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COPD (chronic obstructive pulmonary disease) and ILD (interstitial lung disease) are 
two common respiratory diseases. They share similar clinical traits but require different 
therapeutic treatments. Identifying the biomarkers that are differentially expressed between 
them will not only help the diagnosis of COPD and ILD, but also provide candidate drug 
targets that may facilitate the development of new treatment for COPD and ILD. Due to 
the irreversible complex pathological changes of COPD, there are very limited therapeutic 
options for COPD patients. In this study, we analyzed the gene expression profiles of two 
datasets: one training dataset that includes 144 COPD patients and 194 ILD patients, 
and one test dataset that includes 75 COPD patients and 61 ILD patients. Advanced 
feature selection methods, mRMR (minimal Redundancy Maximal Relevance) and 
incremental feature selection (IFS), were applied to identify the 38-gene biomarker. An 
SVM (support vector machine) classifier was built based on the 38-gene biomarker. Its 
accuracy, sensitivity, and specificity on training dataset evaluated by leave one out cross-
validation were 0.905, 0.896, and 0.912, respectively. And on independent test dataset, 
the accuracy, sensitivity, and specificity on were as great as and were 0.904, 0.933, and 
0.869, respectively. The biological function analysis of the 38 genes indicated that many 
of them can be potential treatment targets that may benefit COPD and ILD patients.

Keywords: chronic obstructive pulmonary disease, interstitial lung disease, biomarker, gene expression, 
treatment target

INTRODUCTION
COPD (chronic obstructive pulmonary disease) and ILD (interstitial lung disease) are both common 
lung diseases (Andersen et al., 2013). And cigarette smoking is the biggest risk factor for COPD and 
ILD (Caminati et al., 2012). About 20% smokers will develop COPD (Bosse, 2012). COPD is also an 
independent risk factor of lung cancer. Both emphysema and non-emphysema COPD phenotypes 
significantly increased the risk of lung cancer (Wang et al., 2018). In addition, epidemiological 
studies have found that COPD increases the risk of lung cancer by two to six times, regardless of 
whether there is a history of smoking or not (Papi et al., 2004; Young et al., 2009). Since the complex 
pathological changes in COPD and most of ILD patients are not irreversible, the diseases cause 
extensive mortality and are great public health problems worldwide (Vogelmeier et al., 2017).

Although COPD and ILD share many common traits and have similar clinical phenotypes, 
their treatments and the therapeutic effects are different. The recommended treatments for COPD 
patients are smoking cessation and drugs that treat bronchoconstriction and inflammation, such 
as methylxanthines, β-adrenoceptor agonists, corticosteroids, phosphodiesterase type 4 (PDE-4) 
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inhibitors, and anticholinergics (Andersen et al., 2013), while 
the ILD patients are treated with immunosuppressive agents, 
such as alkylating nitrogen mustard (du Bois, 2010). Inhaled 
corticosteroids (ICS) are important in managing exacerbations 
and symptoms in COPD (Lakshmi et al., 2017). However, a 
significant percentage of patients respond poorly or not at all to 
pharmacotherapies, especially for patients with severe disease 
(Nixon et al., 2017). In addition, poor adherence to medication 
is an essential factor in treatment failure. Therefore, new therapy 
strategies are needed urgently.

It is critical to classify COPD patients from ILD patients 
since it is the first step for choosing the right treatment. As we 
mentioned, COPD and ILD share similar pathogeny and have 
similar clinical phenotype; it is difficult to discriminate these 
two diseases and the underlying mechanisms of COPD and ILD 
are largely unknown. Identifying the biomarkers for COPD and 
ILD will not only provide a tool for disease diagnosis, but also 
reveal novel insights of the pathological mechanisms and help 
developing new treatment to benefit the survival of patients. 
Microarray is a reliable technology to measure the expression 
level of thousands of genes simultaneously and has been proven 
to be great data source for discovering biomarkers.

In this study, we analyzed two gene expression datasets 
of COPD and ILD: one training dataset of Agilent-028004 
SurePrint G3 Human GE 8x60K Microarray including 144 
COPD patients and 194 ILD patients, and one independent 
test data of Agilent-014850 Whole Human Genome Microarray 
4x44K G4112F including 75 COPD patients and 61 ILD 
patients. Advanced feature selection methods, mRMR (minimal 
Redundancy Maximal Relevance) and IFS (incremental feature 
selection), were applied to get the optimal biomarkers on 
training dataset. The SVM (support vector machine) method 
was used to construct the classifier on training dataset and tested 
on independent test dataset. The 37-gene classifier achieved great 
performance on training and test datasets. The accuracies on 
training data and test data were 0.964 and 0.904, respectively. The 
37 selected genes were involved in key biological pathways and 
functions of COPD and ILD. These results provided novel insight 
for understanding the mechanisms of COPD and ILD and shed 
light on new treatment development.

