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The advent of high throughput sequencing has enabled in-depth characterization of 
human and environmental microbiomes. Determining the taxonomic origin of microbial 
sequences is one of the first, and frequently only, analysis performed on microbiome 
samples. Substantial research has focused on the development of methods for taxonomic 
annotation, often making trade-offs in computational efficiency and classification accuracy. 
A side-effect of these efforts has been a reexamination of the bacterial taxonomy itself. 
Taxonomies developed prior to the genomic revolution captured complex relationships 
between organisms that went beyond uniform taxonomic levels such as species, genus, 
and family. Driven in part by the need to simplify computational workflows, the bacterial 
taxonomies used most commonly today have been regularized to fit within a standard seven 
taxonomic levels. Consequently, modern analyses of microbial communities are relatively 
coarse-grained. Few methods make classifications below the genus level, impacting our 
ability to capture biologically relevant signals. Here, we present ATLAS, a novel strategy 
for taxonomic annotation that uses significant outliers within database search results to 
group sequences in the database into partitions. These partitions capture the extent of 
taxonomic ambiguity within the classification of a sample. The ATLAS pipeline can be 
found on GitHub [https://github.com/shahnidhi/outlier_in_BLAST_hits]. We demonstrate 
that ATLAS provides similar annotations to phylogenetic placement methods, but with 
higher computational efficiency. When applied to human microbiome data, ATLAS is 
able to identify previously characterized taxonomic groupings, such as those in the class 
Clostridia and the genus Bacillus. Furthermore, the majority of partitions identified by 
ATLAS are at the subgenus level, replacing higher-level annotations with specific groups 
of species. These more precise partitions improve our detection power in determining 
differential abundance in microbiome association studies.
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INTRODUCTION

The microbiome plays an important role in human and ecological 
health. One of the first steps in microbial characterization is 
taxonomic classification. Modern taxonomy was founded in 
the 1750s by Swedish botanist Carl Linnaeus, who worked to 
establish a hierarchical classification of organisms based on shared 
characteristics that were consistent and universally accepted. While 
the initial taxonomy was able to capture the complex relationships 
between organisms, maintaining and expanding this taxonomy 
remain a challenge (Godfray, 2002). In particular, the microbial 
taxonomy has significantly evolved since the time of Linnaeus, most 
notably with the advent of next-generation sequencing technologies 
that enable us to examine microbiota with greater resolution.

Many microbiome studies involve extracting DNA from a 
microbial community and amplifying and sequencing the 16S 
rRNA gene, a gene encoding part of the ribosomal complex. 
This gene is highly conserved across prokaryotes and can be 
amplified even from previously unknown organisms. Originally, 
phylogenetic approaches (Yang and Rannala, 2012) were used 
to build trees to relate organisms based on how they evolved 
from each other. These trees were independent of taxonomic 
annotation and were instead generated directly from sequencing 
data via neighbor-joining (Zhang and Sun, 2008), maximum 
parsimony (Fitch, 1971; Tamura et al., 2011), maximum 
likelihood (Stamatakis, 2006), or other methods. Because 
building a phylogenetic tree is computationally expensive, we 
often perform taxonomic annotation by searching against a 
reference database of “known” sequences instead.

There are several limitations to nonphylogenetic approaches. 
First, it is often impossible to obtain confident species- or even 
genus-level classifications within samples due to the lack of 
discriminative power of the sequenced marker gene (Barb 
et  al., 2016). The 16S rRNA gene contains nine taxonomically 
discriminating hypervariable regions, however, there is no single 
hypervariable region of the gene that can distinguish between 
all species. Additionally, reference databases are not always 
representative of a sample and are dominated by a small subset 
of easy to isolate organisms found at higher abundances (Walker 
et  al., 2014). Sequencing data in reference databases is largely 
biased toward pathogenic microbes and organisms commonly 
found in developed countries. The organisms found in many 
studies (e.g., in environmental communities or in developing 
countries) have no near neighbors in reference databases, making 
it difficult to assign to them accurate taxonomic labels.

