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It is estimated that the impact of related genes on the risk of Alzheimer’s disease (AD) 
is nearly 70%. Identifying candidate causal genes can help treatment and diagnosis. 
The maturity of sequencing technology and the reduction of cost make genome-wide 
association study (GWAS) become an important means to find disease-related mutation 
sites. Because of linkage disequilibrium (LD), neither the gene regulated by SNP nor 
the specific SNP can be determined. Because GWAS is affected by sample size and 
interaction, we introduced empirical Bayes (EB) to make a meta-analysis of GWAS to 
greatly eliminate the bias caused by sample and the interaction of SNP. In addition, most 
SNPs are in the noncoding region, so it is not clear how they relate to phenotype. In 
this paper, expression quantitative trait locus (eQTL) studies and methylation quantitative 
trait locus (mQTL) studies are combined with GWAS to find the genes associated with 
Alzheimer disease in expression levels by pleiotropy. Summary data-based Mendelian 
randomization (SMR) is introduced to integrate GWAS and eQTL/mQTL data. Finally, we 
prioritized 274 significant SNPs, which belong to 20 genes by eQTL analysis and 379 
significant SNPs, which belong to seven known genes by mQTL. Among them, 93 SNPs 
and 2 genes are overlapped. Finally, we did 10 case studies to prove the effectiveness of 
our method.
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INTRODUCTION

It is estimated that the impact of related genes on the risk of AD is nearly 70%. Importantly, neuronal 
cell death precedes the appearance of cognitive symptoms for 10 years or more, suggesting that 
targeted treatment needs to be performed before symptoms appear. Therefore, the identification 
of AD biomarkers such as genes, RNAs (Jiang et al., 2015; Cheng et al., 2018; Cheng et al., 2019), 
proteins, and metabolites (Cheng et al., 2019) is critical for early detection and early intervention in 
AD. In addition, identifying candidate genes and loci can also help us understand the pathogenesis 
of AD and develop drugs.

Recently, Jansen et al. (Jansen et al., 2019) published his AD GWAS study on natural genetics. 
The sample size is more than eight times that of Lambert et al. (Lambert et al., 2013) in 2013. Due to 
the increase in the number of samples, they found nine AD risk loci more than in previous studies. 
Jansen et al. found that most of the AD-related DNA mutations were located in the noncoding part 
of the genome in regions that affected gene transcription. It means that combining GWAS data with 
transcriptional expression data will greatly advance AD research (Cheng et al., 2016).
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However, GWAS still has certain limitations. The SNP is 
not necessarily the true pathogenic locus, but only related 
to the SNP that actually causes the disease due to the LD. 
GWAS usually analyzes the edge effects of individual loci 
while ignoring the interaction of multiple genes in complex 
diseases (Battle et  al., 2014). Therefore, GWAS still cannot 
fully reveal the genetic susceptibility factors of complex 
diseases (Cheng et al., 2018). It is only an important part of 
exploring the genetic etiology of complex diseases (Cheng and 
Hu, 2018). Therefore, using GWAS data for research, we must 
first start with the expression of SNP, that is, combined with 
data affecting gene expression, which can weaken the impact 
of LD on significance. Then, the interaction of multiple genes 
is considered, that is, the statistical values of each SNP are 
revised within the whole genome.

It was found that about 80% of the genetic susceptibility loci 
detected by GWAS were located in the noncoding region of the 
genome, suggesting that the pathogenic loci may have regulatory 
functions on gene expression. An important role of large-
scale eQTL research is to be able to prioritize SNP loci (Barral 
et al., 2012) in GWAS susceptible regions and to infer possible 
biological mechanisms through the influence of DNA polymers 
on biological characteristics. At present, many studies have used 
eQTL analysis as a very effective tool to explain the results of 
GWAS. Hormozdiari et al. (Hormozdiari et al., 2016) present a 
probabilistic method named eCAVIAR, which can detect target 
genes by colocalization of GWAS and eQTL signals. Xu et al. 
purposed a more powerful method based on PrediXcan and 
TWAS. It can integrate single set or multiple sets of eQTL data 
with GWAS.

