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Evidence from multiple laboratories has accumulated to show that mosaic neuronal 
aneuploidy and consequent apoptosis characterizes and may underlie neuronal loss in 
many neurodegenerative diseases, particularly Alzheimer’s disease and frontotemporal 
dementia. Furthermore, several neurodevelopmental disorders, including Seckel 
syndrome, ataxia telangiectasia, Nijmegen breakage syndrome, Niemann–Pick type C, 
and Down syndrome, have been shown to also exhibit mosaic aneuploidy in neurons 
in the brain and in other cells throughout the body. Together, these results indicate that 
both neurodegenerative and neurodevelopmental disorders with apparently different 
pathogenic causes share a cell cycle defect that leads to mosaic aneuploidy in many cell 
types. When such mosaic aneuploidy arises in neurons in the brain, it promotes apoptosis 
and may at least partly underlie the cognitive deficits that characterize the neurological 
symptoms of these disorders. These findings have implications for both diagnosis and 
treatment/prevention.

Keywords: Alzheimer’s disease, Mosaic aneuploidy, Frontotemporal lobar degeneration, Neuronal apoptosis, 
Huntington’s disease (HD)

INTRODUCTION
Age-associated neurodegenerative diseases exhibit different brain pathologies and different 
clinical features, and all are associated with reduced neuronal numbers in specific brain regions. 
Furthermore, when caused by a mutation, each disorder evidently involves a unique pathogenic 
pathway because the mutant proteins are usually involved in very different physiological 
processes. Indeed, the normal function of the associated mutant gene should provide insights 
into that specific disease’s pathogenic pathway. For example, the mutations that cause autosomal 
dominant familial Alzheimer’s disease (FAD) arise in only three genes: the amyloid precursor 
protein (APP) gene, the presenilin 1 (PSEN1) gene, and the presenilin 2 (PSEN2) gene, all 
three of which encode proteins involved in the production of the Aβ peptide, which is the 
main pathogenic molecule of AD (Goate and Hardy, 2012; Hardy, 2017). Specifically, PSEN1 
and PSEN2 are components of the γ-secretase complex, which, together with the β-secretase 

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1092

HypOTHesIs AND THeORy

doi: 10.3389/fgene.2019.01092
published: 07 November 2019

https://creativecommons.org/licenses/by/4.0/
mailto:huntington.potter@cuanschutz.edu
https://doi.org/10.3389/fgene.2019.01092
https://www.frontiersin.org/article/10.3389/fgene.2019.01092/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01092/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01092/full
https://loop.frontiersin.org/people/99843/overview
https://loop.frontiersin.org/people/834108/overview
https://loop.frontiersin.org/people/826364/overview
https://loop.frontiersin.org/people/833231/overview
https://loop.frontiersin.org/people/808289/overview
https://loop.frontiersin.org/people/832488/overview
https://loop.frontiersin.org/people/825969/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01092
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01092&domain=pdf&date_stamp=2019-11-07


Mosaic Aneuploidy in Neurological DisordersPotter et al.

2

enzyme, cleaves APP to release Aβ. In contrast, patients 
with frontotemporal dementia (also called frontotemporal 
lobar degeneration, FTLD) exhibit clinical and pathological 
characteristics that differ from AD, and most of the autosomal 
dominantly inherited familial forms of FTLD are caused by 
a mutation in the MAPT/Tau gene, by a mutation in the 
progranulin (PRGN) gene, or by a triplet repeat expansion in 
the C9ORF72 gene, all three of which carry out vastly different 
normal functions in the cell and are also unrelated to the genes 
mutated in FAD (Rademakers et al., 2012). Interestingly, in 
some families, instead of or in addition to FTLD, the triplet 
repeat expansion in the C9ORF72 gene can cause familial 
amyotrophic lateral sclerosis, a motor neuron degenerative 
disease that is associated with cognitive decline only during 
later stages of the disease. Huntington’s disease similarly 
exhibits a unique pathology and clinical course and is caused 
by a triplet repeat expansion in the huntingtin (HTT) gene, 
whose normal function is also apparently different from any 
of the genes associated with familial forms of AD or FTLD 
(Podvin et al., 2019). Thus, there appears to be no common 
feature of neurodegenerative disorders beyond the fact that 
they all result in neuronal loss.

Neurodevelopmental disorders are associated with different 
pathologies and clinical phenotypes, although they again 
usually include microcephaly or another indication of a defect 
in neurogenesis or neuronal survival. For example, ataxia 
telangiectasia and the related disorder Seckel syndrome are 
caused by mutations in the ATM and ATR genes, respectively, 
which encode two related protein kinases. Because both ataxia 
telangiectasia and Seckel syndrome appear to involve the 
loss of neurons, they might be considered neurodegenerative 
disorders without an essential aging component associated 
with their underlying mechanisms. Down syndrome also 
results in reduced neuronal numbers in key brain regions 
during development, and, interestingly, every person with 
Down syndrome develops AD brain neuropathology by age 
30–40, which usually leads to dementia by age 50–60 (Hartley 
et al., 2015; Hithersay et al., 2019).

Because these multiple disorders have different pathologies 
and different clinical symptoms and they involve different 
pathogenic pathways, as evidenced by the different genes 
in which causal mutations can arise, it is reasonable to 
hypothesize that each disorder is distinct and would require 
different approaches to therapy and prevention. However, 
if it were possible to identify a key step that is shared among 
the pathogenic pathways of many neurodegenerative and/or 
neurodevelopmental disorders, then it would also be reasonable 
to hypothesize that insights into the causal mechanism might 
be gained and the potential for a common approach to the 
development of new therapies might be recognized. Of course, 
any shared mechanistic features that are identified must also be 
considered as potentially a mere correlate of the degenerative 
process rather than as an essential step in the pathogenic 
pathways. To distinguish between these two hypotheses, the 
strength of the genetics can be exploited because it is self-
evident that a direct effect of a mutant gene is likely to be part 
of the causal mechanism. If multiple neurodevelopmental 

and neurodegenerative disease-causing mutations impact a 
common pathogenic step, then that step should be considered a 
potential key to preventing the neurodegeneration and should 
thus serve as a prime target for the development of therapeutic 
interventions that could be applied to multiple disorders.

Over the past decade, we and others have identified a 
potential common step in the pathogenic pathways that lead to 
multiple distinct neurodegenerative and neurodevelopmental 
disorders. Specifically, mutations in genes linked to many 
of these disorders have been shown to lead to chromosome 
segregation defects and mosaic aneuploidy in cell types 
throughout the body, including in brain neurons, which likely 
contributes to the neuronal cell loss/apoptosis that underlies 
their neurological features.

Mosaic Aneuploidy in Alzheimer’s Disease
Mosaic aneuploidy/hyperploidy, including trisomy 21, was 
first hypothesized (Potter, 1991) and has been most thoroughly 
investigated in AD (Geller and Potter, 1999; Yang et al., 
2001; Kingsbury et al., 2006; Mosch et al., 2007; Thomas and 
Fenech, 2008; Iourov et al., 2009b; Arendt et al., 2010; Iourov 
et al., 2011). Arendt and colleagues’ extensive study of brains 
from AD patients showed that 20–30% of brain neurons are 
aneuploid during the early preclinical stages of AD and that 
their specific loss in later stages of the disease can account for 
90% of the neuronal atrophy observed at autopsy (Arendt et al., 
2010). Somatic mosaic aneuploidy can also be detected in cells 
from peripheral tissues of AD patients, including fibroblasts, 
peripheral blood mononuclear cells, and buccal cells (Potter 
et  al., 1995; Migliore et al., 1997; Geller and Potter, 1999; 
Migliore et al., 1999; Trippi et al., 2001; Thomas and Fenech, 
2008), providing an opportunity for early detection.

The specific finding that trisomy 21 mosaicism occurs in many 
tissues in AD patients, including in the brain, is highly relevant 
because people with Down syndrome are usually fully trisomic 
for chromosome 21 due to chromosome mis-segregation during 
meiosis, every person with Down syndrome develops AD brain 
neuropathology by 35 years of age, the majority of people with 
Down syndrome develop AD dementia by age 60, and nearly all 
people with Down syndrome who die after age 35 have dementia 
(Glenner and Wong, 1984; Wisniewski et al., 1985; Epstein, 
1990; Hartley et al., 2015; Hithersay et al., 2019). The APP gene 
is located on chromosome 21, and its presence in three copies 
in Down syndrome is presumed to underlie the development of 
early-onset AD in this population (Hartley et al., 2015). Support 
for this conclusion comes from the observation that individuals 
who carry an FAD mutation in the APP gene or who have 
three copies of the APP gene due to a local duplication on one 
chromosome (Rovelet-Lecrux et al., 2006; Sleegers et al., 2006) 
will develop autosomal-dominant early-onset AD. Furthermore, 
individuals who only have 1–10% trisomy 21 cells and show no 
features of Down syndrome also develop early-onset, sporadic 
AD dementia, suggesting that even low levels of trisomy 21 
mosaicism can lead to AD (reviewed in Potter, 1991). Evidence 
that three copies of the APP gene are not only sufficient but also 
necessary to cause AD is provided by the fact that rare individuals 
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who have full trisomy 21 and all of the clinical and physiological 
features of Down syndrome but have only two copies of the APP 
gene due to a localized deletion on chromosome 21 fail to develop 
AD symptoms or AD pathology even at an old age (Prasher et al., 
1998; Doran et al., 2017).