METhODs

The Gene Expression Profiles of COPD 
and ILD Patients
The gene expression profiles of COPD and ILD patients were 
downloaded from GEO (Gene Expression Omnibus) with 
accession number of GSE47460 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE47460). The original data 
were generated by Peng et al. (2016). They measured the gene 
expression levels of 144 COPD patients and 194 ILD patients with 
Agilent-028004 SurePrint G3 Human GE 8x60K Microarray and 
75 COPD patients and 61 ILD patients with Agilent-014850 Whole 
Human Genome Microarray 4x44K G4112F. We extracted the 
common 15,180 genes between these two microarray platforms 
and quantile normalized the two datasets. Then the first dataset 

of 144 COPD patients and 194 ILD patients were considered as 
training dataset, while the second dataset of 75 COPD patients 
and 61 ILD patients were considered as independent test dataset.

Biomarker selection Using mRMR and IFs 
Methods
We adopted the mRMR (minimal Redundancy Maximal 
Relevance) method (Peng et al., 2005) to rank the genes on the 
training dataset. The mutual information-based mRMR method 
is widely used and has been used in solving many biomedical 
problems (Niu et al., 2013; Zhao et al., 2013; Zhou et al., 2015). 
The C/C++ version mRMR program was downloaded from 
http://home.penglab.com/proj/mRMR/. Unlike the univariate 
method, such as t test and ANOVA (analysis of variance), mRMR 
considers not only the relevance between genes and disease types 
but also the redundancies between genes.

Ω, Ωs, and Ωt were used to represent the complete set of all 
15,180 (N) candidate genes for biomarker ranking, the selected m 
genes, and the to-be-selected n genes, respectively. The relevance 
of gene g from Ωt with disease type t can be measured with 
mutual information (I) (Sun et al., 2012; Huang and Cai, 2013):

 D t= I g( , )  (1)

And the redundancy R of the gene g with the selected genes 
in Ωs are
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The goal of this algorithm is to get the gene gj from Ωs that 
has maximum relevance with disease type t and minimum 
redundancy with the selected genes in Ωs, i.e. maximize the 
mRMR function
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The evaluation procedure will be continued for N rounds, and 
all the genes will be ranked as a list

 S = … …{ }g g g gh N1 2
' ' ' ', , , , ,  (4)

The index h reflects the trade-off between relevance with 
disease type and redundancy with selected genes. The smaller 
the index h is, the better the discriminating power the gene has.

Based on the top 500 mRMR genes, we constructed 500 SVM 
classifiers and applied an IFS method (Jiang et al., 2013; Li et al., 
2014; Shu et al., 2014; Zhang et al., 2014a; Zhang et al., 2015) to 
identify the optimal genes as biomarker. Each candidate gene set 
S g g g kk k= …{ } ≤ ≤( )1 2 1 500' ' ', , ,  included the top k genes in the 
mRMR list.
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Based on the leave-one-out cross-validation (LOOCV) 
accuracy of each candidate gene set on the training dataset, an 
IFS curve can be plotted. The x-axis denoted the number of top 
genes that were used to train the SVM classifier, and the y-axis 
denoted the LOOCV accuracies of trained classifiers. Based on 
the IFS curve, we can choose the right cutoff of gene numbers to 
achieve a good prediction performance.

Prediction Performance Evaluation of the 
Classifier
We used LOOCV (Cui et al., 2013; Yang et al., 2014) to evaluate 
the prediction performance of the SVM classifiers on the training 
dataset and then independently tested the final classifier that was 
trained using all training data on the independent test dataset. 
During LOOCV on training dataset, all of the N training 
samples were tested one by one. In each round, one sample was 
used for testing of the prediction model trained with all the 
other N-1 samples. After N rounds, all samples were tested one 
time, and the predicted disease types were compared with the 
actual disease types. The final classifier was trained using all the 
training samples and then tested on the independent test dataset. 
Figure 1 showed the flowchart of biomarker selection, classifier 
construction, and prediction performance evaluation. The 
SVM method was applied using the svm function with default 
parameters in R package e10171 (https://cran.r-project.org/web/
packages/e1071/).