mQTL is mainly based on the analysis of cis-mQTL, that 
is, using Beta value of methylation level of CpG locus near a 
gene as dependent variable, screening all SNP variations in the 
chromosomal region upstream and downstream of the gene 
as independent variable and regressing each SNP locus S and 
methylation level M in this region one by one, so as to obtain 
SNP loci significantly related to the methylation level of a gene. 
There is no doubt that methylation affects gene expression. This 
is very similar to eQTL, both of which can cause changes in 
expression through mutations in a single locus. Therefore, in 
recent years, more and more studies have been carried out to 
screen genes related to traits by combining mQTL with GWAS. 
Hägg et al. (Hägg et al., 2015) integrated GWAS, eQTL, and 
mQTL to find out genes which are related to obesity. Pharoah 
et al. (Pharoah et al., 2013) identified three new susceptibility 
loci for ovarian cancer by GWAS meta-analysis and verified the 
result by mQTL.

In our previous paper (Hu et al., 2018), we have identified 
some AD-related genes by GWAS and eQTL using SMR. There 
are three points to be improved. Firstly, mQTL should be 
included to verify and improve our result. Secondly, we used 
several eQTL datasets in that paper, whereas a meta-analysis 
method should be used to integrate the datasets, which can 
improve the accuracy of eQTL’s statistical results. Finally, 
GWAS datasets should also be integrated into one dataset so 
that can overcome the difference of statistical power caused by 
sample size.

METHODS

SMR
Since Zhu et al. proposed “SMR” in 2016, it has become a 
common way to identify the genes whose expression levels are 
associated with a complex trait because of pleiotropy. Using 
GWAS and eQTL data, SMR could screen trait-related genes. 
After two years, they applied SMR to mQTL data. They found 
7,858 DNAm sites which are related to 14 complex traits.

The basic idea of this method is as follows. First, let y be 
the phenotype, which is the outcome variable. x is the gene 
expression, which is the exposure factor. z is the gene mutation, 
which is the instrumental variable. Then, bxy is the effect of x on 
y, bzx is the effect of z on x, and bzy is the effect of z on y. The 
definition of bxy is bxy = bzy/bzx, which means the effect of gene 
expression on phenotype without confounding factors. This idea 
is based on the Mendelian randomization (Cheng et al., 2018; 
Cheng et al., 2019).

Figure 1 is a hypothetical model of a mediation mechanism 
tested in SMR. The blue line represents causal relationship. 
Methylation will cause SNP. Both SNP and methylation can affect 
the change of transcription. The change of transcription will cause 
the difference of trait. The red line denotes the relationship data 
represents. mQTL denotes the relationship between methylation 
and SNP. eQTL denotes the relationship between transcription 
and SNP. GWAS denotes the relationship between SNP and trait.

Based on this hypothesis, many researchers have found the 
genes which are related to certain traits. Diseases like bone 
mineral density (BMD) (Meng et al., 2018), amyotrophic lateral 
sclerosis (ALS) (Du et al., 2017), and neuroticism (Fan et al., 
2017) have been found some potential related genes by SMR. 
Other traits like height, BMI (Yengo et al., 2018), and obesity (Liu 
et al., 2018) have also researched by SMR.

Eb-GWAS
Due to the complex linkage effects and statistical errors of the 
samples, the contribution of GWAS to biological research is 
reduced. GWAS may associate common diseases with thousands 
of DNA mutations, that is, every DNA region that happens to be 
active in diseased tissues may be associated with disease (Jiang et al., 
2013). Many GWAS matches are not specifically biologically related 
to disease and, therefore, cannot be used as effective drug targets. 
In fact, these “peripheral” mutations are likely to affect the activity 
of “core” genes, which are more directly related to disease, through 
complex biochemical regulatory networks (Jiang et al., 2010).

As we discussed before in the introduction, the interaction of 
multiple genes is considered, that is, the statistical values of each 
SNP are revised within the whole genome. In this section, we will 

FIGURE 1 | A hypothetical model of a mediation mechanism. 
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process GWAS data in two steps: 1. meta-analysis, 2. using EB, 
revise the statistical value of each SNP within the whole genome.

Meta-Analysis
Since SE denotes the standard error of each SNP, it represents the 
reliability of Beta values. Then, weight of each Beta should be:

 w SEi i= 1 2/  (1)

SEi denotes the standard error for study i, wi denotes the 
weight of Beta.

