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Accumulating evidence indicates that the microbes colonizing human bodies have crucial 
effects on human health and the discovery of disease-related microbes will promote the 
discovery of biomarkers and drugs for the prevention, diagnosis, treatment, and prognosis 
of diseases. However clinical experiments of disease-microbe associations are time-
consuming, laborious and expensive, and there are few methods for predicting potential 
microbe-disease association. Therefore, developing effective computational models 
utilizing the accumulated public data of clinically validated microbe-disease associations 
to identify novel disease-microbe associations is of practical importance. We propose 
a novel method based on the KATZ model and Bipartite Network Recommendation 
Algorithm (KATZBNRA) to discover potential associations between microbes and 
diseases. We calculate the Gaussian interaction profile kernel similarity of diseases 
and microbes based on validated disease-microbe associations. Then, we construct a 
bipartite graph and execute a bipartite network recommendation algorithm. Finally, we 
integrate the disease similarity, microbe similarity and bipartite network recommendation 
score to obtain the final score, which is used to infer whether there are some novel 
disease-microbe interactions. To evaluate the predictive power of KATZBNRA, we tested 
it with the walk length 2 using global leave-one-out cross validation (LOOV), two-fold and 
five-fold cross validations, with AUCs of 0.9098, 0.8463 and 0.8969, respectively. The 
test results also show that KATZBNRA is more accurate than two recent similar methods 
KATZHMDA and BNPMDA.

Keywords: microbe, disease, KATZ model, bipartite network recommendation, Gaussian interaction profile  
kernel similarity

INTRODUCTION
A microbe is a microscopic organism, including bacteria, eukaryotes, archaea, and viruses (Wu 
et al., 2018). Various types of microbes live on or in different parts of a human body such as the skin, 
mouth, hair, stomach, and gastrointestinal tract. An adult human body contains a large number of 
bacterial cells, which is estimated to reach 1014 and much more than the total number of human 
cells, with more than 5 million microbe genes, outnumbering the human genes by more than 100 
fold (Sommer and Backhed, 2013). Most microbes are harmless and some are beneficial to humans 
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(Grice and Segre, 2011). Recently, accumulated experimental 
evidence shows that microbes have an important impact on 
human health, nutrient absorption, immune response, cancer 
control, and the prevention of pathogen colonization (Wu 
et  al., 2018). For example, the gut microbiota could significantly 
contribute nutrition absorption by producing indispensable 
vitamins and decomposing indigestible polysaccharides, and it 
also has an important impact on the mucus layer, the balance 
of antimicrobial peptides, and immunoglobulin A, and the 
differentiation and activation of some lymphocyte populations 
(Sommer and Backhed, 2013). Therefore, the gut microbiota 
is thought to be an extra ‘organ’ of humans (Gill et al., 2006). 
But some microbes may contribute to disease, such as psoriasis 
and inflammatory bowel disease (IBD). There have been reports 
that psoriasis occurs after strep throat and could worsen 
due to the colonization of Candida albicans, Malassezia, and 
Staphylococcus aureus on the skin or in the gut (Fry and Baker, 
2007). Aroniadis et. al. (Aroniadis and Brandt, 2013) indicated 
that the biodiversity of bacteria, such as Bacteroidetes and 
Firmicutes, colonizing in individuals affected by IBD has been 
found to be reduced by 30 to 50%. Wang et. al. (Wang and Jia, 
2016) showed that the gut microbiota’s dysbiosis might be a key 
environmental risk factor of many human diseases, though it’s 
difficult to reveal the true causality.

