmful substances and 
pathogens. Pathogenic bacteria may cause the disruption of 
this barrier resulting in increased intestinal permeability. 
Enteropathogenic E. coli (EPEC), for instance, causes a loss 
of enterocyte microvilli and the formation of a raised pedestal 
structure for firm bacterial attachment (Lapointe et al., 2009). In 
addition, enterohemorrhagic E. coli also possesses an attaching 
and effacement locus but with less profound effects on the 
barrier (Kaper and Nataro, 2004). Moreover, enteroaggregative 
E. coli and enterotoxigenic E. coli can cause diarrhea through 
effects on chloride secretion in the intestinal epithelium 
(Dubreuil, 2012). The single-cell sequencing helps to identify the 
pathogenic microbes at the intestinal lumen. The main antibody 
isotype named immunoglobulin A (IgA), which is produced 
at mucosal surfaces, can bind those pathogenic microbes in 
the intestinal lumen. The cell sorting then uses a fluorescent 
anti-IgA antibody, followed by 16S rDNA sequencing to 
identify the isolated pathogenic microbes (Palm et al., 2014). 
Furthermore, metagenomic sequencing can also be performed 
on these isolated microbes to identify the basis of immunogenic 
differences between and within microbes. Similarly, the elevated 
IgG coating of gut bacteria has also been observed in patients 
with sepsis and Crohn disease system (Zeng et al., 2016). 
Therefore, the single-cell sequencing is a promising method to 
correlate microbes with host immune response for precision 
medicine (Tolonen and Xavier, 2017).

Thrombosis
The risk of thrombosis has been observed to be correlated with 
the plasma levels of trimethylamine (TMA)–N-oxide (TMAO) 
in humans (Zhu et al., 2016). Especially, the gut microbiome is 
critically involved in the generation of TMAO (Tang et al., 2013). 
The gut microbiome can process certain dietary nutrients such 
as phosphatidylcholine, choline, and carnitine specifically to 
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procedure TMA, which is absorbed in the gut and converted in 
the liver to TMAO by hepatic flavin-containing monooxygenases 
(Tilg, 2016). In humans, foods such as meat and eggs have been 
associated with an increased risk of major cardiovascular events 
in patients with proven coronary heart disease (Tang et al., 2013). 
In addition, administration of antibiotics can markedly reduce 
the plasma levels of TMAO.

Hepatitis B Virus
Hepatitis B virus (HBV), as one of the most common infectious 
agents worldwide, has been associated with the gut microbiome 
(Chou et al., 2015). Scientists have found that viral clearance 
heavily depends on the age of exposure. According to the control 
experiments of adult and young mice, the results showed an 
immune-tolerating pathway to HBV that prevailed in young 
mice with immature gut microbiota. After the establishment of 
gut bacteria, the mature gut microbiota in adult mice stimulated 
liver immunity, resulting in rapid HBV clearance (Chou et  al., 
2015). Therefore, full understanding of the interaction of 

virus–host may help us with the therapy for HBV. The single-cell 
sequencing can serve as a powerful method to explore the virus–
host interaction (Labonte et al., 2015).

Depression
Depressive episodes correlate with dysregulation of the 
hypothalamic–pituitary–adrenal (HPA) axis (Barden, 2004) and 
resolution of depressive systems with normalization of the HPA 
axis (Heuser et al., 1996; Nickel et al., 2003). The gut microbiota 
has been confirmed to play a part in both the programming 
of the HPA axis early in life and stress reactivity over the life 
span (Foster and Neufeld, 2013). The stress response system is 
functionally immature at birth and then develops throughout 
the postnatal period, which coincides with the intestinal 
bacterial colonization. Stress can increase intestinal permeability, 
providing bacteria with an opportunity to translocate across the 
intestinal mucosa and directly access both immune cells and 
neuronal cells of the enteric nervous system (Gareau et al., 2008; 
Teitelbaum et al., 2008).