Accuracy (ACC), Sensitivity (Sn), and Specificity (Sp) were 
calculated to evaluate the prediction performance

 
   ACC TP TN

TP TN FP FN
= +

+ + +  (5)

 
S TP

TP FNn =
+

   (6)

 
S TN

TN FPp =
+  (7)

where TP, TN, FP, and FN stand for true positive (COPD), 
true negative (ILD), false positive (COPD), and false negative 
(ILD), respectively.

REsULTs aND DIsCUssION

The genes that showed different expression 
pattern between COPD and ILD patients
We obtained the top 500 most discriminative genes of COPD and 
ILD patient samples using the mRMR method on the training 
dataset. The mRMR ranked the genes based on their relevance 
with disease types, COPD or ILD, and their redundancy with 
selected genes. Both the relevance and redundancy were 

FIGURE 1 | The flowchart of biomarker selection, classifier construction, and prediction performance evaluation. First, the COPD/ILD samples were divided into 
training dataset and test dataset based on their platform: the 144 COPD samples and 194 ILD samples profiled with 8x60K Microarray was the training set; the 
75 COPD samples and 61 ILD samples profiled with 4x44K Microarray were the test set. Then in the training set, we applied mRMR and IFS to select the optimal 
number of genes as biomarkers and evaluated its performance on the training dataset using leave-one-out cross-validation. At last, the final 38-gene SVM classifier 
was trained using all training dataset and tested on the independent test dataset. The accuracy, sensitivity, and specificity were calculated to objectively evaluate the 
prediction performance of the 38-gene classifier.
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measured with mutual information. The mutual information 
has been proven to be a better statistic than correlation and was 
widely used. The top 500 mRMR genes were given in Table S1.

The Optimal Biomarkers Identified From 
the mRMR Gene List With IFs Methods
After mRMR analysis, the genes were ranked based on the 
gene expression profiles on training dataset. But we still did 
not know how many top genes should we choose. And the 
ideal biomarkers should use less genes and achieve great 
performance. Therefore, we applied the IFS procedure to 
select the optimal number of top mRMR genes to form the 
biomarker gene set. During each round of IFS, different 
numbers of top genes were used and the corresponding 
prediction performance, i.e., the LOOCV accuracy on 
training dataset, were calculated. The relationship between 
the number of genes and prediction accuracies was plotted as 
an IFS curve as shown in Figure 2. It can be seen that when 
94 genes were used, the LOOCV accuracy on training dataset 
was the highest. But even early, when only 38 genes were used, 
the accuracy was over 0.90. To consider both using less genes 
and achieving higher prediction accuracy, we chose the 38 
genes as the optimal biomarker gene set since increasing the 
number of genes will not significantly increase the accuracy 
any more after the 38 genes were used. The 38 genes were 
shown in Table 1.

The Prediction Performance of the 
38-Gene Classifier
The 38 genes were chosen from the genome wide 15,180 genes 
based on mRMR and IFS methods. To objectively evaluate their 
prediction power, we calculated not only the LOOCV accuracy, 
sensitivity, and specificity on training dataset, but also the 
accuracy sensitivity and specificity on independent test dataset. 
The confusion matrix of predicted disease types and actual 
disease types on both training and test datasets were shown in 
Table 2. On training dataset, the LOOCV accuracy, sensitivity, 
and specificity were 0.905, 0.896, and 0.912, respectively. 
More importantly, the accuracy, sensitivity, and specificity on 

FIGURE 2 | The IFS curve that showed how the prediction performance 
improved when more and more genes were used to construct the classifier. 
The IFS curve explained the relationship between the number of genes and 
prediction accuracies. The x-axis denoted the number of top genes that 
were used to train the SVM classifier, and the y-axis denoted the LOOCV 
accuracies of trained classifiers. The highest accuracy was achieved when 
94 genes were used. But after 38 genes were used, the IFS curve entered 
the plateau area and did not increase too much even when more and more 
genes were included. To consider both the model complexity and model 
performance, we chose the 38 genes as the optimal biomarker gene set.

TaBLE 1 | The 38 genes selected by mRMR and IFS methods.