Another problem with modern analysis of microbial 
communities is the relatively coarse-grained resolution obtained, 
which limits our ability to capture biologically relevant signals. This 
stems from the need to simplify computational workflows. Most 
classification algorithms utilize just seven taxonomic levels and 
often ignore intermediate taxonomic ranks. This problem is further 
compounded by errors and missing information in databases, 
as well as inherent ambiguities in the taxonomic assignment of 
some sequences. Some taxonomic ambiguity may also arise by 
taxonomic mislabeling of some entries in the database. Current 
software tools frequently rely on “most recent common ancestor” 
(MRCA) strategies to provide an annotation at the most general 

taxonomic level that encompasses all of the possible annotations 
of a sequence. As a result, few methods ever make classifications 
below the genus level, and, frequently, sequences are only classified 
at the family, class, or even phylum level.

As the number and size of sequencing datasets continues 
to grow, taxonomic classification methods often make trade-
offs between speed and accuracy. Different tools have been 
developed for taxonomic annotation, using either composition-
based, sequence-similarity, or phylogenetic-placement methods 
(Altschul et al., 1990; Liu et al., 2011; Nguyen et al., 2014; Wood 
and Salzberg, 2014; Ounit et al., 2015). Composition based and 
sequence-similarity based approaches are fast and require less 
computational power, but only work well when the microorganisms 
in the sample have near neighbors in the database. On the other 
hand, phylogenetic-placement based methods statistically model 
the evolutionary processes that generate the query sequences and 
are computationally expensive, but allow classification even if 
only distant neighbors are found in databases.

Here, we propose a novel strategy for taxonomic annotation 
that adequately captures and represents the complexity of the 
bacterial world, providing more specific and more interpretable 
characterizations of the composition of microbial communities 
while also capturing the inherent ambiguity in the classification 
of sequences. Our strategy is sequence-similarity based and 
builds upon our recent work on detecting significant “outliers” 
within database search results (Shah et al., 2018), allowing us to 
characterize, in a sample-specific manner, the extent of taxonomic 
ambiguity within the classification. In this work, detecting 
“outliers” refers to separating the phylogenetically most closely 
related BLAST matches from matches to sequences from more 
distantly related organisms. This approach allows us to make 
assignments at the species level, and even when such assignment 
is not possible, we may be able to identify the few species within 
a genus that are the most likely origin of the fragment being 
analyzed. Such information is particularly relevant in clinical 
applications, allowing us to distinguish between the pathogenic 
and nonpathogenic members of the same genus even if the 
specific species cannot be uniquely identified. It is also important 
to stress that, by design, our method is conservative - it only 
provides a classification, even at an intermediate taxonomic 
level, only when it has high confidence that such a classification is 
supported by the data. In some cases, particularly for genes such 
as the16S rRNA, which have poor discriminatory power within 
certain taxonomic group, this will result in sequences being left 
unclassified, or only classified at high taxonomic levels.

Our method, called “ATLAS-Ambiguous Taxonomy 
eLucidation by Apportionment of Sequences,” is implemented 
in Python and released under the open-source MIT license 
on GitHub [https://github.com/shahnidhi/outlier_in_
BLAST_hits]. ATLAS supplements sequence-similarity based 
approaches with a graph-based approach to identify and 
group sequences with ambiguous database assignments. We 
demonstrate that ATLAS yields similar results to phylogenetic 
methods, but with reduced computational requirements. We 
use ATLAS to reexamine over 2000 samples from the Human 
Microbiome Project (HMP) (The Human Microbiome Project 
Consortium, 2012) and interrogate almost one-thousand stool 
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samples from the Global Enteric Multicenter Study (GEMS) 
of young children in low-income countries with moderate-to-
severe diarrhea (Pop et al., 2014). The HMP dataset provides 
a large sample size of short-read sequencing data, and the 
GEMS data is from a population that is underrepresented in 
our current genomic databases and contains a large proportion 
of uncharacterized organisms. In these datasets, we identify 
partitions matching previously defined groupings of organisms 
within the Bacillus genus and the Clostridia class. We also 
demonstrate that the partitions identified by ATLAS increase 
the power of differential abundance analyses. Although our 
results specifically focus on data from 16S rRNA gene surveys, 
ATLAS can be used with any marker gene sequencing data 
to characterize the taxonomic composition of a microbial 
community and to determine microbiome associations with 
human and ecological health.

