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Genomic instability is an essential feature of cancer cells. The somatic mutation theory 
suggests that along with inherited ones, the changes in DNA caused by environmental 
factors may cause cancer. Although approximately 50–60 mutations per tumor are 
observed in established cancer tissue, it is known that not all of these mutations occur 
at the beginning of carcinogenesis but also occur later in the disease progression. The 
high frequency of somatic mutations referring to genomic instability contributes to the 
intratumoral genetic heterogeneity and treatment resistance. The contribution of the 
tumor microenvironment to the mutations observed following the acquirement of essential 
malignant characteristics of a cancer cell is one of the topics that have been extensively 
investigated in recent years. The frequency of mutations in hematologic tumors is generally 
less than solid tumors. Although it is a hematologic tumor, multiple myeloma is more 
similar to solid tumors in terms of the high number of chromosomal abnormalities and 
genetic heterogeneity. In multiple myeloma, bone marrow microenvironment also plays 
a role in genomic instability that occurs in the very early stages of the disease. In this 
review, we will briefly summarize the role of the tumor microenvironment and bone marrow 
microenvironment in the genomic instability seen in solid tumors and multiple myeloma.
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GENOMIC INSTABILITY IN CANCER

Genomic Instability Is a Hallmark of Cancer Cells
Genomic integrity of cells is maintained through regulated DNA replication, DNA damage repair 
mechanisms, and cell-cycle checkpoints. The majority of checkpoints in the cells are evolutionally 
conserved. However, genomic instability itself greatly helped in the diversification of the 
species throughout the evolutionary process. Genomic instability also plays a significant role in 
immunoglobulin diversification as well as pathological disorders such as premature aging, some 
forms of inherited diseases, and cancer (Aguilera and García-Muse, 2013). Along with inborn errors 
of replication, endogenous reactive metabolites and environmental factors including carcinogen 
exposure and gamma rays emitted from earth play a role in DNA damage and contribute to genomic 
instability. More than 100 DNA repair genes act in different pathways to try to maintain the genomic 
integrity against the factors as mentioned above (Waters, 2006).

Cancer is known as a genetic disease since there has been a genetic selection at the level of single 
cells having favorable mutations for survival and proliferation. Likewise, many somatic mutations 
occur in the majority of cancer. Approximately, 40–60 mutations per tumor occur in the majority of 
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solid tumors (Stratton et al., 2009; Bailey et al., 2018). Increases 
in mutation rate or genomic instability of the tissues are parallel 
to an increase in the frequency of cancer. The accumulation of 
genetic and epigenetic alterations in normal tissues has been 
linked to cancer risk (Takeshima and Ushijima, 2019). Likewise, 
aneuploidy, a significant indicator of genomic instability, is a 
common characteristic of cancer and premalignant lesions. A 
recent analysis from the Mitelman Database revealed that all 
cancers were aneuploid (Schulze and Petersen, 2011).

Genomic instability is a fundamentally important feature 
of (all) cancer cells. There are mainly four types of genomic 
instability: chromosomal instability, intrachromosomal 
instability, microsatellite instability, and epigenetic instability, 
described in malignant tumors (Negrini et al., 2010). However, 
the question of whether the instability is the cause or the 
consequence of cancer remains unclear. Although the somatic 
mutation theory suggests cancer as the consequence of the 
mutations, conditions within the tumor microenvironment 
(TME) can also induce significant genetic changes in tumor 
cells. In their seminal work, Reynolds et al. have examined 
the role of TME on mutagenesis of LNI2 cells (Reynolds et al., 
1996). They found that LNI2 cells from mouse tumor explants 
displayed an increased rate of mutations compared to cells 
grown in cell cultures under standard conditions. They have 
also shown that hypoxic conditions in cell culture may induce 
mutagenesis (Reynolds et al., 1996). Their results indicate 
that the conditions within solid tumors are mutagenic, which 
might be a fundamental mechanism of tumor progression. 
TME could be one of the significant players inducing genomic 
instability in tumor cells (Chan et al., 2009; Bizzarri and 
Cucina, 2014).