To explore the relationship between microbes and their 
human hosts, scientists from many countries collaborated and 
launched the Human Microbiome Project (HMP) (Human 
Microbiome Project, 2012a). Recently, high-throughput 
sequencing techniques and corresponding software packages 
have been developed rapidly, and a growing number of research 
analyses have been carried out on the microbiome, such 
as whole-genome shotgun (WGS), 16S, and the taxonomic 
profiling (Human Microbiome Project, 2012b), and have 
demonstrated significant associations between microbes and 
complex human diseases such as rheumatoid arthritis, colorectal 
cancer, obesity, and type 2 diabetes (Wang and Jia, 2016). 
However, these studies involve time-consuming and expensive 
biological experiments. Therefore, it is necessary to utilize the 
known information to predict the unknown microbe-disease 
interactions. Identifying microbe-disease interactions could 
promote discovering biomarkers and drugs for the prevention, 
diagnosis, treatment, and prognosis of diseases. Now, more 
and more computer algorithms (Chen and Zhang, 2013; Yang 
et al., 2014; Zhang et al., 2017; Zeng et al., 2018; Zhang et al., 
2018a; Zhang et al., 2018b; Zhang et al., 2018c; Zhang et al., 
2018d; Zeng et al., 2019) have been proposed for interaction 
prediction of miRNA-disease, lncRNA-disease, and drug-drug, 
and it is feasible to apply these methods to the microbe-disease 
association prediction field.

Recently, Ma et al. (2017) collected microbe-disease 
association data from previous published studies and constructed 
the Human Microbe-Disease Association Database (HMDAD). 
Based on the data from HMDAD, some microbe-disease 
association prediction methods have been proposed. Chen et al. 
(2017) used a KATZ measure to predict human microbe-disease 
association, and proposed an algorithm named KATZHMDA. 
KATZHMDA can predict new microbe-disease associations at a 

large scale. Bao et al. (2017) used network consistency projection 
and introduced an algorithm NCPHMD to predict human 
microbe-disease association. NCPHMD deals with unknown 
diseases or microbes that are not present in the disease-microbe 
databases. He et al. (He et al., 2018) presented an algorithm 
GRNMFHMDA. GRNMFHMDA assigns likelihood scores to 
unknown microbe-disease pairs by calculating weighted K nearest 
neighbor profiles of microbes and diseases, and then adapts the 
standard non-negative matrix factorization by integrating graph 
Laplacian and Tikhonov (L2) regularization to obtain a microbe-
disease association prediction score matrix. Zou et al. (2017) 
designed an approach BiRWHMDA. BiRWHMDA constructs 
a heterogeneous network by connecting the microbe similarity 
network and the disease similarity network based on known 
microbe-disease associations, and then uses a bi-random walk to 
predict microbe-disease association.

In the paper, we propose a novel approach to predict 
potential micro-disease association based on the KATZ 
measure and bipartite network recommendation algorithm 
(KATZBNRA), which is an improvement on KATZHMDA 
(Chen et al., 2017). Similar to KATZHMDA, KATZBNRA 
uses the KATZ measure and the similarity of diseases and 
microbes according to the Gaussian interaction profile kernel 
to predict novel microbe-disease associations based on the 
known microbe-disease associations. Furthermore, in order to 
improve the predicting accuracy, KATZBNRA uses a bipartite 
network recommendation algorithm.

MATeRIAls AND MeThODs

Known Disease-Microbe Associations
HMDAD (Human Microbe-Disease Association Database, 
http://www.cuilab.cn/hmdad) collected the curated human 
microbe-disease association data from microbiota studies where 
the microbes were determined by 16s RNA sequencing on the 
genus level (Ma et al., 2017). HMDAD provides public access 
to the data, and our known microbe-disease association data 
were downloaded from HMDAD. The data contains 450 distinct 
confirmed associations between 39 diseases and 292 microbes 
and is coded in an adjacency matrix A Rn nd m   × , where nd (or 
nm) is the number of diseases (or microbes). If there has been an 
experiment confirming that microbe mj relates to disease di,A(i,j) 
is set to 1, otherwise A(i,j) is set to 0.