MATERIALS AND METHODS

ATLAS Algorithm Overview
ATLAS groups sequences into biologically meaningful 
taxonomic partitions by querying them against a reference 

database and identifying and clustering significant database 
hits. ATLAS has two phases (see Figure 1): (i) identifying 
significant database hits for query sequences and (ii) 
generating database partitions (clusters) that capture the 
ambiguity in the assignment process.

Aligning Query Sequences and Identifying 
Significant Database Hits
ATLAS uses BLAST (Altschul et al., 1990) to align each 
sequence in an input set of uncharacterized query sequences 
to sequences in a reference set (using parameters -outfmt 
“6 qseqid sseqid pident length mismatch gapopen qstart 
qend sstart send evalue bitscore qseq sseq”). The previously 
published “BLAST outlier detection” algorithm is used to 
identify significant top BLAST hits for each query sequence 
(Shah et al., 2018). We refer to these BLAST hits as outliers. 
In brief, the “BLAST outlier detection” algorithm constructs 
a multiple sequence alignment of the query sequence and 
the top BLAST hits from the BLAST-generated pairwise 
alignments. It then uses the Bayesian integral log odds (BILD) 
score (Brown et al., 1993; Altschul et al., 2010) to determine 
whether the multiple alignment can be split into two groups 

FIGURE 1 | Schematic diagram of the ATLAS pipeline. ATLAS takes in query sequences from a marker gene and searches them against a reference database to 
identify outlier sequences. It then constructs a graph of database sequences and clusters those that are commonly identified together into partitions.
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that model the data better than a single group. This process 
identifies which BLAST hits are significantly associated with 
the query sequence, without resorting to ad hoc cut-offs on 
percent identity, bit-score, and/or E-value.

Generating Database Partitions That 
Capture the Ambiguity in the  
Assignment Process
Ambiguity in the taxonomic assignment process occurs for 
two main reasons. First, the query sequence may not have any 
near-neighbors in the database, resulting in multiple equally-
good hits (neighbors) (Figure 2). Second, the query sequence 
may align to a genomic region that is conserved across distantly 
related organisms. Our method characterizes this ambiguity 
in a sample-specific manner, identifying database sequences 
that are equivalent with respect to their similarity to the set of 
query sequences.

From all query sequences and their set of related database 
sequences (outlier set), we construct a confusion graph. The 
nodes in the graph represent sequences in the database, whereas 
the edges link nodes that are present together in the outlier 

set for at least one query sequence. The edges are weighted by 
the number of query sequences that shares the same nodes 
(reference database sequences) within the outlier set. Tightly-
knit subcommunities in the confusion graph indicate database 
sequences that are equivalent based on similarity to the set of 
query sequences, and hence, should be clustered together. To 
identify these subcommunities, we remove all the low-weight 
edges (below mean – 2 * std.dev of all edge weights) and identify 
strong communities in the network using the Louvain community 
detection algorithm, which optimizes the modularity of the 
network (Blondel et al., 2008). These subcommunities become 
the final database partitions (clusters). ATLAS partitions can be 
singletons (consist of one reference database sequence).

Assigning Query Sequences to  
the Partitions
A query sequence is assigned to a database partition if a 
certain percentage (user-defined, default 50%) of the database 
sequences in the outlier set belong to the partition. ATLAS does 
not classify the query sequence if no BLAST outliers can be 
detected, or the query sequence does not meet these thresholds. 