Order symbol Name score

1 HBEGF Heparin binding EGF like growth 
factor

0.288

2 DIO2 Iodothyronine deiodinase 2 0.187
3 CLCN3 Chloride voltage-gated channel 3 0.115
4 SEPT4 Septin 4 0.120
5 FAT1 FAT atypical cadherin 1 0.120
6 CTSE Cathepsin E 0.116
7 CRIP1 Cysteine rich protein 1 0.108
8 ACADVL Acyl-CoA dehydrogenase, very long 

chain
0.112

9 CNTN3 Contactin 3 0.118
10 UQCRQ Ubiquinol-cytochrome c reductase 

complex III subunit VII
0.116

11 ASPN Asporin 0.111
12 ZNF786 Zinc finger protein 786 0.110
13 RARRES2 Retinoic acid receptor responder 2 0.107
14 BTC Betacellulin 0.111
15 FNDC1 Fibronectin type III domain containing 

1
0.114

16 DUSP1 Dual specificity phosphatase 1 0.113
17 C6orf145 PX domain containing 1 0.104
18 NUTF2 Nuclear transport factor 2 0.105
19 TNN Tenascin N 0.101
20 COQ9 Coenzyme Q9 0.103
21 SCG5 Secretogranin V 0.105
22 BCHE Butyrylcholinesterase 0.099
23 NR4A2 Nuclear transport factor 2 0.100
24 HS6ST3 Heparan sulfate 6-O-sulfotransferase 

3
0.103

25 SHE Src homology 2 domain containing E 0.102
26 C20orf111 Oxidative stress responsive serine 

rich 1
0.098

27 REEP2 Receptor accessory protein 2 0.099
28 C19orf63 ER membrane protein complex 

subunit 10
0.097

29 IRS2 Nuclear receptor subfamily 4 group A 
member 2

0.098

30 FA2H Fatty acid 2-hydroxylase 0.094
31 ACTL6A Actin like 6A 0.094
32 NR4A3 Nuclear receptor subfamily 4 group A 

member 3
0.093

33 DAO D-amino acid oxidase 0.095
34 VNN2 Vanin 2 0.093
35 IGFL2 IGF like family member 2 0.094
36 ZNF692 Zinc finger protein 692 0.093
37 CAMK1D Calcium/calmodulin-dependent 

protein kinase ID
0.091

38 HCAR2 Hydroxycarboxylic acid receptor 2 0.092
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independent test dataset were as great as on the training dataset 
and were 0.904, 0.933, and 0.869, respectively.

To more intuitively demonstrate the discriminative power 
of these 38 genes for COPD and ILD samples, we combined 
the training dataset samples and test dataset samples and draw 
a heatmap using these 38 genes (Figure 3). It can be seen that 
even without advanced machine learning algorithm, such as 
SVM, the simple hierarchical clustering can group most COPD 
and ILD samples into the right clusters. And the upregulation 
and downregulation patterns of these 38 genes were very clear 
between COPD and ILD patients.

We also calculated the results of the 94 genes and plotted their 
heatmap as Figure S1. On training dataset, the LOOCV accuracy, 
sensitivity, and specificity of the 94-gene classifier were 0.911, 
0.889, and 0.928, respectively. On independent test dataset, the 
accuracy, sensitivity, and specificity of the 94-gene classifier were 
0.897, 0.933, and 0.852, respectively. The performance of the 94 
genes was close to the 38 genes on both training and independent 
test datasets. The 38 genes were even slightly better than the 94 
genes on independent test dataset.

The Biological significance of the 38-Gene 
Biomarkers
As shown in Table 1, the first gene on the mRMR list was HBEGF 
(heparin binding EGF like growth factor). From Figure 2, it can 
be seen that HBEGF was highly expressed in COPD patients. 

HBEGF is a key member of the EGFR pathway. Its expression 
level has been reported to be increased in COPD samples and 
were significantly correlated with both diffusing capacity of 
the lung for carbon monoxide (DLCO) and Forced Expiratory 
Volume in 1 second (FEV1), two major clinical variables for 
COPD (Cockayne et al., 2012). We investigated the tissue 
specific expression pattern of HBEGF in ARCHS4 (Lachmann 
et al., 2018) and Figure 4, which were retrieved from ARCHS4, 
showed that HBEGF is very specifically highly expressed in lung.

The second gene was DIO2 (iodothyronine deiodinase 
2). DIO2 plays an important role in biologically active 
triiodothyronine synthesis. Its expression level was consistent 
with the degree of lung injury: the more the lung injury, the 
higher the expression of DIO2 (Ma et al., 2011). Clearly, DIO2 
is key for the inflammatory response (Ma et al., 2011). And 
COPD is a complex chronic inflammatory disease involving the 
dysfunction of a variety of inflammatory mediators (Thorley and 
Tetley, 2007). DIO2 could be a key factor in the inflammatory 
mechanism of COPD (Barnes, 2017).