Then, the Beta after meta-analysis would be:

 β β= ∑∑ i i i
ii

w w/  (2)

βi denotes effect size estimate for study i.
Then, we could use the weight of each Beta to calculate the 

result of meta-analysis.

 SE wi= ∑1/
i

 (3)

Finally, the overall Z-score could be obtained by the original 
equation.

 Z = β / SE  (4)

Eb-GWAS
After meta-analysis, we could summary several GWAS datasets 
into one dataset. Then, we used EB to integrate all the Z scores 
in the whole genomic level. As we know that the SNP could 
interact with each other, the Z score of all SNP should have some 
relationship and obey normal distribution.

The overall Z-score we obtained before obeying normal 
distribution with standard deviation is 1. Then,
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Zi denotes the Z score we obtained. It is a value with bias. Zi 
denotes the real Z score.

Real Z score obeys normal distribution:
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Then,
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2
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From the properties of inverse chi-square distribution,

 E
N

( )σ 2 1 1
3

+
−S

  (13)

Then,

  (14)

Therefore, the EB estimation of B is

  (15)

Finally, we can put the (Hu et al., 2018) into (Battle et al., 2014)

 Z Z N
S

Z Zi i= + − − −
 

( ( ))( )1 3  (16)

Then, we have done the meta-analysis and revised the 
statistical value of each SNP within the whole genome.

Dataset
As shown in Table 1 we obtained five GWAS datasets, three eQTL 
dataset, and three mQTL datasets. All the eQTL and mQTL are from 
brain tissue. Yang Jian et al. have already meta-analysis the eQTL 
and mQTL datasets. Therefore, we used the data they processed.

For GWAS dataset, Scelsi M A et al. obtained the data from 
1,517 Caucasian ADNI subjects. Lambert JC et al.’s dataset is 

E N
S

B( )− =
+

= −3 1
1

12σ

B N
S

= − −1 3( )

TABLE 1 | Datasets used in this paper.

Data Name Reference

GWAS ADNI_DPS_GWAS
ADNI_amyloid_GWAS
ADNI_hippo_GWAS

Scelsi et al. (2018)
(include three datasets)

IGAP_stage_1 Lambert et al. (2013)
UK_Biobank Marioni et al. (2018) 

eQTL GTEx-brain eQTL GTEx Consortium (2017)
CMC Fromer et al. (2016)
ROSMAP Ng et al. (2017)

mQTL ROSMAP Ng et al. (2017)
Human fetal brain Hannon et al. (2016)
Frontal cortex Jaffe et al. (2016)
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consisted of 17,008 Alzheimer’s disease cases and 37,154 controls. 
Marioni R E et al. obtained data from 314,278 participants.

For eQTL dataset, SNPs within 1Mb distance from each probe 
are available in these three datasets. After meta-analysis, the 
estimated effective sample size n = 1194.

For mQTL dataset, 5kb, 500kb, and 20kb are the available 
distance for the three datasets, respectively. After meta-analysis, 
the estimated effective sample size n = 1160.

RESULTS

Results of GWAS Meta-Analysis
We did a meta-analysis of five groups of GWAS data and 
integrated them into a GWAS file.

The blue block in Figure 2 is P value density of GWAS after 
meta-analysis. The red block in Figure 2 is P value density of 
GWAS after EB. As we can see in Figure 2, the distribution 
approximates uniform distribution. After using EB in all SNPs in 
whole dataset, the P value of the final GWAS data approximates 
the normal distribution.

Results of SMR
GWAS included 1,474,846 SNPs, mQTL included 6,966,746, and 
eQTL included 1,067,443 SNPs. There are 149,326 SNPs occur in 
both GWAS and eQTL and 408,896 SNPs occur in both GWAS 
and mQTL. Therefore, we use SMR to test these repeated SNPs 
in data sets.

Note that some SNPs are marked by multiple probes, so one 
SNP may significant in more than one gene. One SNP may affect 
expression of multiple genes.

In Figures 3 and 4, we can see that SNPs’ P value in GWAS are 
not related to eQTL and mQTL. It means that only few significant 
SNPs in GWAS have significance in eQTL and mQTL. Anyway, 
the points near the upper right corner in the images mean that 
the difference in expression level caused by these SNPs is related 
to AD and SMR can help us detect these SNPs.