FIGURE 2 | Schematic detailing when ATLAS will provide the greatest improvement to taxonomic annotation. Shown is a simple example of a phylogenetic tree with 
taxonomic information of reference sequences, where the leaves are actual sequences in the database. When a query sequence (yellow stars) has near neighbors in 
the reference, such as Q1, most algorithms will be able to correctly classify the sequence. However, if a sequence, such as Q2, does not have many near neighbors 
in the database, computationally expensive phylogenetic methods are required for accurate placement (blue arrows) and annotation. ATLAS captures groups (or 
partitions) of database sequences (red nodes) that are commonly confused during the annotation process and assigns them to the query sequence (square node 
for Q1 and diamond nodes for Q2). Black triangles show collapsed portion of the tree. While this schematic is overly simplified and real phylogenies are much more 
complex, this is illustrating that ATLAS will provide additional information when query sequences do not have near neighbors in the database. This represents ideal 
cases, where 16S rRNA phylogeny and taxonomic annotations are congruent.
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The goal of ATLAS is only to classify sequences when it has 
enough confidence in the taxonomic assignment. Sequences that 
remain unclassified by ATLAS should be further examined with 
more sophisticated approaches, such as phylogenetic placement 
methods. For each query sequence, ATLAS provides a species 
list based on the reference database sequences included within 
the assigned partition. To provide a high-level summary of the 
data and simplify the comparison to other annotation methods, 
ATLAS also assigns to query sequences the MRCA of all 
sequences belonging to a partition. These partitions of database 
sequences attempt to capture the most accurate granularity 
of taxonomic assignment without relying solely on the main 
taxonomic levels.

Comparison to Other Taxonomic 
Assignment Methods
To benchmark ATLAS with other widely used taxonomic 
annotation methods, we downloaded TAXXI test and train datasets 
(sp_ten_16s_v35) from a recent study that benchmarked taxonomic 
methods for microbiome studies (Edgar, 2018). We compared 
ATLAS with RDP classifier (Wang et al., 2007), mothur (Schloss 
et al., 2009), UCLUST (Edgar, 2010), SortMeRNA (Kopylova et al., 
2012), and the top BLAST hit. RDP classifier, mothur, and UCLUST 
were run with 80% confidence threshold. All methods except 
ATLAS were run via QIIME v. 1.9.1 (Caporaso et al., 2010), using 
the script assign_taxonomy.py. Metrics for method comparison 
were calculated as previously published (Edgar, 2018).

We also compared ATLAS to the phylogenetic placement 
method, TIPP. We ran TIPP with the 16S rRNA reference package 
(rdp_bacteria.refpkg) provided by the authors (https://github.
com/tandyw/tipp-reference/releases/download/v2.0.0/tipp.zip). 
We used the alignment subset size of 100 and the placement 
subset size of 1,000, and the default values for alignment and 
placement thresholds.

Analysis of Samples From the Human 
Microbiome Project (HMP)
The OTU table and representative sequence FASTA files for the 
V1-V3 hypervariable region of the 16S rRNA gene sequenced as 
part of the Human Microbiome Project (The Human Microbiome 
Project Consortium, 2012) were downloaded from https://
www.hmpdacc.org/HMQCP/. We used the 16S rRNA reference 
package from TIPP for ATLAS and ran it with default settings. 
The OTU table was filtered to retain OTUs with at least 20 reads 
and samples containing at least 1,000 reads.

Analysis of Samples From the GEMS 
Study of Diarrheal Disease
A total of 992 samples were analyzed from a previously published 
study of diarrheal disease in children in low-income countries 
that sequenced the V1-V2 region of the 16S rRNA gene (Pop 
et al., 2014). In this study, moderate-to-severe diarrhea cases were 
compared to age- and gender-matched healthy controls. Data 
was downloaded via Bioconductor, using the msd16s package. 
We used the 16S rRNA reference package from TIPP for ATLAS 

and ran it with default settings. The dataset was filtered to retain 
only OTUs with at least 20 reads total and found in at least 10% 
of case or 10% of control samples.

Significantly differentially abundant OTUs were identified 
between cases and controls using the R package metagenomeSeq 
(Paulson et al., 2013), accounting for age in months, country, and 
sample read counts as potential confounding factors. OTUs were 
also aggregated separately by genus and by partition. Significant 
findings were reported for features that had fold change or odds 
ratio exceeding 2 in either cases or controls and a significant 
statistical association (P < 0.05) after Benjamini-Hochberg 
correction for multiple testing.