Disease Gaussian Interaction Profile 
Kernel similarity
According to (Chen et al., 2017), there is a generally accepted 
assumption that similar diseases show an interaction tendency 
to similar microbes. Similar to (Chen and Yan, 2013) and (Chen 
et al., 2017), we compute the disease network topologic similarity 
based on the Gaussian interaction profile kernel. For a disease-
microbe association adjacent matrix A, the binary element A(i,j) 
at row i and column j encodes whether there is a confirmed 
association between disease d(i) and microbe m(j). The ith row 
of A is denoted by IP(d(i)). IP(d(i)) can be regarded a binary 
vector and is called the interaction profile of d(i) since it provides 
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the association information of disease d(i) with all microbes. For 
two diseases, their similarity KD(di,dj), based on the Gaussian 
interaction profile kernel, is calculated from their interaction 
profiles according to the following equations.

 KD d d IP d IP di j d i j( , ) exp( ( ) ( )|| ) ||= − −γ 2  (1)

 

γ γ
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KD(di,dj) is adjusted by the norm kernel bandwidth γd, which 
is controlled by the bandwidth parameter ′γ d . It is obvious that 
KD(di,di) = 1 and 0 < KD(di,dj)≤1. According to (Vanunu et al., 
2010), KD values in (0, 0.3] may be not informative, while KD 
values in [0.6, 1] may show significant similarity. Therefore, a 
logistic function transformation from KD(x, y) to KD'(x, y) in 
Equation (3) is utilized in order to measure the similarity of 
diseases x and y more appropriately.

 
KD d d

e
i j c KD d d di j

′ =
+ +( , ) * ( , )

1
1  (3)

The parameters ′γ d  and c could be set with cross-validation, 
but to simplify the calculation, we set ′γ d  = 1 as in van Laarhoven 
et al., 2011, c = -15 as in (Vanunu et al., 2010). According to 
(Vanunu et al., 2010), we set d = log(9999) such that KD′(di,dj) = 
0.0001 when KD(di,dj) = 0.

Microbe Gaussian Interaction Profile 
Kernel similarity
As mentioned before, similar diseases show an association 
tendency with similar microbes. To measure the similarity of 
microbes, we also used the Gaussian interaction profile kernel as 
before. It could be calculated in a similar way as follows.

 KM m m IP m IP mi j m i j( , ) exp( ( ) ( )|| )||= − −γ 2  (4)
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where ′γ m  is also set to 1, and IP(mi) is the ith column of matrix 
A. Similarly, KM'(mi, mj) could be calculated as Equation (3). It 
should be noted that in each cross-validation experiment, the 
similarities of diseases and microbes will be recalculated (Sun 
et al., 2018).

Bipartite Network Recommendation
The bipartite network recommendation is a two-step resource 
allocation process (Chen et al., 2018b), which is based on a 
bipartite graph G(D, M, E), where D represents disease nodes, 

M microbe nodes, E the edges corresponding to the known 
microbe-disease associations. Let f0,i(mj) denote the initial 
resource allocated to a microbe node mj when considering disease 
di, k(mj) be the number of adjacent disease nodes of microbe mj, 
and let k(di) be the number of adjacent microbe nodes of disease 
di in graph G.

When focusing on disease di, each disease di related 
microbe node is initially allocated with a resource value of 
1, i.e. if there is an edge between the disease node di and a 
microbe node mj in G, allocate an initial resource of 1 to mj. 
The first step of the bipartite network recommendation is to 
transfer the resource from microbe nodes to disease nodes 
according to Equation (6), and the second step is to transfer 
the resource of the disease nodes back to microbe nodes 
according to Equation (8).
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where alj is an element of matrix A, i.e. alj = A(l, j) and
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In fact, f0,i(mj) is also equal to A(i, j).
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Equations (6) and (8) are integrated into Equation (9).
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Please see an example of the process of the bipartite network 
recommendation focusing on disease d1 in Figure 1. After the 
process, we obtain the recommendation scores (1, 0, 1/4, 3/4, 0) 
of the microbes for disease d1, which suggests that besides m1 and 
m4, m3 may also be related to the disease.