Tumor Microenvironment Is an Important 
Player for Tumor Progression
The healthy tissue microenvironment mainly participates in the 
maintaining of tissue homeostasis with the cellular interactions 
and the continuous exchange of factors released by different 
cellular compartments. However, the TME significantly differs 
from the healthy tissue microenvironment with its cellular 
compositions and conditions. The TME is composed of 
different cell types including cancer cells, cancer-associated 
fibroblasts (CAFs), endothelial cells, pericytes, macrophages, 
T  lymphocytes, natural killer (NK) cells, mesenchymal stem 
cells (MSCs), myeloid-derived suppressor cells (MDSCs), and 
the extracellular matrix (ECM) (Hanahan and Weinberg, 2011). 
The tumor cells and the other cells mentioned above constitute 
a unique microenvironment favoring maintaining the malignant 
properties of the cancer cells. There is a widely accepted link 
between inflammation, carcinogenesis, and tumor progression. 
The inflammatory cell subsets, including macrophages, fibroblasts, 
neutrophils, basophils, and other cells, have cross talk with tumor 
cells (D'Anselmi et al., 2013). The cross talk between the TME and 
tumor cells might be related to the differential expression of genes 
in the reactive tumor stroma. Large-scale gene expression analysis 
of prostate tumors showed almost 500 genes upregulated, and 
600 downregulated, that are mostly cancer-associated pathways 

(Dakhova et al., 2009). The reactive oxygen species (ROS) 
produced by the inflammatory cells in the TME may, in turn, 
induce genetic instability (Radisky et al., 2005). Oxidative DNA 
damage might occur not only in tumor cells but also in stromal 
cells. The TME changes caused by oxidative stress may contribute 
to tumor development and even tumor spreading (Toullec et al., 
2010; Jezierska-Drutel et al., 2013).

The TME is mainly characterized by hypoxia, low 
pH, and nutrient deprivation compared to normal tissue 
microenvironment. Eukaryotic cells need adequate nutrient 
supply for optimal mRNA translation. Nutrient deprivation 
has been shown to inhibit global protein synthesis through 
modulation of mTOR (Wullschleger et al., 2006) and stress 
response pathways (Holcik and Sonenberg, 2005). Nutrient 
deprivation in the TME may induce pro-inflammatory gene 
expression in cancer cells and further supports tumor progression 
(Gameiro and Struhl, 2018). Due to poor vascularization and 
uncontrolled proliferation, cancer cells suffer from nutrient 
shortage in the TME, which leads to abnormal activation of 
growth signals (Efeyan et al., 2015).

The healthy tissues usually have O2 tension in the range of 
20–40 Torr; however, the pO2 values of solid tumors could be 
as low as 1 Torr or less (McKeown, 2014). Decreased glucose 
and other nutrients and increased levels of toxic metabolites are 
also characteristic features of common solid tumors (Anastasiou, 
2017). Extracellular pH within solid tumors have been shown 
with values as low as 5.8–6.5, compared to typical values of 
7.2–7.4 in well-perfused tissues (Webb et al., 2011). Tumor cells 
exposed to low pH at 6.5 show significant induction of DNA 
damage response genes such as EGR1-4 and ATF3 and cell-cycle 
control genes such as GADD34, GADD45, and p57 (Duggan 
et al., 2005). Along with hypoxia, low pH induces insulin-like 
growth factor 1 receptor (IGF1R) expression, which promotes 
malignant transformation (Peretz et al., 2002).

Hypoxia Is a Major Factor Leading to Genomic 
Instability in TME
Hypoxia has been suggested as the major environmental 
factor leading to genetic instability of solid tumors. Hypoxia 
was found to be related to a variety of DNA damage lesions. 
The first association between hypoxia and DNA damage came 
from reperfusion injury studies. In reperfusion injury, the 
most severe tissue damage occurs following the restart of blood 
flow. The primary mechanism underlying the reperfusion 
injury is the increase in ROS (Granger and Kvietys, 2015). 
The increased oxidative stress leads to numerous types of 
base damage. The most common alterations in purines and 
pyrimidines are the formation of 8-oxoguanine (8-oxoG) 
and thymine glycols (Lee et al., 2017). The 8-oxoG can 
pair with either cytosine or adenine and leads to GC-to-TA 
transversions (Nakabeppu, 2014).