Evidence that an underlying susceptibility to chromosome 
segregation defects may be associated with an increased risk 
of AD was first provided by a study showing that women who 
were 35 or younger when they gave birth to a child with Down 
syndrome have a fivefold increased risk of developing AD later 
in life compared to control mothers or compared to mothers 
who gave birth to a child with Down syndrome after age 35 
(Schupf et al., 1994). More direct support for the idea that 
both trisomy 21 and AD are associated with an underlying 
predisposition for chromosome mis-segregation comes from a 
study of cultured peripheral blood lymphocytes from mothers 
under the age of 35 who gave birth to a child with Down 
syndrome (Migliore et al., 2006). In that study, they used 
fluorescence in situ hybridization probes for chromosomes 21 
and 13 and observed significantly higher levels of chromosome 
non-disjunction involving both chromosomes within the first 
cell cycle in the lymphocytes from mothers who gave birth to 
a child with Down syndrome compared to control mothers 
who had not had a miscarriage and whose children did not 
have genetic disorders (Migliore et al., 2006). Taken together, 
these findings suggest that an underlying predisposition for 
chromosome instability may lead to increased AD risk.

The association of chromosome instability and aneuploidy 
with AD has been reinforced by mechanistic studies. The 
key proteins whose mutant genes cause the majority of 
FAD—the presenilin proteins (PSEN1 and PSEN2) and the 
amyloid precursor protein (APP)—localize to centromeres/
kinetochores, centrosomes, and/or the nuclear envelope 
(Li et al., 1997; Annaert et al., 1999; Honda et  al., 2000; 
Jeong et al., 2000; Kimura et al., 2001; Nizzari et al., 2007a; 
Nizzari et al., 2007b; Young-Pearse et al., 2010; Judge et al., 
2011). Furthermore, FAD mutations in PSEN1 or APP cause 
mitotic spindle abnormalities and aneuploidy in transgenic 
mice and in transfected cells (Boeras et al., 2008; Granic 
et  al., 2010). Treatment of karyotypically normal cells with 
oligomeric Aβ peptide, which is the product of PSEN1- and 
PSEN2-dependent cleavage of APP, also disrupts the mitotic 
spindle and induces chromosome mis-segregation and 
aneuploidy by competitively inhibiting certain microtubule 
motors, particularly Kinesin-5/KIF11/Eg5, MCAK/KIF2C, 
and KIF4A, in both cell culture experiments and in Xenopus 
egg extracts (Boeras et al., 2008; Borysov et al., 2011). These 
mechanistic studies established that cell cycle defects and the 
resultant mosaic aneuploidy are a direct effect of FAD mutant 
genes and are thus likely to be part of the AD pathogenic 
pathway and not merely a correlate of neurodegeneration in 
the brain.

The role of chromosome aneuploidy in AD suggests that 
studying mechanisms that regulate mitosis may lead to novel 
insights into AD. For example, Shugoshin-1 (SGO1) encodes 
a protein that is involved in chromosome cohesion and is 
needed for normal chromosome segregation, and SGO1 

haploinsufficiency leads to chromosome missegregation 
and tumorigenesis (Yamada et al., 2012). Building on the 
role of aneuploidy in AD, Rao and Yamada and colleagues 
hypothesized that SGO1 heterozygous knockout mice may serve 
as a potential model of sporadic late-onset AD, and they indeed 
discovered some AD-related pathology as the mice aged, which 
was associated with prolonged mitosis and spindle checkpoint 
activation (Rao et al., 2018a; Rao et al., 2018b).

Mosaic Aneuploidy in Frontotemporal 
Lobar Degeneration
In addition to AD, mosaic aneuploidy has been observed 
in FTLD (Rossi et al., 2013; Rossi et al., 2014; Caneus et al., 
2018). In earlier studies, mosaic aneuploidy was reported in 
skin fibroblasts and peripheral blood lymphocytes from FTLD 
patients and in splenic lymphocytes from mouse models of 
FTLD-MAPT (Rossi et al., 2008; Rossi et al., 2013; Rossi et al., 
2014). In the subsequent study, we found mosaic aneuploidy and 
associated apoptosis in both neuronal and non-neuronal brain 
cells from patients with familial FTLD who carry a mutation in 
the MAPT/Tau gene (Caneus et al., 2018). Expression of FTLD-
causing mutant MAPT induced mitotic spindle abnormalities, 
chromosome mis-segregation, aneuploidy, and apoptosis in 
neurons and other cells in the brains of transgenic mice and in 
transfected cells (Caneus et al., 2018). Furthermore, we showed 
in our FTLD study that apoptosis occurs in the same brain 
neurons that are aneuploid and that, in cultured cells expressing 
FTLD-causing mutant forms of human MAPT, apoptosis follows 
and depends upon aneuploidy-generating cell cycle defects 
(Caneus et al., 2018). If the cell cycle is blocked by inhibiting 
the interaction between MDM2 and p53 by treatment with 
low doses of Nutlin-3 at 24 h after expression of FTLD-causing 
mutant MAPT, no aneuploid cells arise (Caneus et al., 2018). 
Importantly, treatment with Nutlin-3 also blocks apoptosis, 
indicating that the toxicity of mutant MAPT depends on cells 
aberrantly proceeding through the cell cycle and becoming 
aneuploid.

Evidence linking neuronal aneuploidy, neurodegeneration, 
and MAPT was reported recently by two other groups in 
Drosophila models of FTLD. Specifically, a study by Bougé 
and Parmentier showed that excess Tau causes mitotic spindle 
defects, aneuploidy, and apoptosis in neurons by inhibiting 
the microtubule-dependent motor protein Kinesin-5 (Bouge 
and Parmentier, 2016). Similar results have been reported 
by Malmanche et al. who examined photoreceptors and 
brain neurons in Drosophila and found that adult-onset 
neurodegeneration mediated by MAPT overexpression 
included the generation of aneuploid cells (Malmanche 
et  al., 2017). The former result is of particular interest in 
view of our previous finding that Aβ induces chromosome 
mis-segregation and aneuploidy by competitively inhibiting 
the activity of Kinesin-5/KIF11/Eg5 (Borysov et al., 2011). 
Thus, causal mutations leading to AD and FTLD-MAPT 
appear to lead to chromosome mis-segregation, aneuploidy, 
and apoptosis through inhibition of the same target enzyme: 
Kinesin-5/KIF11/Eg5.
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In addition to MAPT-FTLD, we have found that mosaic 
neuronal aneuploidy and dependent apoptosis are also 
characteristic of brains of individuals with sporadic FTLD or 
with FTLD caused by mutations in PRGN or by triplet repeat 
expansions in C9ORF72 (Elos and Caneus et al., unpublished 
results, manuscript in preparation).

It is likely that other neurodegenerative diseases are also 
associated with mosaic aneuploidy in the brain. For example, 
autism spectrum disorder (Yurov et al., 2007; Iourov et al., 
2008), ataxia telangiectasia (McConnell et al., 2004; Iourov 
et al., 2009a; Iourov et al., 2009b), and Lewy body disease, 
which includes Parkinson’s disease (Yang et al., 2015), have 
all been reported to exhibit either general hyperploidy or 
mosaic aneuploidy for numerous chromosomes in brain and/
or peripheral tissues. Our laboratory also has preliminary 
evidence for mosaic aneuploidy in both brain cells and 
fibroblasts from Huntington’s disease patients (Elos and 
Caneus et al., unpublished results, manuscript in preparation).

Mosaic Aneuploidy in Neurodevelopmental 
Disorders
Mosaic aneuploidy in neurons and other types of cells also 
characterizes neurodevelopmental disorders. For example, loss-
of-function mutations in the ataxia telangiectasia mutated and 
Rad3-related (ATR) encoded kinase cause Seckel syndrome, 
a rare autosomal recessive disorder characterized by pre- 
and postnatal growth delays, microcephaly, and intellectual 
disability. Loss of ATR function and of the related kinase ataxia 
telangiectasia mutated (ATM) have been linked to defective 
DNA repair, which has been assumed to cause the genomic 
instability, including aneuploidy, observed in these disorders 
and to make ataxia telangiectasia patients prone to cancer 
(Wright et al., 1998; Spring et al., 2002; Shen et al., 2005; Murga 
et al., 2009; Lang et al., 2016; Yazinski and Zou, 2016; Blackford 
and Jackson, 2017; Quek et al., 2017). Previous studies showed 
that ATR localizes to centrosomes (Zhang et al., 2007) and 
that loss of ATR function causes centrosome overduplication 
(Alderton et al., 2004; Collis et al., 2008; Stiff et al., 2016) and 
genomic instability (Casper et al., 2004; Mokrani-Benhelli et 
al., 2013). In a recent study, Kabeche and colleagues reported a 
mechanism by which loss of ATR function leads to chromosome 
mis-segregation and aneuploidy (Kabeche et al., 2018; Saldivar 
and Cimprich, 2018). Specifically, they elegantly demonstrated 
that ATR localizes to centromeres and is required for proper 
chromosome segregation, in addition to and independent of its 
roles in DNA damage repair and replication stress responses 
(Kabeche et al., 2018). Although not discussed by Kabeche 
and colleagues or in previous publications, the links between 
ATR and mitosis provide an explanation for how reduced ATR 
function and subsequent aneuploidy may underlie the neuronal 
cell loss during development that leads to microcephaly and 
cognitive dysfunction, the major clinical, pathological, and 
disabling features of Seckel syndrome: reduced ATR function 
results in aneuploidy that leads to neuronal apoptosis.

In addition to Seckel syndrome, mosaic aneuploidy has 
been observed in brain neurons in ataxia telangiectasia itself 

(Iourov et al., 2007; Iourov et al., 2009a; Iourov et al., 2009b) 
and in Niemann–Pick type C disease (Granic and Potter, 
2013), and in peripheral cells in Nijmegen breakage syndrome 
(Vessey et al., 1999; Shimada et al., 2009; Shimada et al., 2010; 
Hou et al., 2012), Fanconi anemia (Nalepa et al., 2013), and 
xeroderma pigmentosum (Amiel et al., 2004). All of these 
developmental disorders are characterized by microcephaly or 
other evidence of poor neurogenesis and/or of neuronal loss, 
and all are associated with cognitive disfunction.