The matrix form of Equation (9) is as follows.

 B W AT= ×  (11)

where W wij n nm m
=

×
{ } , and B is a matrix with nm rows and nd 

columns. The ith column of B is the recommend scores of 
bipartite network recommendation regarding disease di

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1147

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Micro-Disease Associations PredictionLi et al.

4

KATZBNRA
KATZBNRA uses the KATZ model to compute the associations 
between diseases and microbes and is illustrated in Figure 2. 
As a network-based computation method, the KATZ model 
(Chen, 2015) had been used in the problem of link prediction 
in the heterogenous network to calculate the similarity of 
nodes. There are two factors that have been regarded as 
effective similarity metrics in the KATZ model, the walk steps 
(length, i.e. the number of edges of the walk) and the number 
of walks from one node to another. We use the KATZ model 
to calculate similarities between the nodes of the microbe and 
disease by counting the number of walks between them. Here 
Al(i,j), the element of the l-th power of A, is the number of 
l-length walks between disease node di and microbe node mj. 
Due to the limited data from HMDAD, matrix A is sparse. In 
order to use more information, we integrated the matrices KM, 
KD, B into a matrix B* as Equation (12) and replace A by B* 

in the KATZ model to calculate similarities between microbes 
and diseases.

 
B KD B

B KMT
* = ′

′











  (12)

Since walks between nodes of microbe and disease with 
different lengths have different contributions to similarities of 
node pairs, in order to dampen longer walks’ contribution, we 
introduced a parameter βl which is no smaller than 0, and if l1> l2, 
then β βl l1 2

< . The potential association between diseases di and 
microbe mj can be calculated as follows.

 
S( )d m B i ji j
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l
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If k → ∞ , replace βl with βl (0<β <1) (Qu et al., 2018) and the 
matrix form of Equation (13) is as follows.

 
S = = − −

≥

−∑
l

l lB I B I
1

1β β* *( )
 (14)

S is a matrix of size (nd + nm)×(nd + nm), and could be 
partitioned into four sub-matrices as shown in Equation (12).

FIGURe 1 | Illustration of the two-step resource-allocation process in a 
bipartite graph.

FIGURe 2 | The diagram of KATZBNRA.
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where the rows of S1,1 and S1,2 are nd, the rows of S2,1 and S2,2 are 
nm, the columns of S1,1 and S2,1 are nd, and the columns of S1,2 and 
S2,2 are nm. The element S1,2(i, j) of S1,2 provides the possibility that 
an association between disease di and the microbe mj exists, and 
our prediction result can be obtained from S1,2.

Considering that the walks of long lengths may be meaningless, 
we limit k in Equation (13) to be 2, 3 and 4, and the expression 
can be as follows. 

 S B KM B B KDk= = ⋅ + ′ ⋅ + ⋅ ′⋅2
2β β ( )  (16)
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ResUlTs

Performance evaluation
The test dataset of microbe-disease association was downloaded 
from HMDAD. We used LOOCV (leave-one-out cross 
validation), two-fold cross validation and five-fold cross 
validation to test the prediction performance of KATZBNRA on 
the HMDAD data.

In LOOCV, each known microbe-disease association takes 
turns to be picked out as the testing case and the other known 
associations are regarded as training data. We then obtained 
the prediction score of the test case output by KATZBNRA and 
ranked of the test case in the sorted list of all predicted microbe-
disease associations in descending order of their scores. We 
used different thresholds to determine the correct predictions 
and wrong predictions and calculated corresponding FPR 
(false positive rate) and TPR (true positive rate) according 
to Equation (19). Finally, the results were presented in the 
ROC (receiver operating characteristics) curve plot of TPR  
against FPR.