The potential mechanism seen in reperfusion injury in 
ischemic tissues is highly relevant to the solid tumors. There is 
transient and heterogenous hypoxia occurring within the TME. 
Tumor blood flow is not constant, and substantial blood flow 
changes have been reported in xenograft tumor models (Aquino-
Parsons and Duran, 2001).
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The irregular and chaotic nature of the microvessels within 
the tumors are thought to be the cause of fluctuations in tumor 
blood supply and oxygen (Braun et al., 1999; Brurberg et al., 
2004). Therefore, the fluctuations in red cell flux in tumor vessels 
may lead to transient hypoxia and reoxygenation cycles in TME. 
Therefore, these frequent reperfusion cycles within the tumor 
might induce substantial DNA damage in the TME. During the 
hypoxia period, ATR kinase causes p53 phosphorylation, and 
upon reoxygenation, the activated ATM further increases p53 
phosphorylation (Hammond et al., 2002), which suggests that 
the DNA damage mainly occurs during the reoxygenation period 
following the transient hypoxia in the TME.

ROS is known to induce single- and double-strand breaks of 
DNA (SSBs and DSBs) in cells. DSBs might increase the rate of 
translocations, deletions, and gene amplifications seen in most 
of the cancer cells (Degtyareva et al., 2013; Sharma et al., 2016). 
The oxygen-dependent nature of the deoxynucleotide supply of 
the DNA replication during the S-phase is also another source 
of genomic instability in the TME (Abbas et al., 2013; Turgeon 
et al., 2018). The shortage of deoxynucleotide precursors during 
the S-phase may cause a temporary arrest in the S-phase during 
hypoxia (Ferguson et al., 2015). Likewise, hypoxia has also 
been shown to cause G1-phase arrest in p53-deficient prostate 
carcinoma cells via induction of p21cip1 and p27kip1, but not 
in p53 wild-type tumor cells such as MCF7 breast cancer cells 
and RKO colon cancer cells when exposed to ionizing radiation 
(Graeber et al., 1994; Gardner et al., 2001).

Hypoxia may induce mutagenesis, especially at the level of 
small-scale mutations. Reynolds et al. have shown that transient 
ischemia caused increased mutation rates in cells compared to 
normoxic ones (Reynolds et al., 1996). The hypoxia-induced 
mutation rates are usually increased in tumor cells with impaired 
DNA repair mechanisms. Sharzad et al. have shown increased 
K-rasG13D mutation rates in microsatellite instable colon cancer 
cells exposed to hypoxia but not in microsatellite stable ones 
(Shahrzad et al., 2005).

Increasing the hypoxia–reoxygenation cycles further increased 
the number of mutations. Mutations were common as point 
mutations and small deletions/insertions (Reynolds et al., 1996).

Hypoperfusion state in the TME causes a significant decrease 
in the pH level, yielding an acidotic milieu along with decreased 
levels of glucose and amino acids (Morin et al., 2014). Although 
lactate is generally considered a waste product, Sonveaux et al. 
have shown that it is a prominent substrate fueling the oxidative 
metabolism during the oxygenation of tumor cells in a mouse 
model of lung carcinoma (Sonveaux et al., 2008).

Likewise, decreased nutrient status in the microenvironment 
may result in an increased mutation rate. Reynolds et al. have 
reported a five-times-increased mutation rate of Escherichia 
coli gpt reporter gene in CHO cells when cultured in serum 
concentrations below 0.25% (Reynolds et al., 1996). However, 
that increased mutation rate might be related to the increased 
ROS levels in the culture media, as the addition of anti-oxidants 
suppressed the mutation rate in their experiments.

DNA mutations may also result in defective repair mechanisms 
of the cell. DNA mismatch errors might also arise from replication 
errors which are repaired by mismatch repair (MMR) pathways 

consisting of a series of proteins including MSH2, MSH3, MSH6, 
MLH1, and PMS2. Hypoxia has also been shown to induce 
downregulation of MLH1 and PMS2 both in normal cells and in a 
variety of cancer cells, including hepatocellular, breast, and colon 
cancer cells (Nakamura et al., 2008; Rodríguez-Jiménez et al., 2008); 
while the downregulation of MLH1 occurs at the transcription 
level, that of PMS2 occurs at the protein level probably through 
destabilization of the protein (Mihaylova et al., 2003).