We set a threshold as 0.05/(number of probers). For eQTL 
data, the threshold is 0.05/8362 = 5.98e-06. For mQTL data, the 
threshold is 0.05/97263 = 5.14e-07. The numbers of SNPs and 
genes identified by the two experiments are shown in Table 2.

Figure 5 shows all the SNPs’ P value. The red points are the 
P value of GWAS SNPs. The blue points are the P value of eQTL 
SNPs and the green points are the P value of mQTL SNPs. There is 
a black line in the first picture. The line is the significant threshold 
of P value. It is -log10(5*10-8). The SNPs of eQTL and mQTL are 
already screened so each SNP’s P value is less than 5*10-8.FIGURE 2 | Pvalue density of genome-wide association study (GWAS).

FIGURE 3 | Duplicated SNPs’ P value in genome-wide association study 
(GWAS) and eQTL.

FIGURE 4 | Duplicated SNPs’ P value in genome-wide association study 
(GWAS) and mQTL.
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Figure 6 shows the result of SMR by two different datasets. 
The first graph is the result of GWAS and eQTL and the second 
one is the result of GWAS and mQTL. The black line in the two 
graphs is significant threshold, respectively. As we can see, only 
few of SNPs can pass the SMR test. Some of them are not very 
significant in GWAS, but combined with eQTL or mQTL, they 
would be significant.

As we can see in Table 3, HLA-DQA1 and HLA-DRB5 are 
selected in both eQTL and mQTL datasets. The HLA complex 
is located in the 21.31 region (6p21.31) on the short arm of 

chromosome 6 and is composed of 3.6 million base pairs. It is the 
region with the highest gene density and the most polymorphic 
region in human chromosomes. Known as “chemical fingerprints 
in humans”. Due to the complexity of HLA, the methylation level 
and expression level differ greatly.

Case Study
In this section, we want to confirm whether the 25 AD-related 
genes we found have been reported by others. In order to be 
precise, we only use the literature that got AD-related genes by 
biological experiments, rather than the bioinformatics method 
or GWAS method.

Zhu et al. (2017) found four CR1 SNPs showed significant 
associations with the Aβ deposition at the baseline level.

James et al. (2018) gathered 71 cognitively healthy women’s 
the volumes of total gray matter, cerebrocor-tical gray matter, and 
subcortical gray matter by structural magnetic resonance imaging 

FIGURE 5 | P value of genome-wide association study (GWAS), eQTL, and mQTL.

FIGURE 6 | Result of summary data-based Mendelian randomization (SMR).

TABLE 2 | The results of summary data-based Mendelian randomization (SMR).

Dataset Number of SNPs Number of Genes

GWAS&eQTL 274 20
GWAS&mQTL 379 7
Overlapped 93 2
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(sMRI) scan and found that the protective effect of DRB1*13:02 
is related to successful elimination of specific  pathogens that 
would ultimately cause gradual brain atrophy.

Yu et al. (2015) found that BIN1 was associated with Aβ load 
and brain DNA methylation in HLA-DRB5 was associated with 
pathological AD by 447 participants

Lee et al. (2018) used non-Hispanic Caucasians with 
neuroimaging and found that HLA-DQB1 is significantly 
associated with entorhinal cortical thickness by controlling for 
multiple testing.

Yoshino et al. (2016) found that SNCA mRNA expression in 50 
AD subjects was significantly higher than that in control subjects. 
Therefore, they inferred mRNA expression and methylation of 
SNCA intron 1 are altered in AD, whereas ZSCAN21 at upstream 
of these CpG site were reported to bind at intron 1.

Rathore et al. (2018) noted that both TREM2 and PILRB 
function as activating receptors and signal through DAP12. A 
reduction of PILRA inhibitory signals in R78 carriers could allow 
more microglial activation via PILRB/DAP12 signaling and 
reinforce the cellular mechanisms by which TREM2 is believed 
to protect from AD incidence.

Ruggiero et al. (2017) did biological experiments on mice 
and found that MTCH2 is a critical player in neuronal cell 
biology, controlling mitochondria metabolism, motility, 
and calcium buffering to regulate hippocampal-dependent 
cognitive functions.