Analysis of Samples From Bangladeshi 
Children With Acute Diarrhea
A total of 142 samples were analyzed from a previously published 
study of acute diarrhea in Bangladeshi children that sequenced 
the V3-V4 region of the 16S rRNA gene (Kieser et al., 2018). 
Fastq files were downloaded from BioProject SRP119744, using 
the SRA toolkit v. 2.8.2 and processed in QIIME v. 1.9.1. We used 
the 16S rRNA reference package from TIPP for ATLAS and ran it 
with default settings, identifying 77 partitions.

RESULTS

ATLAS Captures Similar Information as 
Phylogenetic Placement Algorithms
We compared the taxonomic assignments generated by ATLAS 
for the HMP and GEMS datasets to the labels generated by TIPP 
(Nguyen et al., 2014). Because TIPP relies on a phylogenetic 
approach for taxonomic annotation, it accounts for evolutionary 
divergence and, therefore, can more effectively analyze sequences 
without near neighbors in the database than non-phylogenetic 
methods. We assume here that the classifications provided by 
TIPP are most accurate because the ground-truth is not available 
for real datasets. The taxonomic assignments made by ATLAS and 
TIPP showed 97% and 98% agreement with TIPP assignments at 
the genus level for GEMS and HMP datasets, respectively (Figures 
3A, B). Importantly, when TIPP could confidently assign a species 
level classification label to a query sequence, but ATLAS could 
not, the partition assigned by ATLAS for the majority of query 
sequences contained the species assigned by TIPP (Table 1). The 
algorithm used by TIPP identifies multiple putative placements of 
a sequence within the backbone tree representing the reference 
database. In the vast majority of cases, the partitions identified 
by ATLAS contained the database sequences selected by TIPP 
(Supplemental Figure  1). Compared to TIPP, ATLAS had a 
lower run time and only added a small overhead to the run time 
of BLAST (Figure 3C).

We also compared ATLAS to nonphylogenetic approaches 
(Supplemental Figure 2) on the sp_ten_16s_v35 TAXXI 
benchmarking dataset where the ground truth is known (Edgar, 
2018). Compared to other methods, ATLAS has similar or better 
overclassification and misclassification rates at all taxonomic 
levels. However, ATLAS often has a higher underclassification 
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rate, particularly at lower taxonomic ranks. This behavior is 
intentional as ATLAS is meant to serve as a first-level analysis, 
followed by more sophisticated approaches (such as phylogenetic 
placement) for the sequences that cannot be confidently classified 
through sequence similarity searches.

Relationship Between ATLAS Partitions 
and Standard Taxonomic Levels
ATLAS grouped OTU representative sequences into 185 and 
109 non-singleton partitions in the HMP and GEMS datasets, 
respectively (Table 2). A large number of these partitions each have 
an MRCA at the genus level, suggesting that they are capturing 
sub-genus information (Figure 4). Often, there is not enough 
information encoded in the short 16S rRNA gene sequence to 
offer species-level resolution. However, ATLAS is able to group 
similar species within a genus, providing resolution that is more 
specific than the genus level. For instance, in the HMP data, 
ATLAS identified seven partitions belonging to the genus Bacillus 

TABLE 1 | Comparison between our approach (ATLAS) and a phylogenetic 
method (TIPP) examining species level assignments. For most query sequences 
ATLAS assigned partition contains group of species, as it is often impossible to 
get species-level resolution. Here, we compare how ATLAS performs when TIPP 
provides species-level classification. 

GEMS HMP

A. Number of query sequences classified by TIPP at 
the species level 

13,050 10,086

Number of query sequences assigned to a 
partition that contained TIPP’s species

12,847 8,999

B. Number of query sequences classified at species 
level by ATLAS that match TIPP’s labeling

29 128

Number of query sequences classified at species 
level by ATLAS that did not match TIPP’s labeling

0 85

Number of query sequences classified at species 
level by ATLAS but not by TIPP

18 36

(A) For query sequences where ATLAS partitions do not have a species-level MRCA, 
the assigned partition contains reference sequences that match TIPP’s assigned 
species. (B) For query sequences where ATLAS partitions do have a species-level 
MRCA, many of the assigned partitions match TIPP’s classification.