The significant characteristics of the TME develop early in solid 
tumors. In a genetically engineered mouse model, coevolution 
of the mammary carcinoma cells and their underlying stroma, 
especially the cancer-associated fibroblasts, has been shown to 
support most hallmarks of cancer progression and even determine 
the molecular subtype of breast cancer (Roswall et al., 2018). 
Likewise, microenvironment-induced instability may contribute to 
the further development of the tumor. Hypoxia may affect the other 
DNA repair pathways along with MMR and NER, and this leads 
to genomic instability in tumors. Hypoxia may also upregulate the 
genes related to invasion and metastasis. The critical conditions of 
the TME determining the fate of tumor progression are as follows: 
massive cell death that results in the release of proteins and additional 
molecules, hypoxia, low pH level, low glucose levels, shortage of 
essential nutrients, and abnormal properties of surrounding cells. 
Hypoxia in the TME mainly results from an imbalance between the 
oxygen supply and consumption rate. Though the hypoxia is the 
result of the fast growth rate in tumor tissues, it may further favor 
tumor progression (Hielscher and Gerecht, 2015). The significant 
events promoting tumor progression, which are induced by tumor 
hypoxia, are outlined in Table 1 and Figure 1.

MULTIPLE MYELOMA, A DISEASE 
BETwEEN SOLID TUMORS AND BLOOD 
CANCERS

Genomic Instability in Multiple Myeloma
Multiple myeloma (MM) is a clonal B-cell malignancy 
characterized by a significant genetic heterogeneity of different 
clones that occurred at early stages (Debes-Marun et al., 2003; 
Munshi and Avet-Loiseau, 2011). Chromosomal abnormalities 
have long been recognized in patients with MM and plasma cell 

TABLE 1 | The major events led by hypoxia in tumor microenvironment.

Mechanisms Events

Generation of oxygen free radicals DNA damage, genomic instability
Proteomic and genomic changes 
including hypoxia-inducible factor I 
(HIF1)

Adaptation of the tumor cells to 
hypoxic condition

Activation of genes that are 
associated with tumor progression

Metabolic adaptation and cell survival

Upregulation of pro-angiogenic 
pathways

Stimulation of angiogenesis

Inhibition of apoptosis Tumor mass increase and treatment 
resistance

Induction of epithelial–mesenchymal 
transition in tumor cells

Promotion of invasion and metastasis

Downregulation of adhesion molecules Tumor cell detachment
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leukemia. The rate of clones with chromosomal abnormalities 
can be found to be as much as 35% at the time of diagnosis 
of MM, 60% in aggressive patients, and 85% in patients with 
plasma cell leukemia (Calasanz et al., 1997; Avet-Loiseau 
et  al., 2001). Patients with chromosomal abnormalities were 
found to have features of aggressive disease compared to ones 
without abnormalities (Calasanz et al., 1997; Difilippantonio 
et al., 2002).

Genomic instability is a prominent feature of MM. The 
major genetic abnormalities seen in MM are chromosomal 
instability, point mutations, and microsatellite instability. MM is 
more similar to solid tumors than hematologic tumors in terms 
of increased mutation frequency. Although the role of each 
mutation is not well understood, the most frequently observed 
changes are aneuploidy, loss of chromosome 13, and specific 
translocations involving chromosome 14q32 (Chesi et al., 1997; 
Facon et al., 2001; Boyd et al., 2012).

The mechanisms that mediate genomic instability and 
clonal evolution are not well known in MM. It is well known 
that the chromosomal translocations in the switch region of 
the immunoglobulin heavy chain (IgH) gene (chromosome 
14q32) are usually related to more aggressive disease (Rajan 
and Rajkumar, 2015). CD40L, IL-6, and IL-4 are known as the 
critical growth factors for MM cells (Cao et al., 2010; Kamińska 

et al., 2016). Hwang et al. have shown that CD40 and or IL-4 
activation of MM cells induces DNA double-strand breaks and 
leads to genomic instability (Hwang et al., 2006). Likewise, 
dysfunctional homologous recombination has also been reported 
to mediate genomic instability in MM (Shammas et al., 2009). 
Nuclease activity in the tumor cells produces free ends of DNA, 
and this may lead to genomic rearrangements. Shammas et al. 
have shown 34 nucleases whose elevated expression correlated 
with increased genomic instability in MM (Shammas et al., 
2015). Along with homologous recombination (HR), especially, 
apurinic/apyrimidinic endonuclease activities have been 
suggested as significant mechanisms for genomic instability 
(Kumar et al., 2018).

