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Pathway-centric approaches are widely used to interpret and contextualize -omics data. 
However, databases contain different representations of the same biological pathway, 
which may lead to different results of statistical enrichment analysis and predictive models 
in the context of precision medicine. We have performed an in-depth benchmarking of 
the impact of pathway database choice on statistical enrichment analysis and predictive 
modeling. We analyzed five cancer datasets using three major pathway databases and 
developed an approach to merge several databases into a single integrative one: MPath. 
Our results show that equivalent pathways from different databases yield disparate results 
in statistical enrichment analysis. Moreover, we observed a significant dataset-dependent 
impact on the performance of machine learning models on different prediction tasks. 
In some cases, MPath significantly improved prediction performance and also reduced 
the variance of prediction performances. Furthermore, MPath yielded more consistent 
and biologically plausible results in statistical enrichment analyses. In summary, this 
benchmarking study demonstrates that pathway database choice can influence the results 
of statistical enrichment analysis and predictive modeling. Therefore, we recommend the 
use of multiple pathway databases or integrative ones.

Keywords: pathway enrichment, benchmarking, databases, machine learning, statistical hypothesis testing

INTRODUCTION
As fundamental interactions within complex biological systems have been discovered in experimental 
biology labs, they have often been assembled into computable pathway representations. Because 
they have proven immensely useful in the analysis and interpretation of -omics data when coupled 
with algorithmic approaches (e.g., gene set enrichment analysis, GSEA), academic and commercial 
groups have generated and maintained a comprehensive set of databases during the last 15 years 
(Bader et al., 2006). Examples include KEGG, Reactome, WikiPathways, NCIPathways, and 
Pathway Commons (Schaefer et al., 2008; Cerami et al., 2011; Kanehisa et al., 2016; Slenter et al., 
2017; Fabregat et al., 2018).

However, these databases tend to differ in the average number of pathways they contain, the 
average number of proteins per pathway, the types of biochemical interactions they incorporate, and 
the subcategories of pathways that they provide (e.g., signal transduction, genetic interaction, and 
metabolic) (Kirouac et al., 2012; Türei et al., 2016). Pathways are often also described at varying levels 
of detail, with diverse data types and with loosely defined boundaries (Domingo-Fernández et al., 
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2018). Nonetheless, most pathway analyses are still conducted 
exclusively by employing a single database, often chosen in part 
by researchers' preferences or previous experiences (e.g., bias 
towards a database previously yielding good results and ease of 
use of a particular database) (Table 1). Notably, the selection of a 
suitable pathway database depends on the actual biological context 
that is investigated, yet KEGG remains severely overrepresented 
in published -omics studies. This raises concerns and motivates 
the consideration of multiple pathway databases or, preferably, an 
integration over several pathways resources.

Several integrative resources have been developed, including 
meta-databases [e.g., Pathway Commons (Cerami et al., 
2011), MSigDB (Liberzon et al., 2015), and ConsensusPathDB 
(Kamburov et al., 2008)] that enable pathway exploration in their 
corresponding web applications and integrative software tools 
[e.g., graphite (Sales et al., 2018), PathMe (Domingo-Fernandez 
et al., 2019), and OmniPath (Türei et al., 2016)] designed to 
enable bioinformatics analyses. By consolidating pathway 
databases, these resources have attempted to summarize major 
reference points in the existing knowledge and demonstrate how 
data contained in one resource can be complemented by data 
contained in others. Thus, through their usage, the biomedical 
community has benefitted from comprehensive overviews of 
pathway landscapes which can then make for more robust 
resources highly suited for analytic usage.

The typical approach to combine pathway information with 
-omics data is via statistical enrichment analysis, also known 
as pathway enrichment. The task of navigating through the 
continuously developing variants of enrichment methods has 
been undertaken by several recent studies which benchmarked 
the performance of these techniques (Bayerlová et al., 2015; 
Ihnatova et al., 2018; Lim et al., 2018) and guide users on the 
choice for their analyses (Fabris et al., 2019; Reimand et al., 2019). 
While Bateman et al. (2014) examined the impact of choice of 
different subsets of MSigDB on GSEA, it remains unclear what 
broader impact an integrative pathway meta-database would have 
for statistical enrichment analysis. Additionally, the overlap of 
pathways within the same integrative database can induce biases 
(Liberzon et al., 2015), specifically when conducting multiple 
testing correction via the popular Benjamini–Hochberg method 
(Benjamini and Hochberg, 1995) that supposes independence of 
statistical tests. This issue is of particular concern for large-scale 
meta-databases such as MSigDB.