 
TPR TP

FN TP
FPR FP

TN FP
=

+
=

+
 ,   

 (19)

where FN is the number of false negative predictions (i.e. the 
cases whose prediction scores below the threshold), and TP is 
the number of true positive predictions (i.e. the cases whose 
prediction scores are not smaller than the threshold). FP is the 
number of the predicted associations that are not in the HMDAD 

dataset with scores not smaller than the threshold, and TN is the 
number of predicted associations that are not in the HMDAD 
dataset with scores smaller than the threshold. The area under 
a ROC curve is called AUC, and AUC is generally utilized to 
compare the power of predictive models. AUC of 0.5 indicates an 
entirely random prediction while AUC = 1 means a completely 
correct prediction.

In order to further test the prediction power of KATZBNRA, 
we also adopted 5-fold cross validation and 2-fold cross 
validation besides LOOCV. 5-fold (or 2-fold) cross validation 
randomly divides the microbe-disease associations equally 
into five (or two) parts and one of the five (or two) parts is 
reserved as the verification data while the remaining is used as 
training data. Considering the potential random sampling bias, 
we repeated each LOOCV, 2-fold and 5-fold cross validation 
test 100 times, and all ROC curves and AUCs are the average 
results of the 100 repeated tests. Meanwhile, we compared 
KATZBNRA with several state-of-the-art predictive methods 
using these validations.

For our method KATZBNRA, the walk length k plays a critical 
role. To test the effect of k, we changed the value of k, and carried 
out a series of LOOCV experiments. As shown in Figure 3, when 
k is set to 2, 3 and 4, the AUCs of each walk lengths are 0.9098, 
0.8968, and 0.8827, respectively. Obviously, when parameter k = 
2, KATZBNRA achieved the best prediction performance and 
walks of longer lengths may make the association prediction 
worse. Therefore, in the following experiments, we set k = 2. 
KATZBNRA has two more parameters, γ′ and β. The test in 
a previous work (Chen et al., 2016) showed AUC tended to 
decrease when γ′ was increased from 1.0 to 1.5, 2.0 and 2.5, and 
β was increased from 0.01 to 0.05 and 0.1. We also evaluated the 
AUC of KATZBNRA with different values of parameter γ′ and c 
in Equation (2) and Equation (3), and the test results are shown 
in Tables 1 and 2, showing similar results as Chen et al., 2016. 
Therefore, we set γ′=1.0 and β=0.01.

FIGURe 3 | The predictive performances of KATZBNRA with different ks.
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We compared KATZBNRA with another three prediction 
methods, the native bipartite network recommendation (BNR) 
(Zhou et al., 2007), KATZHMDA (Chen et al., 2017), and 
IMCMDA (Chen et al., 2018a) using LOOCV, 5-fold cross 
validation and 2-fold cross validation. The global LOOCV 
showed that the AUCs of KATZBNRA, KATZHMDA, 
IMCMDA and BNR were 0.9098, 0.8382, 0.7786, and 0.4113, 
respectively, as shown in Figure 4−6 show the 5-fold cross 
validation experimental results and the 2-fold cross validation 
experimental results, respectively. In 5-fold cross validation 
KATZBNRA, KATZHMDA, IMCMDA, and BNR obtained 
AUCs of 0.8972, 0.8330, 0.8041, and 0.5645, respectively, and in 
2-fold cross validation, their AUCs were 0.8463, 0.8190, 0.7988 
and 0.5434, respectively. In all the above experiments, the curves 
of KATZBNRA are above those of the other methods, which 
means that among the four methods, KATZBNRA achieved the 
best prediction performance.

Case studies
We studied asthma and inflammatory bowel disease (IBD) 
of microbe-related diseases of human beings based on recent 

published clinical and biological reports to further evaluate 
the ability of our method. The predicted disease-microbe 
associations which are contained in the HMDAD dataset are 
sorted according to their prediction scores in descending order. 
For asthma and IBD, we observed the microbes in the top 10 
associations of the lists. This guarantees absolute independence 
between the verification candidate and the known association for 
model training.