CLCN3 (chloride voltage-gated channel 3) ranked third on 
the mRMR list. It has been reported that the CLCN3 mRNA was 
expressed in fetal airway epithelia and played important roles in 
pulmonary epithelium developing of human lung (Lamb et al., 
2001). As we have known, COPD mainly affects pulmonary 
epithelium (Hiemstra et al., 1998). And it is believed that cigarette 
smoke triggers COPD through causing epithelial damage and 
interfering repair processes (Thorley and Tetley, 2007).

TaBLE 2 | The confusion matrix of predicted disease types and actual disease types on both training and test datasets.

Leave one out cross validation on Training set* Independent test on test set*

actual COPD actual ILD actual COPD actual ILD

Predicted COPD 129 17 Predicted COPD 70 8
Predicted ILD 15 177 Predicted ILD 5 53
Accuracy: 0.905 Sensitivity: 0.896 Specificity: 0.912 Accuracy: 0.904 Sensitivity: 0.933 Specificity: 0.869

*COPD was considered as positive sample and ILD was considered as negative samples during sensitivity and specificity calculation.

FIGURE 3 | The heatmap of COPD and ILD patients using the selected 38 genes. The COPD and ILD patients from training dataset and test dataset were 
hierarchically cluttered using the 38 selected genes. There were very clear clusters of COPD and cluster of ILD. Most samples were grouped into the right cluster.
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ILD and COPD are two kinds of chronic lung diseases 
with significant differences in etiology, incidence, pathology, 
and prognosis (McDonald, 2018). ILD is a heterogeneous 
group of diseases, characterized by chronic, progressive, 
mainly interstitial inflammation and is always accompanied 
by varying degrees of pulmonary parenchyma fibrosis (Doyle 

et al., 2012), while COPD is characterized by chronic airflow 
limitation caused by small airway disease and substantial 
destruction, which is not completely reversible and usually 
progressive (Song et al., 2012; Rabe and Watz, 2017). 
Generally, the diagnosis and classification of ILD and COPD 
severity depend on clinical evaluation, thoracic imaging, 

FIGURE 4 | The tissue specific expression pattern of HBEGF in ARCHS4. The tissue expression data from ARCHS4 showed that HBEGF is very specifically highly 
expressed in lung ( https://amp.pharm.mssm.edu/archs4/gene/HBEGF#tissueexpression).
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and pulmonary function testing (PFT) (Song et al., 2012; Du 
Plessis et al., 2018).

Among these identified genes, HBEGF has been found related 
with the invasion and progression of many malignant tumors 
including breast, pancreatic, and ovarian, and may be involved 
in macrophage-mediated cellular proliferation (Ray et al., 2014; 
He et al., 2015). He et al. (2019) conducted comprehensive 
bioinformatic analyses to predict target genes of ILD and 
identified HBEGF as one of the potential prognostic markers 
and therapeutic targets for ILD. Besides, SEPTIN4, a member of 
the septin family of nucleotide binding proteins, plays a role in 
apoptosis and cancer (Garcia et al., 2008), which may affect the 
occurrence and development of ILD.

We will not go through the mRMR table one by one. With 
only the top three genes, the LOOCV accuracy was 0.873 as 
shown in Figure 2. There are several genes in Table 1 that 
are highly possible to play key roles in COPD. Notably, CTSE 
(cathepsin E) ranked sixth was reported to be able to promote 
pulmonary emphysema through causing mitochondrial 
fission and may be a candidate therapeutic target (Zhang et al., 
2014b). BTC (betacellulin) ranked 14th was found to be higher 
expressed in COPD ex-smokers than ex-smokers without COPD 
(de Boer et al., 2006). DUSP1 (dual specificity phosphatase 1) 
ranked 16th was reported to have anti-inflammatory potential 
(Newton, 2014) and when COPD patients undertook fluticasone 
propionate, DUSP1 expression level was increased (Lee et al., 
2016). BCHE (butyrylcholinesterase) ranked 22nd was associated 
with oxidative stress and inflammation, and its activity was 
found to be decreased in COPD patients (Sicinska et al., 2017). 
In Figure 3, we also observed the downregulation of BCHE 
in COPD cluster. SHE (Src homology 2 domain containing E) 
ranked 25th may play a critical role in promoting airway smooth 
muscle cell growth and migration during the airway remodeling 
of COPD patients (Krymskaya et al., 2005). DAO (D-amino acid 
oxidase) ranked 33rd was an enzyme for peroxisome, glyoxylate 
metabolism, and glycine degradation. The serum DAO activity 
was found to be higher in the intestinal tissue of COPD model rat 
than control (Xin et al., 2016). CAMK1D (calcium/calmodulin 
dependent protein kinase ID) ranked 37th was found to be a hub 
node on the protein–protein interaction network of differentially 
expressed gene (DEG) in COPD and was considered as candidate 
biomarker and potential target for clinical diagnosis and 
treatment of COPD (Yuan et al., 2014).