The aim of this work is to systematically investigate the influence 
of alternative representations of the same biological pathway 
(e.g., in KEGG, Reactome, and WikiPathways) on the results of 
statistical enrichment analysis via three common methods: the 
hypergeometric test, GSEA, and signaling pathway impact analysis 
(SPIA) (Fisher, 1992; Subramanian et al., 2005; Tarca et al., 2008) 
using five The Cancer Genome Atlas (TCGA) datasets (Weinstein 
et al., 2013). In addition, we also show that pathway activity-
based patient classification and survival analysis via single-sample 
GSEA (ssGSEA; Barbie et al., 2009) can be impacted by the choice 
of pathway resource in some cases. As a solution, we propose 
to integrate different pathway resources via a method where 
semantically analogous pathways across databases (e.g., "Notch 
signaling pathway" in KEGG and "Signaling by NOTCH" pathway 
in Reactome) are combined. This approach exploits the pathway 
mappings and harmonized pathway representations described in 
our previous work (Domingo-Fernández et al., 2018; Domingo-
Fernandez et al., 2019). We demonstrate that when aided by our 
integrative pathway database, it is possible to better capture expected 
disease biology than with individual resources, and to sometimes 
obtain better predictions of clinical endpoints. Our entire analytic 
pipeline is implemented in a reusable Python package (pathway_
forte; see Materials and Methods) to facilitate reproducing the results 
with other databases or datasets in the future.

MATERIAlS AND METhODS
In the first two subsections, we describe the pathway resources 
and the clinical and genomic datasets we used in benchmarking. 
The following sections then outline the statistical enrichment 
analysis and predictive modeling conducted in this study. Finally, 
in the last two subsections, we describe the statistical methods 
and the software implemented to conduct the benchmarking.

Pathway Databases
Selection Criteria
Numerous viable pathway databases have been made available to 
infer biologically relevant pathway activity (Bader et al., 2006). 
In this work, we systematically compared three major ones (i.e., 
KEGG, Reactome, and WikiPathways) as the subset of databases 
to benchmark. The rationale for the inclusion of these databases 
was twofold: firstly, these databases are open-sourced, well-
established, and highly cited in studies investigating pathways 
associated with variable gene expression patterns in different 
sets of conditions (Table 1). Secondly, we expected distinctions 
between these databases to be strong enough to observe variable 
results of enrichment analysis and patient classification, yet 
these databases also contain a reasonable number of equivalent 
pathways such that objective comparisons could be made, as 
outlined in our previous work (Domingo-Fernández et al., 2018).

Data Retrieval and Processing
In order to systematically compare results yielded by different 
databases, we retrieved the contents of KEGG, Reactome, and 
WikiPathways using ComPath (Domingo-Fernández et al., 2018) 

TABlE 1 | Number of publications citing major pathway resources for pathway 
enrichment in PubMed Central (PMC), 2019. To develop an estimate on 
the number of publications using several pathway databases for pathway 
enrichment, SCAIView (http://academia.scaiview.com/academia; indexed on 
01/03/2019) was used to conduct the following query using the PMC corpus: 
“<pathway resource>” AND “pathway enrichment”.

Type Pathway resource Publications

Primary KEgg 27,713
Reactome 3,765
WikiPathways 651

Integrative MSigDB 2,892
ConsensusPathDB 339
Pathway Commons 1,640
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and converted it into the Gene Matrix Transposed (GMT) file 
format. Generated networks encoded in Biological Expression 
Language (BEL; Slater, 2014) were retrieved using PathMe 
(Domingo-Fernández et al., 2019).

To test the potential utility of an integrative pathway resource, 
we used equivalent pathways across the three databases that were 
manually curated in our previous work (Domingo-Fernández 
et al., 2018; see our earlier publication for further details). In 
the following, we call these “pathways analogs” or “equivalent 
pathways” (Figure 1A), while we call a pathway found as 
analogous across all KEGG, Reactome, as well as WikiPathways 
a “super pathway”.

In a second step, we merged equivalent pathways by 
taking the graph union with respect to contained genes and 
interactions (Figures 1B, C). We have also described this 
step in more detail in our earlier work (Domingo-Fernandez 
et al., 2019).