Mechanisms by Which Neuronal 
Aneuploidy and Apoptosis Can Arise
Because neurons have been traditionally considered to be 
post-mitotic (Bhardwaj et al., 2006), it has been unclear how 
extensive mosaic aneuploidy can arise in neurodegenerative 
or neurodevelopmental disorders. More recently, it has 
become appreciated that neurogenesis is more widespread 
than previously thought and that the capacity for neurogenesis 
continues into old age, even if not normally utilized (Zhao 
et  al., 2008; Spalding et al., 2013; Boldrini et al., 2018; 
Sorrells et al., 2018). In the adult brain, three processes have 
been identified that may generate the neuronal aneuploidy 
observed at autopsy in patients with AD, FTLD-MAPT, and 
other neurodegenerative and neurodevelopmental disorders. 
In principle, the generation and accumulation of aneuploidy 
in dividing or regenerating cell populations might arise by 
both genetic and environmental stressors at any time in life 
(discussed in Potter, 1991; Oromendia and Amon, 2014). 
Indeed, there is strong evidence that neurogenesis can occur 
throughout life in several regions of the brain (Zhao et al., 2008; 
Mu and Gage, 2011; Spalding et al., 2013; Ernst et al., 2014). 
Furthermore, data from many studies provide evidence that 
neurogenesis can be induced in many brain regions in adult 
mice and rats in response to brain damage and attempted self-
repair by the brain (Zhou et al., 2004; Zhao et al., 2008; Spalding 
et al., 2013; Zheng et al., 2013; Ibrahim et al., 2016), or as part of 
an ongoing process in the sub-ventricular/granular zone of the 
brain (Eriksson et al., 1998; Hallbergson et al., 2003; Sakamoto 
et al., 2014). Thus, neuronal damage and the mitotic defects 
evident in AD, FTLD-MAPT, and other neurodegenerative and 
neurodevelopmental disorders could result in the production 
of new aneuploid neurons, which would not be fully functional 
and would be particularly prone to apoptosis and degeneration. 
Indeed, aneuploidy has been shown to promote cell death, 
including neurodegeneration, in many experimental systems 
(Rajendran et al., 2008; Kai et al., 2009; Arendt et al., 2010; 
Oromendia and Amon, 2014).

The second potential mechanism for the generation of 
neuronal aneuploidy in neurodegenerative disease is cell cycle 
reentry. Neurons in the AD brain express phospho-proteins 
usually detected only during mitosis, such as cyclin B1, cyclin 
D1, cdc2, and Ki67 (Vincent et al., 1996; McShea et al., 1997; 
Vincent et al., 1997; Yang et al., 2001; Arendt, 2012). In AD mice, 
the loss of preexisting neurons induces the remaining neurons 
to reenter the cell cycle (Lopes et al., 2009). Indeed, Aβ has been 
shown to induce the expression of mitotic proteins and cell cycle 
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reentry in mature neurons in culture (Majd et al., 2008; Absalon 
et al., 2013; Seward et al., 2013), which we have confirmed (Nina 
Elder, unpublished observation).

The third potential mechanism for generating aneuploid 
neurons is based on the recent discovery that striatal 
astrocytes can transdifferentiate into new neurons capable 
of forming functional neuronal circuits with preexisting 
neurons following ischemic brain injury (Magnusson et al., 
2014; Duan et al., 2015). This finding suggests that at least 
some of the aneuploid neurons in AD and FTLD-MAPT 
brains may be derived from the aneuploid glia that we have 
shown are present in our preliminary and published studies. 
In additional preliminary studies, we have found that low 
numbers of primary astrocytes exposed to Aβ in culture can 
begin to express the neuronal marker NeuN (Nina Elder, 
unpublished observation). Taken together, these findings 
provide evidence that aneuploidy can arise de novo in mature 
neurons by cell cycle reactivation or can be carried over 
from previously dividing cells that generate new neurons. It 
is reasonable that age may exacerbate all of these processes 
because neuronal and non-neuronal aneuploidy have been 
shown to increase with age (Arendt et al., 2009; Yurov et al., 
2009; Yurov et al., 2010; Fischer et al., 2012; Fantin et al., 
2019). Aging is also associated with increasing total exposure 
to environmental stressors, some of which can promote 
chromosome missegregation and aneuploidy (for reviews, see 
Potter, 1991; Iourov et al., 2013).

In addition to the close and mechanistic association between 
aneuploidy and induced apoptosis discussed above, multiple 
reports in different systems have shown that aneuploid or 
other copy number variant cells are prone to degeneration/
apoptosis (Oromendia and Amon, 2014; Ohashi et al., 2015; 
Potter et al., 2016; Andriani et al., 2017; Chronister et al., 
2019). As mentioned earlier, Arendt and colleagues conducted 
a pathological study of AD patients’ brains across the disease 
spectrum and showed that neuronal aneuploidy arises before 
neurodegeneration or clinical symptoms are evident (Arendt 
et  al., 2010). Specifically, they found that the number of 
aneuploid neurons increases steadily from around 10% in 
normal controls to around 30% during the early preclinical 
stages of AD and then declines back to around 10% during the 
transition from preclinical AD to severe AD when neuronal loss 
occurs. In addition, they calculated that the loss of aneuploid, 
but not diploid, neurons accounted for 90% of the neuronal 
atrophy observed at autopsy of late-stage AD brains (Arendt 
et al., 2010). Based on their findings, it can be concluded that: 1) 
aneuploidy in neurons arises in the AD brain before extensive 
neuronal cell loss occurs and thus the aneuploidy is not likely 
to be caused by neurodegeneration/neuronal apoptosis, and 2) 
the vast majority of later neuronal cell loss selectively affects 
aneuploid neurons, indicating that the neurodegeneration 
is likely caused by a cell-autonomous cell cycle defect in the 
neurons themselves rather than by a tissue-wide mechanism 
(such as an unidentified, diffusible toxic insult released from 
damaged cells). Possible cell-autonomous effects of aneuploidy 
that could contribute to cell death include DNA replication 

stress (Yurov et al., 2011) and proteotoxic stress (Oromendia 
et al., 2012).

Linking Development and Aging: A 
Role for Catalysts in Age-Associated 
proteinopathies
In view of these considerations, we note that developmental 
disorders, such as Seckel syndrome, ataxia telangiectasia, 
Niemann–Pick type C, Nijmegen breakage syndrome, Fanconi 
anemia, and xeroderma pigmentosum, all of which lead to 
neuronal apoptosis, degeneration, and microcephaly, result 
from mutations in genes whose products impact mitosis, directly 
or indirectly. In contrast, aging-associated neurodegenerative 
diseases, such as AD, FTLD, Lewy body disease (Yang et al., 
2015), and potentially Huntington’s disease (Sathasivam et al., 
2001; Elos and Caneus et al., unpublished results) and prion 
disease (Basu et al., 1998; Borchsenius et al., 2000; Nieznanska 
et al., 2012) all develop abnormal protein deposits in the brain 
in addition to aneuploidy. The formation of these deposits 
apparently involves not only the seminal protein itself but often 
requires inflammation or other aging-associated catalysts. For 
example, inheritance of the ε4 allele of the apolipoprotein E 
(APOE) gene is the strongest risk factor for the development 
of AD besides age itself. Interestingly, the APOE4 allele and 
an AD-linked PSEN1 polymorphism have each been shown to 
increase the risk of meiosis II chromosome segregation errors, 
leading to Down syndrome, and a mother carrying both the 
APOE4 allele and the PSEN1 polymorphism has an even higher 
risk of a trisomy 21 conception (Avramopoulos et al., 1996; 
Petersen et al., 2000; Rodriguez-Manotas et al., 2007; Bhaumik 
et al., 2017). Indeed, a recent study of older adults with Down 
syndrome reported that those who were APOE4 carriers 
were at increased risk of both dementia and death (Hithersay 
et al., 2019). Notably, ApoE, particularly ApoE4, catalyzes the 
conversion of Aβ into the toxic oligomers that directly disrupt 
the mitotic spindle and chromosome segregation and also leads 
to amyloid deposition (Potter and Wisniewski, 2012). A similar 
co-pathological protein likely exists in prion disease too, 
although this exacerbating protein has been shown not to be 
ApoE (Tatzelt et al., 1996). This two-hit mechanism involving a 
mutant aggregation-prone protein plus an amyloid catalyst may 
underlie the fact that, in AD, amyloid deposits, symptoms, and 
aneuploidy all arise with aging. Similar two-hit mechanisms 
may underlie other aging-associated neurodegenerative 
diseases and neurodevelopmental disorders. Furthermore, 
the region-specific expression of the second hit (such as with 
ApoE in AD) may underlie the region-specific pathology and 
neuronal loss in different disorders.

Constitutional Aneuploidy in the Normal 
Brain
In addition to its association with neurodegenerative and 
neurodevelopmental disorders, aneuploidy and possibly copy 
number variations on a smaller scale are considered potential 
contributors to diversity in brain function (Iourov et al., 
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2009b; Mkrtchyan et al., 2010; Bushman and Chun, 2013; 
Rohrback et al., 2018). Although extensive whole chromosome 
aneuploidy has not been found by all investigators (Knouse 
et al., 2014), it is likely that new methods will reveal more 
aneuploid cells in both normal aged and diseased brains 
(Caneus et al., 2017).

summary
In sum, recent work reinforces our emerging understanding 
of the important role that chromosome mis-segregation and 
mosaic aneuploidy in neurons may play in an ever-growing list 
of both neurodevelopmental disorders and aging-associated 
neurodegenerative disorders (Figure 1). These findings have 
potentially important implications for the development of: 1) 
novel diagnoses because, as discussed, in addition to neurons 
in the brain, peripheral cells also exhibit mosaic aneuploidy 
in these disorders, and 2) innovative preventions/treatments 
because interventions can now be sought that specifically 
promote correct chromosome segregation in the presence of 

aneugenic mutations and/or aneugenic protein structures that 
lead to neuropathogenesis.
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FIGURe 1 | How mosaic aneuploidy may lead to neuronal loss in neurodegenerative and neurodevelopmental disorders. Shown is a schematic of how mosaic 
aneuploidy may occur in neurons leading to apoptosis and cognitive deficits in neurodevelopmental and aging-associated neurodegenerative disorders. 
Seckel syndrome (SS), ataxia telangiectasia (AT), Niemann–Pick type C disease (NPC), Nijmegen breakage syndrome (NBS), Fanconi anemia (FA), xeroderma 
pigmentosum (XP), Down syndrome (DS), Alzheimer’s disease (AD), frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), and Huntington’s 
disease (HD).