As a common chronic lung inflammatory disease, asthma 
causes difficulty in breathing (Martinez, 2007). It is believed 
that asthma is caused by the environment and a combination of 
genes. For severe asthma, one of the leading causes is a microbe 
(Huang et al., 2011). All of top predicted 10 candidate microbes 
of KATZBNRA (Table 3) have been verified by recent studies.

TABle 1 | The AUC of KATZBNRA with γ′set different values.

γ′ AUC

1 0.9098
1.5 0.9083
2 0.9033

TABle 2 | The AUC of KATZBNRA with c set different values.

c AUC

-15 0.9098
-10 0.9038
-5 0.8935

FIGURe 4 | The LOOCV experimental results of KAZTBNRA, KATZHMDA, 
IMCMDA, and the native bipartite network recommendation.

FIGURe 5 | The 5-fold cross validation experimental results of KAZTBNRA, 
KATZHMDA, IMCMDA, and the native bipartite network recommendation.

FIGURe 6 | The 2-fold cross validation experimental results of KAZTBNRA, 
KATZHMDA, IMCMDA, and the native bipartite network recommendation.
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As a typical chronic GI (gastrointestinal) tract inflammatory 
bowel disease, IBD includes ulcerative colitis and Crohn’s disease 
(Lomax et al., 2006). We listed the top 10 IBD-related candidate 
microbes predicted by KATZBNRA in Table 4, among which 
eight microbes have been previously validated.

DIsCUssION
Based on the bipartite network recommendation and the KATZ 
model, the paper introduced a novel disease-microbe association 
prediction method called KATZBNRA. KATZBNRA uses the 

Gaussian interaction profile kernel to calculate the similarity of 
diseases and microbes in the bipartite network containing the 
known microbe-disease associations from the HMDAD database, 
and the bipartite network recommendation score on the KATZ 
model enables KATZBNRA to predict potential disease-microbe 
associations with high accuracy. The experimental results of 
LOOCV, 5-fold cross validation, 2-fold cross validation and the 
IBD and asthma case studies have demonstrated the excellent 
and reliable prediction ability of KATZBNRA. With regard to 
similar prediction problems such as predicting lncRNA-disease, 
drug-target, gene-disease, miRNA-disease, and other biological 
associations, this model can be applied with small modifications.
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TABle 3 | The Asthma-related microbe prediction of KATZBNRA. All of top 10 
microbes were confirmed by recent studies.

Rank Microbe evidence

1 Firmicutes PMID: 23265859(Marri et al., 2013)
2 Actinobacteria PMID: 23265859(Marri et al., 2013)
3 Clostridium coccoides PMID:21477358(Vael et al., 2011)
4 Streptococcus PMID: 17950502(Preston et al., 2007)
5 Lactobacillus PMID: 20592920(Yu et al., 2010)
6 Lachnospiraceae PMID:17433177(Rados et al., 2007)
7 Pseudomonas PMID:13268970(Fein, 1955)
8 Burkholderia PMID:24451910(Beigelman et al., 2014)
9 Fusobacterium Dang et al., 2013(Dang et al., 2013)
10 Propionibacterium PMID:27433177(Jung et al., 2016)

TABle 4 | Top 10 potential IBD-related microbes predicted by KATZBNRA

Rank Microbe evidence

1 Clostridium coccoides PMID:19235886(Sokol et al., 2009)
2 Firmicutes PMID:25307765(Walters et al., 2014)
3 Bacteroidetes PMID:25307765(Walters et al., 2014)
4 Staphylococcus PMID:28174737(Pedamallu et al., 2016)
5 Prevotella PMID:25307765(Walters et al., 2014)
6 Streptococcus PMID:23679203(Kojima et al., 2014)
7 Propionibacterium unconfirmed
8 Propionibacterium acnes unconfirmed
9 Bacteroidaceae PMID:17897884(Takaishi et al., 2008)
10 Haemophilus PMID:24013298(Said et al., 2014)
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