Though the non-silent mutations affecting 13 genes in NER 
pathway have been reported in some patients with MM, the 
exact role of this repair mechanism in the generation of genomic 
instability in MM is not clear (Szalat et al., 2018).

The MYC oncogene activation has been reported to be as 
much as over 50% of MM patients, which might be related to 
genomic instability in these patients (Affer et al., 2014). Cottini et 
al. have shown that MYC regulates ROS levels via modulating the 
activity of mitochondria (Cottini et al., 2015). They also showed 
that the MYC-induced oxidative stress triggers DNA damage in 
MM cells.

FIGURE 1 | Hypoxia is the major contributor to genomic instability in the tumor microenvironment. Along with inherited changes and the effect of environmental 
carcinogens, the factors resulting from tumor microenvironment contribute to genomic instability during tumor progression. DNA changes caused by hypoxia–
reoxygenation cycles in the tumor microenvironment are an essential source of genomic instability. Functional genetic changes caused by these mutations 
lead to inhibition of apoptosis, and induction of angiogenesis and EMT, leading to further progression of tumor tissue and the carcinogenic microenvironment. 
TME, tumor microenvironment; EMT, epithelial–mesenchymal transition; MMR, mismatch repair; NER, nuclear excision repair; SSB, single-strand break; DSB, 
double-strand break.
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Bone Marrow Microenvironment as a 
Source of Genomic Instability in MM
Although clonal heterogeneity and genomic instability are the 
significant characteristics of MM even at the earliest stages, DNA 
damage continues during the disease progression (Neri and 
Bahlis, 2013). Bone marrow microenvironment has an essential 
role in the growth and progression of MM.

MM cells are dependent upon the bone marrow 
microenvironment as hematopoietic stem cells. However, the 
behavior of myeloma cells greatly differs from the stem cells. 
Contrary to the stem cell niche, IL-6 is the major contributor 
for myeloma cells in the bone marrow (Zipori, 2010). IL-6 and 
other cytokines constitute an inflammatory milieu in the BM for 
myeloma cells (Zipori, 2010). The increased number of abnormal 
cells like myeloma cells and leukemia cells in the bone marrow 
increases angiogenesis. Also, the nature of the bone marrow 
neovasculature in myeloma resembles the vessels in solid tumors 
(Tenreiro et al., 2017). Likewise, recent studies have shown that 
there is a heterogenous O2 distribution in bone marrow, and the 
different parts of the BM have different oxygen tensions (Hu et al., 
2010). Therefore, the BM microenvironment could contribute 
the acquired genomic instability during the disease progression 
period just as TME of solid tumors.

In vitro studies had shown that the DNA breaks already 
present in tumor cells further increased when the MM cell 
lines were cocultured with bone marrow stromal cells (Koduru 
et al., 2012; Neri and Bahlis, 2013; Perini et al., 2017). Koduru 

et al. have shown that the interaction between MM cells and 
BM dendritic cells induced the genomic mutator activation-
induced cytosine deaminase (AID) and AID-dependent DSBs 
(Koduru et al., 2012). They also reported that the interaction 
between DCs and MM cells might further be inhibited by 
blockade of RANK/RANKL interactions. Coculture of MM 
cells with BMSc also increased the HR and overall nuclease 
activity, with a noticeable increase in APEX1, a major 
apurinic/apyrimidinic nuclease (Perini et al., 2017). Though 
the exact mechanisms remain unclear, those findings support 
the hypothesis that bone marrow microenvironment enhances 
genomic instability in MM.

Tumor mutation burden and presence of neoantigens are 
usually positively correlated with each other, and an above-
average mutation or neoantigen burden was a significant 
prognostic factor associated with increased risk of disease 
progression. Likewise, Miller et al. have reported an increased 
tumor mutation burden in MM patients (Miller et al., 2017). 
Given that the tumor mutation burden in solid tumors is a 
useful marker for immune checkpoint inhibitors, it may create 
a targeted and personalized treatment opportunity in patients 
with MM.
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