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1092

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mosaic Aneuploidy in Neurological DisordersPotter et al.

7

ReFeReNCes
Absalon, S., Kochanek, D. M., Raghavan, V., and Krichevsky, A. M. (2013). 

MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-
phosphorylation, and apoptosis in postmitotic neurons. J. Neurosci. 33 (37), 
14645–14659. doi: 10.1523/JNEUROSCI.1327-13.2013

Alderton, G. K., Joenje, H., Varon, R., Borglum, A. D., Jeggo, P. A., and 
O’Driscoll, M. (2004). Seckel syndrome exhibits cellular features demonstrating 
defects in the ATR-signalling pathway. Hum. Mol. Genet. 13 (24), 3127–3138. 
doi: 10.1093/hmg/ddh335

Amiel, A., Peretz, G., Slor, H., Weinstein, G., and Fejgin, M. D. (2004). Molecular 
cytogenetic parameters in fibroblasts from patients and carriers of xeroderma 
pigmentosum. Cancer Genet. Cytogenet. 149 (2), 154–160. doi: 10.1016/j.
cancergencyto.2003.07.004

Andriani, G. A., Vijg, J., and Montagna, C. (2017). Mechanisms and consequences 
of aneuploidy and chromosome instability in the aging brain. Mech. Ageing 
Dev. 161 (Pt A), 19–36. doi: 10.1016/j.mad.2016.03.007

Annaert, W. G., Levesque, L., Craessaerts, K., Dierinck, I., Snellings, G., 
Westaway, D., et al. (1999). Presenilin 1 controls gamma-secretase processing 
of amyloid precursor protein in pre-golgi compartments of hippocampal 
neurons. J. Cell Biol. 147 (2), 277–294. doi: 10.1083/jcb.147.2.277

Arendt, T. (2012). Cell cycle activation and aneuploid neurons in Alzheimer’s 
disease. Mol. Neurobiol. 46 (1), 125–135. doi: 10.1007/s12035-012-8262-0

Arendt, T., Bruckner, M. K., Mosch, B., and Losche, A. (2010). Selective cell death 
of hyperploid neurons in Alzheimer’s disease. Am. J. Pathol. 177 (1), 15–20. doi: 
10.2353/ajpath.2010.090955

Arendt, T., Mosch, B., and Morawski, M. (2009). Neuronal aneuploidy in health 
and disease: a cytomic approach to understand the molecular individuality of 
neurons. Int. J. Mol. Sci. 10 (4), 1609–1627. doi: 10.3390/ijms10041609

Avramopoulos, D., Mikkelsen, M., Vassilopoulos, D., Grigoriadou, M., and Petersen, 
M. B. (1996). Apolipoprotein E allele distribution in parents of Down’s syndrome 
children. Lancet 347 (9005), 862–865. doi: 10.1016/s0140-6736(96)91346-x

Basu, J., Williams, B. C., Li, Z., Williams, E. V., and Goldberg, M. L. 
(1998). Depletion of a Drosophila homolog of yeast Sup35p disrupts 
spindle assembly, chromosome segregation, and cytokinesis during 
male meiosis. Cell Motil. Cytoskeleton 39 (4), 286–302. doi: 10.1002/
(SICI)1097-0169(1998)39:4<286::AID-CM4>3.0.CO;2-1

Bhardwaj, R. D., Curtis, M. A., Spalding, K. L., Buchholz, B. A., Fink, D., Bjork-
Eriksson, T., et al. (2006). Neocortical neurogenesis in humans is restricted to 
development. Proc. Natl. Acad. Sci. U.S.A. 103 (33), 12564–12568. doi: 10.1073/
pnas.0605177103

Bhaumik, P., Ghosh, P., Ghosh, S., Feingold, E., Ozbek, U., Sarkar, B., et al. (2017). 
Combined association of Presenilin-1 and Apolipoprotein E polymorphisms 
with maternal meiosis II error in Down syndrome births. Genet. Mol. Biol. 40 
(3), 577–585. doi: 10.1590/1678-4685-GMB-2016-0138

Blackford, A. N., and Jackson, S. P. (2017). ATM, ATR, and DNA-PK: The Trinity 
at the Heart of the DNA Damage Response. Mol. Cell 66 (6), 801–817. doi: 
10.1016/j.molcel.2017.05.015

Boeras, D. I., Granic, A., Padmanabhan, J., Crespo, N. C., Rojiani, A. M., and 
Potter, H. (2008). Alzheimer’s presenilin 1 causes chromosome missegregation 
and aneuploidy. Neurobiol Aging 29 (3), 319–328. doi: 10.1016/j.
neurobiolaging.2006.10.027

Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., 
et al. (2018). Human Hippocampal Neurogenesis Persists throughout Aging. 
Cell Stem Cell 22 (4), 589–599 e585. doi: 10.1016/j.stem.2018.03.015

Borchsenius, A. S., Tchourikova, A. A., and Inge-Vechtomov, S. G. (2000). 
Recessive mutations in SUP35 and SUP45 genes coding for translation release 
factors affect chromosome stability in Saccharomyces cerevisiae. Curr. Genet. 
37 (5), 285–291. doi: 10.1007/s002940050529

Borysov, S. I., Granic, A., Padmanabhan, J., Walczak, C. E., and Potter, H. (2011). 
Alzheimer Abeta disrupts the mitotic spindle and directly inhibits mitotic 
microtubule motors. Cell Cycle 10 (9), 1397–1410. doi: 10.4161/cc.10.9.15478

Bouge, A. L., and Parmentier, M. L. (2016). Tau excess impairs mitosis and 
kinesin-5 function, leading to aneuploidy and cell death. Dis. Model Mech. 9 
(3), 307–319. doi: 10.1242/dmm.022558

Bushman, D. M., and Chun, J. (2013). The genomically mosaic brain: aneuploidy 
and more in neural diversity and disease. Semin Cell Dev. Biol. 24 (4), 357–369. 
doi: 10.1016/j.semcdb.2013.02.003

Caneus, J., Granic, A., Chial, H. J., and Potter, H., (2017). “Using Fluorescence In 
Situ Hybridization (FISH) Analysis to Measure Chromosome Instability and 
Mosaic Aneuploidy in Neurodegenerative Diseases,” in Genomic Mosaicism in 
Neurons and Other Cell Types. Eds. Frade, J. M., and Gage, F. H. (New York, NY: 
Humana Press), vol. 329-359. doi: 10.1007/978-1-4939-7280-7

Caneus, J., Granic, A., Rademakers, R., Dickson, D. W., Coughlan, C. M., 
Chial,  H.  J., et al. (2018). Mitotic defects lead to neuronal aneuploidy and 
apoptosis in frontotemporal lobar degeneration caused by MAPT mutations. 
Mol. Biol. Cell 29 (5), 575–586. doi: 10.1091/mbc.E17-01-0031

Casper, A. M., Durkin, S. G., Arlt, M. F., and Glover, T. W. (2004). Chromosomal 
instability at common fragile sites in Seckel syndrome. Am. J. Hum Genet. 75 
(4), 654–660. doi: 10.1086/422701

Chronister, W. D., Burbulis, I. E., Wierman, M. B., Wolpert, M. J., Haakenson, 
M. F., Smith, A. C. B., et al. (2019). Neurons with Complex Karyotypes Are 
Rare in Aged Human Neocortex. Cell Rep. 26825-835 (4), e827. doi: 10.1016/j.
celrep.2018.12.107

Collis, S. J., Ciccia, A., Deans, A. J., Horejsi, Z., Martin, J. S., Maslen, S. L., et al. 
(2008). FANCM and FAAP24 function in ATR-mediated checkpoint signaling 
independently of the Fanconi anemia core complex. Mol. Cell 32 (3), 313–324. 
doi: 10.1016/j.molcel.2008.10.014

Doran, E., Keator, D., Head, E., Phelan, M. J., Kim, R., Totoiu, M., et al. 
(2017). Down Syndrome, Partial Trisomy 21, and Absence of Alzheimer’s 
Disease: The Role of APP. J. Alzheimers Dis. 56 (2), 459–470. doi: 10.3233/
JAD-160836

Duan, C. L., Liu, C. W., Shen, S. W., Yu, Z., Mo, J. L., Chen, X. H., et al. (2015). 
Striatal astrocytes transdifferentiate into functional mature neurons following 
ischemic brain injury. Glia 63 (9), 1660–1670. doi: 10.1002/glia.22837

Epstein, C. J. (1990). The consequences of chromosome imbalance. Am. J. Med. 
Genet. Suppl. 7, 31–37. doi: 10.1002/ajmg.1320370706

Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., 
Peterson, D. A., et al. (1998). Neurogenesis in the adult human hippocampus. 
Nat. Med. 4 (11), 1313–1317. doi: 10.1038/3305

Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., et al. (2014). 
Neurogenesis in the striatum of the adult human brain. Cell 156 (5), 1072–
1083. doi: 10.1016/j.cell.2014.01.044

Fantin, C., Moraes Nunes, K., Brito, D. V., Moura Carvalho, N. D., and 
Benzaquem,  D. C. (2019). Chromosomal Alterations in Patients with 
Alzheimer Disease in Manaus, Amazonas, Brazil. J. Pharmacy Pharmacol. 7, 
451–458. doi: 10.17265/2328-2150/2019.08.001