FIGURE 3 | ATLAS generates classifications similar to phylogenetic placement methods at an improved speed. Taxonomic labels assigned by TIPP and ATLAS 
agree at all taxonomic levels for both (A) GEMS and (B) HMP datasets. (C) The ATLAS pipeline adds minimal post-processing time (in seconds) to standard BLAST 
analyses, but significantly outperforms TIPP.

TABLE 2 | Number of OTUs and partitions in the HMP and GEMS datasets pre and postfiltering. 

HMP GEMS

OTU Partition OTU Genus Partition

Sequencing 
Technology

Illumina V1-V3 454 V1-V2

Number of Samples 
Post Filtering

2,711
180 gut, 1,553 oral,
719 skin, 259 vagina

992
508 Cases, 484 

Controls
Number of Features 
Pre-Filtering

43,140 OTUs 307 partitions and
22,578 non-partitioned 

OTUs

26,044 OTUs 172 genera 122 partitions and
1,819 non-partitioned 
OTUs

Number of Features 
Post-Filtering

36,560 OTUs 257 partitions and
17,819 non-partitioned 

OTUs

10,774 OTUs 149 genera 112 partitions and
924 non-partitioned OTUs

Samples with >1,000 reads were retained for analysis. In the HMP data, features were retained if they had at least 20 total reads or were found in at least 5 samples. In the GEMS 
data, features were retained if they had at least 20 total reads or were found in at least 10% of case or control samples.
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(Supplemental Figure 3). Importantly, reference sequences in 
partition 156 capture members of the Bacillus cereus species 
group, including B. cereus, B. thuringiensis, B. mycoides, and B. 
weihenstephanensis (Liu et al., 2015). These species have very high 
sequence similarity and have been shown to play significant roles 
in human and environmental health (Rasko et al., 2005). ATLAS 
partition 121 corresponds to the Bacillus subtilis group, including 
species such as B. subtilis, B. licheniformis, and B. amyloliquefaciens 
(Bhandari et al., 2013). Given the diverse function and pathogenic 
potential of species within this genus, the distinction of these two 
groups provides additional benefit to microbiome analyses.

It is important to note that ATLAS partitions are derived purely 
from sequence similarity; they do not take into consideration any 
taxonomic or phylogenetic information. Given our incomplete 
knowledge of microbial diversity and the inherent limitations of 
16S rRNA sequences for taxonomic classification, these sub-genus 
partitions should be further examined and validated.

The percentage of query sequences assigned to partitions 
spanning multiple genera was 8% for the HMP data and 
39% for the GEMS data. Some of these higher-level partition 
groupings reflect limitations in the hypervariable region of 
the 16S rRNA gene sequenced. For instance, in both the HMP 
and GEMS data, ATLAS identified a single partition spanning 
the Enterobacteriaceae family. While it would be beneficial to 
distinguish between Escherichia and Shigella species in the 
GEMS dataset, the V1-V2 and V1-V3 hypervariable regions of 

the 16S rRNA marker gene are insufficient for discrimination 
(Chakravorty et al., 2007).

Other partitions with higher-level MRCA capture established 
phylogenetic groupings that span multiple genera. ATLAS 
was able to capture well-known phylogenetic groupings in 
the class Clostridia (Collins et al., 1994; Johnson and Francis, 
1975). In the GEMS data, ATLAS identified 15 partitions 
comprising sequences from the Clostridia class. Of particular 
note, partition 84 contains Acetobacterium species in Clostridial 
group XV, partition 81 contains members of Clostridial group 
XI, and Clostridial group I is represented in partitions 5 and 6 
(Supplemental Figure 4). Clostridial groups encompassed by 
partitions 0, 81, and 84 contained multiple genera, highlighting 
the utility of using partitions based on information from the 
sequences themselves rather than solely relying on modern 
taxonomic groupings. Interestingly, eight of these partitions were 
significantly differentially enriched in healthy control samples, 
supporting the role of Clostridia in the maintenance of gut 
homeostasis (Lopetuso et al., 2013).