FIGURE 3 | Intestinal barrier and affecting factors. The intestinal barrier, as an essential barrier against harmful pathogens and substances in the intestine, mainly 
consists of the mucus layer, the epithelial layer, and the underlying lamina propria. The intestinal lumen contains antimicrobial peptides (AMPs), secreted IgA, and 
commensal bacteria, which prevent the colonization of pathogens. A mucus layer covers the intestinal surfaces as a physical barrier. The epithelium is composed of 
a single layer of cells sealed by tight junction proteins such as occludin and claudin inhibiting paracellular passage. M cells and intraepithelial lymphocytes are also 
contained in this layer. The lamina propria harbors lots of immune cells. Factors including food allergens, lipopolysaccharides (LPS), and pathogenic bacteria such as 
EPEC effect on the intestinal barrier function.
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AIDS
The gut microbiota has been recently observed to be associated 
with human immunodeficiency virus (HIV) disease progression 
(Vujkovic-Cvijin et al., 2013). Scientists identified a dysbiotic 
mucosal-adherent community enriched in Proteobacteria and 
depleted of Bacteroidia members that were associated with 
markers of mucosal immune disruption, T-cell activation, 
and chronic inflammation in HIV-infected subjects. This 
dysbiotic community was evident among HIV-infected subjects 
undergoing highly active antiretroviral therapy (Vujkovic-Cvijin 
et al., 2013). Furthermore, the extent of dysbiosis correlated with 
two established markers of disease progression including the 
activity of the kynurenine pathway of tryptophan catabolism and 
plasma concentrations of the inflammatory cytokine interleukin 
6 (Vujkovic-Cvijin et al., 2013). Hence, a link between mucosal-
adherent colonic bacteria and immunopathogenesis during 
progressive HIV infection deserves better investigations.

Cancer
Gut microbes have been reported to be correlated with a certain 
number of cancers related to human stomach (Helicobacter 
pylori), liver (Opisthorchis viverrini, Clonorchis sinensis), and 
bladder (Schistosoma haematobium) (Bhatt et al., 2017). H. pylori 
infections, for instance, can lead to gastritis and gastric ulcers 
(Marshall et al., 1984), which is considered as the precursor of 
gastric cancer. Nevertheless, H. pylori was also observed to protect 
against esophageal adenocarcinoma, by influencing stomach pH 
and ameliorating acid reflux (Vaezi et al., 2000). Hence, owing to 
the participation of microbes in multiple biological processes, the 
oncogenicity of microbes should be discussed and determined by 
multi-omics approaches.

THE TREND OF BIG-DATA MINING FOR 
MICROBIOME

In the past, owing to limitations in abilities to obtain and 
process microbial big data, scientists were not able to obtain a 
full understanding of the microbiota. Neither the sequencing 
technologies nor the analysis tools can meet the high dimensional 
complicacy of the intestinal microbiota. Nowadays, the high-
throughput sequencing technologies, such as MDA (Dean et al., 
2002) for single-cell sequencing, and numerous statistical analysis 
tools, such as QIIME for 16S sequencing data (Caporaso et al., 2010) 
and MetaPhlAn (Segata et al., 2012) for metagenomics data, make 

it possible to unveil the microbiota from various perspectives. The 
integration of the current sequencing methods would be necessary 
to conduct a comprehensive study on microbiota in the future. 
First, the taxonomic information at various levels can be obtained 
by amplicon sequencing and metagenomic sequencing. Second, 
the functional annotation can be predicted by metagenomics 
and confirmed by the multi-omics including metagenome, 
metatranscriptome, metaproteome, and metabolome. Third, the 
connection between functions and phylogeny of a single microbe cell 
can be established by single-cell sequencing. Finally, the interactions 
between all chromosomes can be detected by Hi-C sequencing. 
The integration of these methods can answer the questions “who 
is there,” “what are they doing,” and “how are they doing” from a 
macroscopic level of overall microbial composition and microscopic 
level of single microbe cell and even the single chromosome. The 
comprehensive analysis of big data, followed by strict in vivo and in 
vitro experiments, is required to determine the causality of clinical 
diseases by microbes for specific medicine. Moreover, a standard 
pipeline for the integration of these methods proposed in the future 
can produce a huge amount of data sets. The big-data sets across 
continents provide the spatial characteristics, and the big-data sets in 
the long-term investigations provide the characteristics at time scale.
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