Fischer, H. G., Morawski, M., Bruckner, M. K., Mittag, A., Tarnok, A., and Arendt, T. 
(2012). Changes in neuronal DNA content variation in the human brain during 
aging. Aging Cell 11 (4), 628–633. doi: 10.1111/j.1474-9726.2012.00826.x

Geller, L. N., and Potter, H. (1999). Chromosome missegregation and trisomy 21 
mosaicism in Alzheimer’s disease. Neurobiol Dis. 6 (3), 167–179. doi: 10.1006/
nbdi.1999.0236

Glenner, G. G., and Wong, C. W. (1984). Alzheimer’s disease and Down’s syndrome: 
sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys 
Res. Commun. 122 (3), 1131–1135. doi: 10.1016/0006-291x(84)91209-9

Goate, A., and Hardy, J. (2012). Twenty years of Alzheimer’s disease-causing 
mutations. J. Neurochem 120 Suppl 1, 3–8. doi: 10.1111/j.1471-4159.2011.07575.x

Granic, A., Padmanabhan, J., Norden, M., and Potter, H. (2010). Alzheimer Abeta 
peptide induces chromosome mis-segregation and aneuploidy, including 
trisomy 21: requirement for tau and APP. Mol. Biol. Cell 21 (4), 511–520. doi: 
10.1091/mbc.E09-10-0850

Granic, A., and Potter, H. (2013). Mitotic spindle defects and chromosome mis-
segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, 
Alzheimer’s disease, and atherosclerosis. PloS One 8 (4), e60718. doi: 10.1371/
journal.pone.0060718

Hallbergson, A. F., Gnatenco, C., and Peterson, D. A. (2003). Neurogenesis and 
brain injury: managing a renewable resource for repair. J. Clin. Invest 112 (8), 
1128–1133. doi: 10.1172/JCI20098

Hardy, J. (2017). The discovery of Alzheimer-causing mutations in the APP gene 
and the formulation of the “amyloid cascade hypothesis”. FEBS J. 284 (7), 1040–
1044. doi: 10.1111/febs.14004

Hartley, D., Blumenthal, T., Carrillo, M., DiPaolo, G., Esralew, L., Gardiner, K., 
et al. (2015). Down syndrome and Alzheimer’s disease: Common pathways, 
common goals. Alzheimers Dement. 11 (6), 700–709. doi: 10.1016/j.
jalz.2014.10.007

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1092

https://doi.org/10.1523/JNEUROSCI.1327-13.2013
https://doi.org/10.1093/hmg/ddh335
https://doi.org/10.1016/j.cancergencyto.2003.07.004
https://doi.org/10.1016/j.cancergencyto.2003.07.004
https://doi.org/10.1016/j.mad.2016.03.007
https://doi.org/10.1083/jcb.147.2.277
https://doi.org/10.1007/s12035-012-8262-0
https://doi.org/10.2353/ajpath.2010.090955
https://doi.org/10.3390/ijms10041609
https://doi.org/10.1016/s0140-6736(96)91346-x
http://doi.org/10.1002/(SICI)1097-0169(1998)39:4<286::AID-CM4>3.0.CO;2-1
http://doi.org/10.1002/(SICI)1097-0169(1998)39:4<286::AID-CM4>3.0.CO;2-1
https://doi.org/10.1073/pnas.0605177103
https://doi.org/10.1073/pnas.0605177103
https://doi.org/10.1590/1678-4685-GMB-2016-0138
https://doi.org/10.1016/j.molcel.2017.05.015
https://doi.org/10.1016/j.neurobiolaging.2006.10.027
https://doi.org/10.1016/j.neurobiolaging.2006.10.027
https://doi.org/10.1016/j.stem.2018.03.015
https://doi.org/10.1007/s002940050529
https://doi.org/10.4161/cc.10.9.15478
https://doi.org/10.1242/dmm.022558
https://doi.org/10.1016/j.semcdb.2013.02.003
https://doi.org/10.1007/978-1-4939-7280-7
https://doi.org/10.1091/mbc.E17-01-0031
https://doi.org/10.1086/422701
https://doi.org/10.1016/j.celrep.2018.12.107
https://doi.org/10.1016/j.celrep.2018.12.107
https://doi.org/10.1016/j.molcel.2008.10.014
https://doi.org/10.3233/JAD-160836
https://doi.org/10.3233/JAD-160836
https://doi.org/10.1002/glia.22837
https://doi.org/10.1002/ajmg.1320370706
https://doi.org/10.1038/3305
https://doi.org/10.1016/j.cell.2014.01.044
https://doi.org/10.17265/2328-2150/2019.08.001
https://doi.org/10.1111/j.1474-9726.2012.00826.x
https://doi.org/10.1006/nbdi.1999.0236
https://doi.org/10.1006/nbdi.1999.0236
https://doi.org/10.1016/0006-291x(84)91209-9
https://doi.org/10.1111/j.1471-4159.2011.07575.x
https://doi.org/10.1091/mbc.E09-10-0850
https://doi.org/10.1371/journal.pone.0060718
https://doi.org/10.1371/journal.pone.0060718
https://doi.org/10.1172/JCI20098
https://doi.org/10.1111/febs.14004
https://doi.org/10.1016/j.jalz.2014.10.007
https://doi.org/10.1016/j.jalz.2014.10.007
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mosaic Aneuploidy in Neurological DisordersPotter et al.

8

Hithersay, R., Startin, C. M., Hamburg, S., Mok, K. Y., Hardy, J., Fisher, E. M. C., et 
al. (2019). Association of Dementia With Mortality Among Adults With Down 
Syndrome Older Than 35 Years. JAMA Neurol. 76 (2), 152–160. doi: 10.1001/
jamaneurol.2018.3616

Honda, T., Nihonmatsu, N., Yasutake, K., Ohtake, A., Sato, K., Tanaka, S., et al. 
(2000). Familial Alzheimer’s disease-associated mutations block translocation 
of full-length presenilin 1 to the nuclear envelope. Neurosci. Res. 37 (2), 101–
111. doi: 10.1016/s0168-0102(00)00106-1

Hou, Y. Y., Toh, M. T., and Wang, X. (2012). NBS1 deficiency promotes genome 
instability by affecting DNA damage signaling pathway and impairing telomere 
integrity. Cell Biochem. Funct. 30 (3), 233–242. doi: 10.1002/cbf.1840

Ibrahim, S., Hu, W., Wang, X., Gao, X., He, C., and Chen, J. (2016). Traumatic 
Brain Injury Causes Aberrant Migration of Adult-Born Neurons in the 
Hippocampus. Sci. Rep. 6, 21793. doi: 10.1038/srep21793

Iourov, I. Y., Vorsanova, S. G., Liehr, T., Kolotii, A. D., and Yurov, Y. B. (2009a). 
Increased chromosome instability dramatically disrupts neural genome 
integrity and mediates cerebellar degeneration in the ataxia-telangiectasia 
brain. Hum. Mol. Genet. 18 (14), 2656–2669. doi: 10.1093/hmg/ddp207

Iourov, I. Y., Vorsanova, S. G., Liehr, T., and Yurov, Y. B. (2009b). Aneuploidy in 
the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential 
expression and pathological meaning. Neurobiol. Dis. 34 (2), 212–220. doi: 
10.1016/j.nbd.2009.01.003

Iourov, I. Y., Vorsanova, S. G., and Yurov, Y. B. (2007). Ataxia telangiectasia 
paradox can be explained by chromosome instability at the subtissue level. 
Med. Hypotheses 68 (3), 716. doi: 10.1016/j.mehy.2006.09.021

Iourov, I. Y., Vorsanova, S. G., and Yurov, Y. B. (2011). Genomic landscape of 
the Alzheimer’s disease brain: chromosome instability–aneuploidy, but not 
tetraploidy–mediates neurodegeneration. Neurodegener. Dis. 8 (1-2), 35–37. 
doi: 10.1159/000315398

Iourov, I. Y., Vorsanova, S. G., and Yurov, Y. B. (2013). Somatic cell genomics 
of brain disorders: a new opportunity to clarify genetic-environmental 
interactions. Cytogenet Genome Res. 139 (3), 181–188. doi: 10.1159/000347053

Iourov, I. Y., Yurov, Y. B., and Vorsanova, S. G. (2008). Mosaic X chromosome 
aneuploidy can help to explain the male-to-female ratio in autism. Med. 
Hypotheses 70 (2), 456. doi: 10.1016/j.mehy.2007.05.037

Jeong, S. J., Kim, H. S., Chang, K. A., Geum, D. H., Park, C. H., Seo, J. H., et al. 
(2000). Subcellular localization of presenilins during mouse preimplantation 
development. FASEB J. 14 (14), 2171–2176. doi: 10.1096/fj.99-1068com

Judge, M., Hornbeck, L., Potter, H., and Padmanabhan, J. (2011). Mitosis-specific 
phosphorylation of amyloid precursor protein at threonine 668 leads to its 
altered processing and association with centrosomes. Mol. Neurodegener 6, 80. 
doi: 10.1186/1750-1326-6-80

Kabeche, L., Nguyen, H. D., Buisson, R., and Zou, L. (2018). A mitosis-specific 
and R loop-driven ATR pathway promotes faithful chromosome segregation. 
Science 359 (6371), 108–114. doi: 10.1126/science.aan6490

Kai, Y., Wang, C. C., Kishigami, S., Kazuki, Y., Abe, S., Takiguchi, M., et al. (2009). 
Enhanced apoptosis during early neuronal differentiation in mouse ES cells 
with autosomal imbalance. Cell Res. 19 (2), 247–258. doi: 10.1038/cr.2008.305