Since there are very few drugs for COPD, we searched 
DrugBank for possible COPD drugs and found that BCHE, DAO, 
UQCRQ, HCAR2, CAMK1D, and NR4A3 were drug targetable. 
The number of small molecule drugs that targeted BCHE, DAO, 
UQCRQ, HCAR2, CAMK1D, and NR4A3 were 31, 8, 8, 3, 2, 
and 1, respectively. These genes can be considered as therapeutic 
targets and may be helpful for development of COPD treatment.

The associations Between the 38 Genes 
and air Pollutants, Particulate Matter, and 
Tobacco smoke Pollution
COPD has a close relationship with environmental factors. 
Pollution and smoking can trigger COPD. Some of the 38 genes 

have been reported to be associated with smoking by GWAS 
(genome-wide association study). For example, rs1374879 
within CNTN3, which ranked 9th in Table 1, was found to be 
associated with smoking quantity (Argos et al., 2014). Therefore, 
we systematically studied the associations between signature 
genes and air pollutants, particulate matter, and tobacco smoke 
pollution in CTD (comparative toxicogenomics database) 
(Mattingly et al., 2006). Table 3 listed how many manually 
curated literatures, the associations between the gene, and the 
environmental factor were reported.

It can be seen that 5 genes (HBEGF, DUSP1, NR4A2, NR4A3, 
and VNN2) were associated with all three environmental factors, 
14 genes were associated with two environmental factors, and 4 
genes were associated with one environmental factor. Column 
wise, there were 23 genes associated with particulate matter, 
17 genes associated with tobacco smoke pollution, and 7 genes 

TaBLE 3 | The associations between the 38 genes and air pollutants, 
particulate matter, and tobacco smoke pollution.

Gene air pollutants* Particulate 
matter*

Tobacco smoke 
pollution*

HBEGF 1 15 5
DIO2 0 5 1
CLCN3 0 0 0
SEPT4 0 1 1
FAT1 0 3 2
CTSE 0 4 4
CRIP1 1 1 0
ACADVL 0 4 0
CNTN3 0 0 0
UQCRQ 0 0 0
ASPN 0 0 0
ZNF786 0 0 0
RARRES2 0 3 1
BTC 0 0 0
FNDC1 0 2 1
DUSP1 1 12 3
C6orf145 0 0 0
NUTF2 0 1 1
TNN 0 2 1
COQ9 0 0 0
SCG5 0 1 0
BCHE 0 2 0
NR4A2 1 3 1
HS6ST3 0 0 0
SHE 0 0 0
C20orf111 0 0 0
REEP2 0 0 0
C19orf63 0 0 0
IRS2 0 2 1
FA2H 0 1 0
ACTL6A 1 1 0
NR4A3 1 2 1
DAO 0 1 1
VNN2 1 1 1
IGFL2 0 0 0
ZNF692 0 0 0
CAMK1D 0 3 1
HCAR2 0 2 1

*: The number literatures that suggested the association.
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associated with air pollutants. Particulate matter is a serious threat 
to health and can cause many lung diseases (Shu et al., 2016).

CONCLUsION
COPD and ILD are two common and similar lung diseases. Both 
diseases cause huge public health problems. The diagnosis of 
COPD and ILD is essential for early treatment. We analyzed the 
gene expression profiles of COPD and ILD patients from two 
batches that were measured with two microarray platforms. We 
chose one dataset as the training dataset and selected 38 genes 
that showed different expression pattern between COPD and ILD 
patients using advanced mRMR and IFS methods. Based on these 
38 genes, a powerful COPD/ILD SVM classifier was built. The 
classifier had great performance both on training dataset evaluated 
by LOOCV and on independent test dataset. The 38-gene classifier 
demonstrated great robustness and excellent prediction accuracy. 
The biological function analysis of the 38 genes indicated that 
many of them can be potential treatment targets that may improve 
the current COPD and ILD therapeutic practice.
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