ATLAS Partitions Improve the Power of 
Microbiome-Disease Association Studies
We explored whether ATLAS partitions could provide improved 
resolution over OTUs in differential abundance analyses. The 
original GEMS dataset contains 26,044 OTUs, many of which 

FIGURE 4 | ATLAS partitions for HMP and GEMS data typically capture subgenera information. Most partitions have the most recent common ancestor at the 
genus level for both (A) HMP and (B) GEMS datasets.
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are not prevalent or abundant enough to provide statistical 
power for identifying associations between health and disease. 
Filtering OTUs and partitions according to their abundance 
and prevalence, we retained just those that contained at least 
20 sequences and were found in at least 10% of the samples. 
Only 10,774 OTUs, comprising just 41% of the sequences in the 
dataset, were retained, whereas ATLAS partitions retained after 
filtering contained 25,135 total OTUs, comprising 97% of the 
sequences in the dataset (Table 2).

We identified statistically significantly different features 
between cases with diarrheal disease and healthy controls 
(Table  3). We performed this analysis separately on (i) OTUs, 
(ii) OTUs aggregated by genus-level assignments, and (iii) OTUs 
aggregated by ATLAS partitions. Compared to the OTU analysis, 
OTUs aggregated at the genus-level generally identified more 
significant OTUs, but fewer overall significant dataset sequences. 
This is potentially impacted by the fact that 2,411 OTUs and 
899,322 sequences had no assignment at the genus level. OTUs 
aggregated by ATLAS partitions identified a greater number of 
significant OTUs and sequences enriched in the control samples. 
When looking at the 10,774 OTUs included in both the OTU-level 
and partition-based analyses, the majority agreed on differential 
abundance results (i.e., they were significant or not significant 
in both analyses) (Table 4). Forty-one percent were significant 
by the partition analysis, but not by OTU based methods. These 
OTUs were most likely lower abundant community members that 
became significant as they were aggregated with similar, more 
abundant microbiota. The few remaining OTUs were significant 
at the OTU level but not in our partition-based analyses and 
generally belonged to low abundance genera (Supplemental 
Figure 5).

We also applied ATLAS to a separate acute diarrhea dataset 
from children in Bangladesh (Kieser et al., 2018), which 
used a different hypervariable region of the 16S rRNA gene, 
a different sequencing platform, and different downstream 
analyses. Within this dataset, we also identified sub-genus level 
partitions (Supplemental Figure 6A). Many of the sub-genus 
level partitions in the Bangladesh dataset were in Lactobacillus, 
Streptococcus, Helicobacter, and Campylobacter, genera which 
are commonly associated with diarrheal disease (Supplemental 
Figure 6B).

DISCUSSION

As DNA sequencing technologies become faster and cheaper, 
the number of microbiome studies are rapidly increasing. These 
studies are aimed at both developing a better understanding 
of the microbial communities inhabiting the world and at 
characterizing the association between microbiota and health. 
Accurate taxonomic assignment is a critical requirement for 
the interpretation of the data generated in such studies. Current 
approaches for taxonomic annotation fall at two extremes – 
computationally intensive phylogenetic inference methods that 
can accurately classify even sequences that are only distantly 
related to the reference database and fast approaches based on 
sequence alignment or k-mer analysis that are primarily effective 
in identifying already characterized sequences. Here, we have 
described an approach that bridges the two extremes. While 
it is based on sequence-similarity approach, ATLAS provides 
a similar level of accuracy as phylogenetic approaches while 
retaining computational efficiency.

ATLAS identifies the ambiguity in the classification of 
sequences in a sample-specific manner, thereby obviating the 
need for removing redundancy from the reference database 
(a computationally expensive process) and ensuring that the 
method effectively adapts to the specific parameters of the 
experiment (e.g., choice of hypervariable region in the 16S 
rRNA gene). While ATLAS is intended to replace commonly-
used “most recent common ancestor” (MRCA) approaches 
that are unnecessarily conservative, it can also improve on 
such techniques. The ATLAS partitions are constructed after 
examining all the query sequences, and after removing spurious 
connections between database sequences, thereby eliminating 
many of the errors that can reduce the taxonomic resolution of 
the MRCA approach.

TABLE 3 | Number of OTUs, genera, and ATLAS partitions that are 
statistically significantly different between moderate-to-severe diarrheal cases 
and healthy controls.