Kimura, N., Nakamura, S. I., Honda, T., Takashima, A., Nakayama, H., et al., 
(2001). Age-related changes in the localization of presenilin-1 in cynomolgus 
monkey brain. Brain Res. 922 (1), 30–41. doi: 10.1016/s0006-8993(01)03146-8

Kingsbury, M. A., Yung, Y. C., Peterson, S. E., Westra, J. W., and Chun, J. (2006). 
Aneuploidy in the normal and diseased brain. Cell Mol. Life Sci. 63 (22), 2626–
2641. doi: 10.1007/s00018-006-6169-5

Knouse, K. A., Wu, J., Whittaker, C. A., and Amon, A. (2014). Single cell 
sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. 
Natl. Acad. Sci. U.S.A. 111 (37), 13409–13414. doi: 10.1073/pnas.1415287111

Lang, P. Y., Nanjangud, G. J., Sokolsky-Papkov, M., Shaw, C., Hwang, D., Parker, J. S., 
et al. (2016). ATR maintains chromosomal integrity during postnatal cerebellar 
neurogenesis and is required for medulloblastoma formation. Development 143 
(21), 4038–4052. doi: 10.1242/dev.139022

Li, J., Xu, M., Zhou, H., Ma, J., and Potter, H. (1997). Alzheimer presenilins in the 
nuclear membrane, interphase kinetochores, and centrosomes suggest a role in 
chromosome segregation. Cell 90 (5), 917–927. doi: 10.1016/s0092-8674(00)80356-6

Lopes, J. P., Blurton-Jones, M., Yamasaki, T. R., Agostinho, P., and LaFerla, F. M. 
(2009). Activation of cell cycle proteins in transgenic mice in response to 
neuronal loss but not amyloid-beta and tau pathology. J. Alzheimers Dis. 16 (3), 
541–549. doi: 10.3233/JAD-2009-0993

Magnusson, J. P., Goritz, C., Tatarishvili, J., Dias, D. O., Smith, E. M., Lindvall, O., 
et al. (2014). A latent neurogenic program in astrocytes regulated by 
Notch signaling in the mouse. Science 346 (6206), 237–241. doi: 10.1126/
science.346.6206.237

Majd, S., Zarifkar, A., Rastegar, K., and Takhshid, M. A. (2008). Different fibrillar Abeta 
1-42 concentrations induce adult hippocampal neurons to reenter various phases 
of the cell cycle. Brain Res. 1218, 224–229. doi: 10.1016/j.brainres.2008.04.050

Malmanche, N., Dourlen, P., Gistelinck, M., Demiautte, F., Link, N., Dupont, C., et al. 
(2017). Developmental Expression of 4-Repeat-Tau Induces Neuronal Aneuploidy 
in Drosophila Tauopathy Models. Sci. Rep. 7, 40764. doi: 10.1038/srep40764

McConnell, M. J., Kaushal, D., Yang, A. H., Kingsbury, M. A., Rehen, S. K., 
Treuner, K., et al. (2004). Failed clearance of aneuploid embryonic neural 
progenitor cells leads to excess aneuploidy in the Atm-deficient but not the 
Trp53-deficient adult cerebral cortex. J. Neurosci. 24 (37), 8090–8096. doi: 
10.1523/JNEUROSCI.2263-04.2004

McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F., and Smith, M. A. (1997). 
Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s 
disease. Am. J. Pathol. 150 (6), 1933–1939.

Migliore, L., Boni, G., Bernardini, R., Trippi, F., Colognato, R., Fontana, I., et al. 
(2006). Susceptibility to chromosome malsegregation in lymphocytes of 
women who had a Down syndrome child in young age. Neurobiol Aging 27 (5), 
710–716. doi: 10.1016/j.neurobiolaging.2005.03.025

Migliore, L., Botto, N., Scarpato, R., Petrozzi, L., Cipriani, G., and Bonuccelli,  U. 
(1999). Preferential occurrence of chromosome 21 malsegregation in 
peripheral blood lymphocytes of Alzheimer disease patients. Cytogenet Cell 
Genet. 87 (1-2), 41–46. doi: 15389

Migliore, L., Testa, A., Scarpato, R., Pavese, N., Petrozzi, L., and Bonuccelli, U. 
(1997). Spontaneous and induced aneuploidy in peripheral blood lymphocytes 
of patients with Alzheimer’s disease. Hum. Genet. 101 (3), 299–305. doi: 
10.1007/s004390050632

Mkrtchyan, H., Gross, M., Hinreiner, S., Polytiko, A., Manvelyan, M., 
Mrasek,   K., et al. (2010). The human genome puzzle - the role of copy 
number variation in somatic mosaicism. Curr. Genomics 11 (6), 426–431. doi: 
10.2174/138920210793176047

Mokrani-Benhelli, H., Gaillard, L., Biasutto, P., Le Guen, T., Touzot, F., Vasquez, N., 
et al. (2013). Primary microcephaly, impaired DNA replication, and genomic 
instability caused by compound heterozygous ATR mutations. Hum Mutat 34 
(2), 374–384. doi: 10.1002/humu.22245

Mosch, B., Morawski, M., Mittag, A., Lenz, D., Tarnok, A., and Arendt, T. 
(2007). Aneuploidy and DNA replication in the normal human brain 
and Alzheimer’s disease. J. Neurosci. 27 (26), 6859–6867. doi: 10.1523/
JNEUROSCI.0379-07.2007

Mu, Y., and Gage, F. H. (2011). Adult hippocampal neurogenesis and its role in 
Alzheimer’s disease. Mol. Neurodegener 6, 85. doi: 10.1186/1750-1326-6-85

Murga, M., Bunting, S., Montana, M. F., Soria, R., Mulero, F., Canamero, M., et 
al. (2009). A mouse model of ATR-Seckel shows embryonic replicative stress 
and accelerated aging. Nat. Genet. 41 (8), 891–898. doi: 10.1038/ng.420

Nalepa, G., Enzor, R., Sun, Z., Marchal, C., Park, S. J., Yang, Y., et al. (2013). 
Fanconi anemia signaling network regulates the spindle assembly checkpoint. 
J. Clin. Invest. 123 (9), 3839–3847. doi: 10.1172/JCI67364

Nieznanska, H., Dudek, E., Zajkowski, T., Szczesna, E., Kasprzak, A. A., and 
Nieznanski, K. (2012). Prion protein impairs kinesin-driven transport. Biochem. 
Biophys Res. Commun. 425 (4), 788–793. doi: 10.1016/j.bbrc.2012.07.153

Nizzari, M., Venezia, V., Bianchini, P., Caorsi, V., Diaspro, A., Repetto, E., et al. 
(2007a). Amyloid precursor protein and Presenilin 1 interaction studied by 
FRET in human H4 cells. Ann N Y Acad. Sci. 1096, 249–257. doi: 10.1196/
annals.1397.091

Nizzari, M., Venezia, V., Repetto, E., Caorsi, V., Magrassi, R., Gagliani, M. C., et al. 
(2007b). Amyloid precursor protein and Presenilin1 interact with the adaptor 
GRB2 and modulate ERK 1,2 signaling. J. Biol. Chem. 282 (18), 13833–13844. 
doi: 10.1074/jbc.M610146200

Ohashi, A., Ohori, M., Iwai, K., Nakayama, Y., Nambu, T., Morishita, D., 
et  al. (2015). Aneuploidy generates proteotoxic stress and DNA damage 
concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. 
Nat. Commun. 6, 7668. doi: 10.1038/ncomms8668

Oromendia, A. B., and Amon, A. (2014). Aneuploidy: implications for protein 
homeostasis and disease. Dis. Model Mech. 7 (1), 15–20. doi: 10.1242/
dmm.013391

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1092

https://doi.org/10.1001/jamaneurol.2018.3616
https://doi.org/10.1001/jamaneurol.2018.3616
https://doi.org/10.1016/s0168-0102(00)00106-1
https://doi.org/10.1002/cbf.1840
https://doi.org/10.1038/srep21793
https://doi.org/10.1093/hmg/ddp207
https://doi.org/10.1016/j.nbd.2009.01.003
https://doi.org/10.1016/j.mehy.2006.09.021
https://doi.org/10.1159/000315398
https://doi.org/10.1159/000347053
https://doi.org/10.1016/j.mehy.2007.05.037
https://doi.org/10.1096/fj.99-1068com
https://doi.org/10.1186/1750-1326-6-80
https://doi.org/10.1126/science.aan6490
https://doi.org/10.1038/cr.2008.305
https://doi.org/10.1016/s0006-8993(01)03146-8
https://doi.org/10.1007/s00018-006-6169-5
https://doi.org/10.1073/pnas.1415287111
https://doi.org/10.1242/dev.139022
https://doi.org/10.1016/s0092-8674(00)80356-6
https://doi.org/10.3233/JAD-2009-0993
https://doi.org/10.1126/science.346.6206.237
https://doi.org/10.1126/science.346.6206.237
https://doi.org/10.1016/j.brainres.2008.04.050
https://doi.org/10.1038/srep40764
https://doi.org/10.1523/JNEUROSCI.2263-04.2004
https://doi.org/10.1016/j.neurobiolaging.2005.03.025
https://doi.org/15389
https://doi.org/10.1007/s004390050632
https://doi.org/10.2174/138920210793176047
https://doi.org/10.1002/humu.22245
https://doi.org/10.1523/JNEUROSCI.0379-07.2007
https://doi.org/10.1523/JNEUROSCI.0379-07.2007
https://doi.org/10.1186/1750-1326-6-85
https://doi.org/10.1038/ng.420
https://doi.org/10.1172/JCI67364
https://doi.org/10.1016/j.bbrc.2012.07.153
https://doi.org/10.1196/annals.1397.091
https://doi.org/10.1196/annals.1397.091
https://doi.org/10.1074/jbc.M610146200
https://doi.org/10.1038/ncomms8668
https://doi.org/10.1242/dmm.013391
https://doi.org/10.1242/dmm.013391
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mosaic Aneuploidy in Neurological DisordersPotter et al.