De Jager et al. (2014) used a collection of 708 prospectively 
collected autopsied brains to assess the methylation state of the 

brain’s DNA in relation to AD and found two SNPs associated 
with POLR2E are related to AD in methylation levels.

Roses et al. (2010) identified polymorphic poly-T variant 
rs10524523 in transposase of TOMM40 gene, which can be used 
to estimate the starting age of LOAD with APOE ɛ3 carriers.

Prendecki et al. (2018) recruited 230 individuals and found 
that APOC1 and TOMM40 rs2075650 polymorphisms may be 
independent risk factors of developing AD, whose major variants 
are accompanied by disruption of biothiols metabolism and 
inefficient removal of DNA oxidation.

We found 10 of 25 genes are reported to be related to AD by 
biological experiments. Some literary works may found that the 
other 15 genes are related to AD via other methods, but we would 
not discuss in this paper. This case study verified the effectiveness 
of our method and we hope the other 15 genes could be verified 
by biological experiments in future.

CONCLUSION

AD brings great burden to patients and society and identifying 
AD-related genes can help us known the machanism of AD 
then diagnose and treatment. In this paper, we used SMR to 
find AD-related genes by GWAS, eQTL, and mQTL. There are 
some overlaps between GWAS and the other two datasets, which 
means that some SNPs are related to AD due to the change of 
expression level. SMR is a method which can identify the genes 
whose expression levels are associated with a complex trait 
because of pleiotropy.

Due to the LD and interaction between genes, GWAS data has 
bias. In order to overcome these, we did meta-analysis on five 
GWAS datasets and then used EB to revise the Z-score of each 
SNPs in whole-SNP level.

Finally, we found 653 SNPs reached the threshold of 
significance and they are associated with 25 genes. Ninety-three 
of SNPs are significant in both GWAS&eQTL and GWAS&mQTL 
tests. We did 10 case studies at last, which means that the 10 of 
25 genes we identified have been verified to correlated to AD by 
biological experiments in existing literary works.

DATA DEPOSITION

eQTL and mQTL Data
The direct link for accessing eQTL and mQTL data is as follows 
(origin from PMID: 29891976).

 1) eQTL data: https://cnsgenomics.com/data/SMR/Brain-eMeta.
tar.gz

 2) mQTL data: https://cnsgenomics.com/data/SMR/Brain-mMeta.
tar.gz

GWAS Dataset 1,2,3
GWAS dataset 1,2,3 are from paper PMID:29860282. The direct 
link is for accessing them is as following.

TABLE 3 | The candidate genes selected by summary data-based Mendelian 
randomization (SMR).

Gene Number of SNPs

eQTL CR1 20
HLA-DRB1 69
HLA-DQA1 39
HLA-DRB5 8
HLA-DQB1 3

HLA-DQB1-AS1 1
RP11-385F7.1 36

ZSCAN21 8
PILRB 5
PILRA 5

MTCH2 20
KAT8 20

AC012146.7 23
ZNF232 4
POLR2E 7

PVR 12
CTB-171A8.1 24
CEACAM19 11
TOMM40 23
ZNF296 6

mQTL BIN1 11
HLA-DRB5 15
HLA-DRB1 16
EPHA1-AS1 3

FAM63B 2
APOC1 12

EXOC3L2 24
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 1) https://www.ebi.ac.uk/gwas/studies/GCST006134 & ftp://
ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
ScelsiMA_29860282_GCST006134

 2) https://www.ebi.ac.uk/gwas/studies/GCST006136 & ftp://
ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
ScelsiMA_29860282_GCST006135

 3) https://www.ebi.ac.uk/gwas/studies/GCST006135 & ftp://
ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
ScelsiMA_29860282_GCST006136

GWAS Data 4
GWAS data 4 is from PMID: 24162737. The direct link is for 
accessing it is as following:

http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_
download.php

GWAS Data 5
GWAS data 5 is from PMID: 29777097. The direct link is for 
accessing it is as following:

http://datashare.is.ed.ac.uk/download/DS_10283_3364.zip

All code could be downloaded by
https://github.com/zty2009/Integrate-GWAS-eQTL-and-

mQTL-data-to-identify-Alzheimer-s-Disease-related-genes
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