OTU Genus Partition

Significant 
Features with 
increased 
expression in 
case samples

679 OTUs
(415,257 

sequences)

16 genera
(892 OTUs,

342,960 
sequences)

13 partitions and
71 non-partitioned 

OTUs
(692 OTUs,

189,005 sequences)

Significant 
Features with 
increased 
expression in 
control samples

1,112 OTUs
(637,591 

sequences)

22 genera
(1,626 OTUs,

447,680 
sequences)

17 partitions and
108 non-partitioned 

OTUs
(4,917 OTUs,

1,300,544 sequences)

Non-significant 
Features

8,983 OTUs
(2,448,992 
sequences)

105 genera
(5,845 OTUs,

1,811,878 
sequences)

77 partitions and
745 non-partitioned 

OTUs
(5,165 OTUs,

2,012,291 sequences)

Features generated from 3,501,840 GEMS dataset sequences were considered 
differentially abundant if they had a fold change or odds ratio exceeding 2 in 
either cases or controls and the statistical association was significant (P < 0.05) 
after Benjamini-Hochberg correction for multiple testing. Singleton partitions have 
a single OTU mapped to them. Note that when aggregating at the genus level, 
2,411 OTUs and 899,322 sequences had no assignment.

TABLE 4 | Confusion matrix highlighting the number of shared/unshared 
statistically significant OTUs and ATLAS partitions.

OTUs

Not Significant Significant

Partitions Not Significant 4,557 608
Significant 4,426 1,183

Features were considered differentially abundant between healthy controls and 
diarrheal cases if they had a fold change or odds ratio exceeding 2 in either cases 
or controls and the statistical association was significant (P < 0.05) after Benjamini-
Hochberg correction for multiple testing.
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We have shown that ATLAS is effective in analyzing real 
microbiome datasets, where it is able to automatically discover 
taxonomic groupings that are relevant to the interpretation of 
the data but that do not match predefined taxonomic levels. 
Examples include subdivisions of the Bacillus genus and 
Clostridial class homology groups. Our paper describes results 
generated from 16S rRNA gene sequencing data, however, the 
approach is applicable to any other marker gene dataset. Because 
ATLAS relies on marker gene data, it can only provide a level of 
resolution matching that of the maker gene itself.

Our analysis of the HMP and GEMS datasets reveals a 
difference in the level of ambiguity identified by ATLAS; 
our method was able to better resolve the taxonomy of 
sequences from the HMP project than that of sequences 
from the GEMS dataset. This finding is likely due to the 
relationship between the sequences from the two studies and 
the data found in the reference database. The GEMS study 
contains data from children from sub-Saharan Africa and 
Southeast Asia, sequences that are only distantly related to the 
reference sequences primarily characterized within Western 
populations. Our findings support the idea that the choice of 
database plays a huge role in classification accuracy (Nasko 
et al., 2018). To ensure an accurate taxonomic annotation, a 
custom environment-specific database is desirable, and the 
accuracy of the database sequences and their annotation must 
be ensured. Studies must also carefully consider and document 
the choice of database.

The GEMS dataset was generated several years ago using 
454 sequencing technology with high-insertion-deletion error 
rates. This can provide useful information for future applications 
to current long read sequencing datasets, which also have 
higher insertion-deletion error rates compared to short-read 
technologies. Despite differences between the GEMS and 
Bangladesh datasets, ATLAS identified sub-genus partitions 
in important taxa previously associated with diarrhea. This 
improved resolution will provide greater insight into potentially 
harmful or beneficial organisms.

An opportunity for future research is the integration of the 
approach embodied in ATLAS with phylogenetic algorithms. 
Phylogenetic approaches can use the partitions identified by 
ATLAS to prune the reference tree before attempting to place 
query sequences on the tree, resulting in higher accuracy with 
lower computational overhead. In the future, we also plan 
to identify and investigate cases where ATLAS assignments 
and phylogenetic classifications disagree in order to identify 
opportunities for improvements to either alignment-based or 

phylogenetic approaches. As the wealth of microbiome data 
increases, greater emphasis is being placed on more accurate 
taxonomic annotations that currently cannot be obtained using 
fast, sequence similarity-based methods. ATLAS is the first step 
in this direction. 
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