9

Oromendia, A. B., Dodgson, S. E., and Amon, A. (2012). Aneuploidy causes 
proteotoxic stress in yeast. Genes Dev. 26 (24), 2696–2708. doi: 10.1101/
gad.207407.112

Petersen, M. B., Karadima, G., Samaritaki, M., Avramopoulos, D., Vassilopoulos, D., 
et al. (2000). Association between presenilin-1 polymorphism and maternal 
meiosis II errors in Down syndrome. Am. J. Med. Genet. 93 (5), 366–372. doi: 
10.1002/1096-8628(20000828)93:5<366::aid-ajmg5>3.0.co;2-g

Podvin, S., Reardon, H. T., Yin, K., Mosier, C., and Hook, V. (2019). Multiple 
clinical features of Huntington’s disease correlate with mutant HTT gene 
CAG repeat lengths and neurodegeneration. J. Neurol. 266 (3), 551–564. doi: 
10.1007/s00415-018-8940-6

Potter, H. (1991). Review and hypothesis: Alzheimer disease and Down syndrome–
chromosome 21 nondisjunction may underlie both disorders. Am. J. Hum. 
Genet. 48 (6), 1192–1200.

Potter, H., Granic, A., and Caneus, J. (2016). Role of Trisomy 21 Mosaicism in 
Sporadic and Familial Alzheimer’s Disease. Curr. Alzheimer Res. 13 (1), 7–17. 
doi: 10.2174/156720501301151207100616

Potter, H., Ma, J., Das, S., Geller, L. N., Benjamin, M., Kayyali, U. S., et al., (1995). 
“Beyond β-protein: New steps in the pathogenic pathway to Alzheimer’s 
disease,” in Research Advances in Alzheimer’s Disease and Related Disorders. 
Eds. Iqbal, K., Mortimer, J. A., Winblad, B., and Wisniewski, H. M. (New York: 
John Wiley and Sons Ltd.), 643–654.

Potter, H., and Wisniewski, T. (2012). Apolipoprotein e: essential catalyst of 
the Alzheimer amyloid cascade. Int. J. Alzheimers Dis. 2012, 489428. doi: 
10.1155/2012/489428

Prasher, V. P., Farrer, M. J., Kessling, A. M., Fisher, E. M., West, R. J., Barber, P. C., 
et al. (1998). Molecular mapping of Alzheimer-type dementia in Down’s 
syndrome. Ann Neurol 43 (3), 380–383. doi: 10.1002/ana.410430316

Quek, H., Luff, J., Cheung, K., Kozlov, S., Gatei, M., Lee, C. S., et al. (2017). A rat 
model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. 
Hum. Mol. Genet. 26 (1), 109–123. doi: 10.1093/hmg/ddw371

Rademakers, R., Neumann, M., and Mackenzie, I. R. (2012). Advances in 
understanding the molecular basis of frontotemporal dementia. Nat. Rev. 
Neurol. 8 (8), 423–434. doi: 10.1038/nrneurol.2012.117

Rajendran, R. S., Wellbrock, U. M., and Zupanc, G. K. (2008). Apoptotic cell 
death, long-term persistence, and neuronal differentiation of aneuploid cells 
generated in the adult brain of teleost fish. Dev Neurobiol 68 (10), 1257–1268. 
doi: 10.1002/dneu.20656

Rao, C. V., Farooqui, M., Asch, A. S., and Yamada, H. Y. (2018a). Critical role 
of mitosis in spontaneous late-onset Alzheimer’s disease; from a Shugoshin 
1 cohesinopathy mouse model. Cell Cycle 17 (19-20), 2321–2334. doi: 
10.1080/15384101.2018.1515554

Rao, C. V., Farooqui, M., Zhang, Y., Asch, A. S., and Yamada, H. Y. (2018b). Spontaneous 
development of Alzheimer’s disease-associated brain pathology in a Shugoshin-1 
mouse cohesinopathy model. Aging Cell 17 (4), e12797. doi: 10.1111/acel.12797

Rodriguez-Manotas, M., Amorin-Diaz, M., Canizares-Hernandez, F., Ruiz-
Espejo, F., Martinez-Vidal, S., Gonzalez-Sarmiento, R., et al. (2007). Association 
study and meta-analysis of Alzheimer’s disease risk and presenilin-1 intronic 
polymorphism. Brain Res. 1170, 119–128. doi: 10.1016/j.brainres.2007.07.032

Rohrback, S., Siddoway, B., Liu, C. S., and Chun, J. (2018). Genomic mosaicism 
in the developing and adult brain. Dev. Neurobiol. 78 (11), 1026–1048. doi: 
10.1002/dneu.22626

Rossi, G., Conconi, D., Panzeri, E., Paoletta, L., Piccoli, E., Ferretti, M. G., et al. 
(2014). Mutations in MAPT give rise to aneuploidy in animal models of 
tauopathy. Neurogenetics 15 (1), 31–40. doi: 10.1007/s10048-013-0380-y

Rossi, G., Conconi, D., Panzeri, E., Redaelli, S., Piccoli, E., Paoletta, L., et al. (2013). 
Mutations in MAPT gene cause chromosome instability and introduce copy 
number variations widely in the genome. J. Alzheimers Dis. 33 (4), 969–982. 
doi: 10.3233/JAD-2012-121633

Rossi, G., Dalpra, L., Crosti, F., Lissoni, S., Sciacca, F. L., et al., (2008). A new 
function of microtubule-associated protein tau: involvement in chromosome 
stability. Cell Cycle 7 (12), 1788–1794. doi: 10.4161/cc.7.12.6012

Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerriere, A., 
Vital, A., et al. (2006). APP locus duplication causes autosomal dominant early-
onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38 (1), 
24–26. doi: 10.1038/ng1718

Sakamoto, M., Ieki, N., Miyoshi, G., Mochimaru, D., Miyachi, H., Imura, T., 
et al. (2014). Continuous postnatal neurogenesis contributes to formation of 

the olfactory bulb neural circuits and flexible olfactory associative learning. J. 
Neurosci. 34 (17), 5788–5799. doi: 10.1523/JNEUROSCI.0674-14.2014

Saldivar, J. C., and Cimprich, K. A. (2018). A new mitotic activity comes into focus. 
Science 359 (6371), 30–31. doi: 10.1126/science.aar4799

Sathasivam, K., Woodman, B., Mahal, A., Bertaux, F., Wanker, E. E., Shima, D. T., 
et al. (2001). Centrosome disorganization in fibroblast cultures derived from 
R6/2 Huntington’s disease (HD) transgenic mice and HD patients. Hum. Mol. 
Genet. 10 (21), 2425–2435. doi: 10.1093/hmg/10.21.2425

Schupf, N., Kapell, D., Lee, J. H., Ottman, R., and Mayeux, R. (1994). Increased risk 
of Alzheimer’s disease in mothers of adults with Down’s syndrome. Lancet 344 
(8919), 353–356. doi: 10.1016/s0140-6736(94)91398-6

Seward, M. E., Swanson, E., Norambuena, A., Reimann, A., Cochran, J. N., Li, R., 
et al. (2013). Amyloid-beta signals through tau to drive ectopic neuronal cell 
cycle re-entry in Alzheimer’s disease. J. Cell Sci. 126 (Pt 5), 1278–1286. doi: 
10.1242/jcs.1125880

Shen, K. C., Heng, H., Wang, Y., Lu, S., Liu, G., Deng, C. X., et al. (2005). ATM and 
p21 cooperate to suppress aneuploidy and subsequent tumor development. 
Cancer Res. 65 (19), 8747–8753. doi: 10.1158/0008-5472.CAN-05-1471

Shimada, M., Kobayashi, J., Hirayama, R., and Komatsu, K. (2010). Differential 
role of repair proteins, BRCA1/NBS1 and Ku70/DNA-PKcs, in radiation-
induced centrosome overduplication. Cancer Sci. 101 (12), 2531–2537. doi: 
10.1111/j.1349-7006.2010.01702.x

Shimada, M., Sagae, R., Kobayashi, J., Habu, T., and Komatsu, K. (2009). 
Inactivation of the Nijmegen breakage syndrome gene leads to excess 
centrosome duplication via the ATR/BRCA1 pathway. Cancer Res. 69 (5), 
1768–1775. doi: 10.1158/0008-5472.CAN-08-3016

Sleegers, K., Brouwers, N., Gijselinck, I., Theuns, J., Goossens, D., Wauters, J., et al. 
(2006). APP duplication is sufficient to cause early onset Alzheimer’s dementia 
with cerebral amyloid angiopathy. Brain 129 (Pt 11), 2977–2983. doi: 10.1093/
brain/awl203

Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., 
et al. (2018). Human hippocampal neurogenesis drops sharply in children 
to undetectable levels in adults. Nature 555 (7696), 377–381. doi: 10.1038/
nature25975

Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., 
et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell 153 
(6), 1219–1227. doi: 10.1016/j.cell.2013.05.002

Spring, K., Ahangari, F., Scott, S. P., Waring, P., Purdie, D. M., Chen, P. C., et al. 
(2002). Mice heterozygous for mutation in Atm, the gene involved in ataxia-
telangiectasia, have heightened susceptibility to cancer. Nat. Genet. 32 (1), 
185–190. doi: 10.1038/ng958

Stiff, T., Casar Tena, T., O’Driscoll, M., Jeggo, P. A., and Philipp, M. (2016). ATR 
promotes cilia signalling: links to developmental impacts. Hum Mol. Genet. 25 
(8), 1574–1587. doi: 10.1093/hmg/ddw034

Tatzelt, J., Maeda, N., Pekny, M., Yang, S. L., Betsholtz, C., Eliasson, C., et al. (1996). 
Scrapie in mice deficient in apolipoprotein E or glial fibrillary acidic protein. 
Neurology 47 (2), 449–453. doi: 10.1212/wnl.47.2.449

Thomas, P., and Fenech, M. (2008). Chromosome 17 and 21 aneuploidy in buccal 
cells is increased with ageing and in Alzheimer’s disease. Mutagenesis 23 (1), 
57–65. doi: 10.1093/mutage/gem044

Trippi, F., Botto, N., Scarpato, R., Petrozzi, L., Bonuccelli, U., Latorraca, S., et al. 
(2001). Spontaneous and induced chromosome damage in somatic cells of 
sporadic and familial Alzheimer’s disease patients. Mutagenesis 16 (4), 323–
327. doi: 10.1093/mutage/16.4.323

Vessey, C. J., Norbury, C. J., and Hickson, I. D. (1999). Genetic disorders associated 
with cancer predisposition and genomic instability. Prog. Nucleic Acid Res. Mol. 
Biol. 63, 189–221.

Vincent, I., Jicha, G., Rosado, M., and Dickson, D. W. (1997). Aberrant expression 
of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease 
brain. J. Neurosci. 17 (10), 3588–3598. doi: 10.1083/jcb.132.3.413

Vincent, I., Rosado, M., and Davies, P. (1996). Mitotic mechanisms in Alzheimer’s 
disease? J. Cell Biol. 132 (3), 413–425. doi: 10.1083/jcb.132.3.413

Wisniewski, K. E., Wisniewski, H. M., and Wen, G. Y. (1985). Occurrence 
of neuropathological changes and dementia of Alzheimer’s disease 
in Down’s  syndrome. Ann. Neurol. 17 (3), 278–282. doi: 10.1002/
ana.410170310

Wright, J. A., Keegan, K. S., Herendeen, D. R., Bentley, N. J., Carr, A. M., et al., 
(1998). Protein kinase mutants of human ATR increase sensitivity to UV and 

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1092

https://doi.org/10.1101/gad.207407.112
https://doi.org/10.1101/gad.207407.112
https://doi.org/10.1002/1096-8628(20000828)93:5<366::aid-ajmg5>3.0.co;2-g
https://doi.org/10.1007/s00415-018-8940-6
https://doi.org/10.2174/156720501301151207100616
https://doi.org/10.1155/2012/489428
https://doi.org/10.1002/ana.410430316
https://doi.org/10.1093/hmg/ddw371
https://doi.org/10.1038/nrneurol.2012.117
https://doi.org/10.1002/dneu.20656
https://doi.org/10.1080/15384101.2018.1515554
https://doi.org/10.1111/acel.12797
https://doi.org/10.1016/j.brainres.2007.07.032
https://doi.org/10.1002/dneu.22626
https://doi.org/10.1007/s10048-013-0380-y
https://doi.org/10.3233/JAD-2012-121633
https://doi.org/10.4161/cc.7.12.6012
https://doi.org/10.1038/ng1718
https://doi.org/10.1523/JNEUROSCI.0674-14.2014
https://doi.org/10.1126/science.aar4799
https://doi.org/10.1093/hmg/10.21.2425
https://doi.org/10.1016/s0140-6736(94)91398-6
https://doi.org/10.1242/jcs.1125880
https://doi.org/10.1158/0008-5472.CAN-05-1471
https://doi.org/10.1111/j.1349-7006.2010.01702.x
https://doi.org/10.1158/0008-5472.CAN-08-3016
https://doi.org/10.1093/brain/awl203
https://doi.org/10.1093/brain/awl203
https://doi.org/10.1038/nature25975
https://doi.org/10.1038/nature25975
https://doi.org/10.1016/j.cell.2013.05.002
https://doi.org/10.1038/ng958
https://doi.org/10.1093/hmg/ddw034
https://doi.org/10.1212/wnl.47.2.449
https://doi.org/10.1093/mutage/gem044
https://doi.org/10.1093/mutage/16.4.323
https://doi.org/10.1083/jcb.132.3.413
https://doi.org/10.1083/jcb.132.3.413
https://doi.org/10.1002/ana.410170310
https://doi.org/10.1002/ana.410170310
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mosaic Aneuploidy in Neurological DisordersPotter et al.

10

ionizing radiation and abrogate cell cycle checkpoint control. Proc. Natl. Acad. 
Sci. U.S.A. 95 (13), 7445–7450. doi: 10.1073/pnas.95.13.7445

Yamada, H. Y., Yao, Y., Wang, X., Zhang, Y., Huang, Y., Dai, W., et al. (2012). 
Haploinsufficiency of SGO1 results in deregulated centrosome dynamics, 
enhanced chromosomal instability and colon tumorigenesis. Cell Cycle 11 (3), 
479–488. doi: 10.4161/cc.11.3.18994

Yang, Y., Geldmacher, D. S., and Herrup, K. (2001). DNA replication precedes 
neuronal cell death in Alzheimer’s disease. J. Neurosci. 21 (8), 2661–2668. doi: 
10.1523/JNEUROSCI.21-08-02661.2001

Yang, Y., Shepherd, C., and Halliday, G. (2015). Aneuploidy in Lewy body diseases. 
Neurobiol Aging 36 (3), 1253–1260. doi: 10.1016/j.neurobiolaging.2014.12.016

Yazinski, S. A., and Zou, L. (2016). Functions, Regulation, and Therapeutic 
Implications of the ATR Checkpoint Pathway. Annu. Rev. Genet. 50, 155–173. 
doi: 10.1146/annurev-genet-121415-121658

Young-Pearse, T. L., Suth, S., Luth, E. S., Sawa, A., and Selkoe, D. J. (2010). 
Biochemical and functional interaction of disrupted-in-schizophrenia 1 and 
amyloid precursor protein regulates neuronal migration during mammalian 
cortical development. J. Neurosci. 30 (31), 10431–10440. doi: 10.1523/
JNEUROSCI.1445-10.2010

Yurov, Y. B., Vorsanova, S. G., and Iourov, I. Y. (2009). GIN’n’CIN hypothesis of 
brain aging: deciphering the role of somatic genetic instabilities and neural 
aneuploidy during ontogeny. Mol. Cytogenet 2, 23. doi: 10.1186/1755-8166-2-23

Yurov, Y. B., Vorsanova, S. G., and Iourov, I. Y. (2010). Ontogenetic 
variation of the human genome. Curr. Genomics 11 (6), 420–425. doi: 
10.2174/138920210793175958

Yurov, Y. B., Vorsanova, S. G., and Iourov, I. Y. (2011). The DNA replication stress 
hypothesis of Alzheimer’s disease. ScientificWorldJournal 11, 2602–2612. doi: 
10.1100/2011/625690

Yurov, Y. B., Vorsanova, S. G., Iourov, I. Y., Demidova, I. A., Beresheva, A. K., 
Kravetz, V. S., et al. (2007). Unexplained autism is frequently associated with 
low-level mosaic aneuploidy. J. Med. Genet. 44 (8), 521–525. doi: 10.1136/
jmg.2007.049312

Zhang, S., Hemmerich, P., and Grosse, F. (2007). Centrosomal localization of DNA 
damage checkpoint proteins. J. Cell Biochem. 101 (2), 451–465. doi: 10.1002/
jcb.21195

Zhao, C., Deng, W., and Gage, F. H. (2008). Mechanisms and functional 
implications of adult neurogenesis. Cell 132 (4), 645–660. doi: 10.1016/j.
cell.2008.01.033

Zheng, W., ZhuGe, Q., Zhong, M., Chen, G., Shao, B., Wang, H., et al. (2013). 
Neurogenesis in adult human brain after traumatic brain injury. J. Neurotrauma 
30 (22), 1872–1880. doi: 10.1089/neu.2010.1579

Zhou, L., Del Villar, K., Dong, Z., and Miller, C. A. (2004). Neurogenesis response 
to hypoxia-induced cell death: map kinase signal transduction mechanisms. 
Brain Res. 1021 (1), 8–19. doi: 10.1016/j.brainres.2004.05.115

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Potter, Chial, Caneus, Elos, Elder, Borysov and Granic. This is an 
open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply with 
these terms.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1092

https://doi.org/10.1073/pnas.95.13.7445
https://doi.org/10.4161/cc.11.3.18994
https://doi.org/10.1523/JNEUROSCI.21-08-02661.2001
https://doi.org/10.1016/j.neurobiolaging.2014.12.016
https://doi.org/10.1146/annurev-genet-121415-121658
https://doi.org/10.1523/JNEUROSCI.1445-10.2010
https://doi.org/10.1523/JNEUROSCI.1445-10.2010
https://doi.org/10.1186/1755-8166-2-23
https://doi.org/10.2174/138920210793175958
https://doi.org/10.1100/2011/625690
https://doi.org/10.1136/jmg.2007.049312
https://doi.org/10.1136/jmg.2007.049312
https://doi.org/10.1002/jcb.21195
https://doi.org/10.1002/jcb.21195
https://doi.org/10.1016/j.cell.2008.01.033
https://doi.org/10.1016/j.cell.2008.01.033
https://doi.org/10.1089/neu.2010.1579
https://doi.org/10.1016/j.brainres.2004.05.115
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Chromosome Instability and Mosaic Aneuploidy in Neurodegenerative and Neurodevelopmental Disorders

	﻿Introduction

	﻿Mosaic Aneuploidy in Alzheimer’s Disease

	﻿Mosaic Aneuploidy in Frontotemporal Lobar Degeneration

	﻿Mosaic Aneuploidy in Neurodevelopmental Disorders

	﻿Mechanisms by Which Neuronal Aneuploidy and Apoptosis Can Arise

	﻿Linking Development and Aging: A Role for Catalysts in Age-Associated Proteinopathies

	﻿Constitutional Aneuploidy in the Normal Brain

	﻿Summary


	﻿Data Availability Statement

	﻿Author Contributions

	﻿Acknowledgments

	References