The set union of KEGG, Reactome, and WikiPathways, 
while taking into account pathway equivalence, gave rise to an 
integrative resource to which we refer as MPath (Figure 1D). By 
merging equivalent pathways, MPath contains a fewer number 
of pathways than the sum of all pathways from all primary 
resources. In total, MPath contains 2,896 pathways, of which 238 
are derived from KEGG, 2,119 from Reactome, and 409 from 

FIgURE 1 | Schema illustrating the generation of MPath. The curated pathway mapping catalog is depicted in (A), which links equivalent pathways from different 
resources. Pathways that are shared across two resources are referred to as pathway analogs (i.e., Pathway A in Reactome and Pathway A′ in KEGG) and pathways 
that are shared across all three resources are referred to as "super pathways" (i.e., Pathway A in KEGG, Pathway A′ in Reactome, and Pathway A″ in WikiPathways). 
(B) Using these mappings, gene sets of equivalent pathways from different resources can be combined, ensuring key molecular players from the different resources are 
included. (C) Similarly, network representations of the pathways can be overlaid to generate more comprehensive pathways. (D) Finally, both the combined gene sets 
and networks representations are included in MPath. Note that pathways that are exclusive to a single database are included in MPath unchanged.
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WikiPathways, while another 129 pathways are pathway analogs 
and 26 are super pathways.

We next compared the latest versions of pathway gene 
sets from KEGG, Reactome, WikiPathways, and MPath with 
pathway gene sets from MSigDB, a highly cited integrative 
pathway database containing older versions of the KEGG and 
Reactome gene sets (Liberzon et al., 2015). We downloaded 
KEGG and Reactome gene sets from the curated gene set (C2) 
collection of MSigDB (http://software.broadinstitute.org/gsea/
msigdb/collections.jsp #C2; version6.2; July 2018). Detailed 
statistics on the number of pathways from each resource are 
presented in Table S1.

Clinical and genomic Data
We used five widely used datasets acquired from TCGA 
(Weinstein et al., 2013), a cancer genomics project that has 
catalogued molecular and clinical information for normal and 
tumor samples (Table 2). TCGA data were retrieved through 
the Genomic Data Commons (GDC; https://gdc.cancer.gov) 
portal and cBioportal (https://www.cbioportal.org) on 14-03-
2019. RNA-seq gene expression data subjected to an mRNA 
quantification analysis pipeline for BRCA, KIRC, LIHC, OV, 
and PRAD TCGA datasets were queried, downloaded, and 
prepared from the GDC through the R/Bioconductor package, 
TCGAbiolinks (R version: 3.5.2; TCGAbiolinks version: 2.10.3) 
(Colaprico et al., 2015). The data were preprocessed as follows: 
gene expression was quantified by the number of reads aligned 
to each gene and read counts were measured using HTSeq 
and normalized using fragments per kilobase of transcript per 
million mapped reads upper quartile (FPKM-UQ). HTSeq raw 
read counts also subject to the GDC pipeline were similarly 
queried, downloaded, and prepared with TCGAbiolinks. Read 
count data downloaded for the BRCA, KIRC, LIHC, and PRAD 
datasets were processed to remove identical entries, while 
unique measurements of identical genes were averaged. The 
differential gene expression analysis of cancer versus normal 
samples was performed using the R/Bioconductor package, 
DESeq2 (version 1.22.2). Genes with adjusted p value < 5% were 
considered significantly dysregulated. For all downloaded data, 
gene identifiers were mapped to HGNC gene symbols (Povey 
et al., 2001), where possible. To obtain additional information 
on the survival status and time to death, or censored survival 
times of patients, patient identifiers in the TCGA datasets 
were mapped to their equivalent identifiers in cBioPortal. 
Additionally, cancer subtype classifications or the PRAD and 

BRCA datasets were retrieved from the GDC. We would like to 
note that although there are other cohorts available (e.g., COAD 
and STAD) containing all of these modalities, we did not include 
them in this analysis because of the limited number of samples 
they contain (i.e., less than 300 patients). Detailed statistics of all 
five datasets are presented in Table 2.

Pathway Enrichment Methods
In this subsection, we describe three different classes of 
pathway enrichment methods that we tested: 1) statistical 
overrepresentation analysis (ORA); 2) functional class scoring 
(FCS); and 3) pathway topology (PT)-based enrichment 
(Figure 2) (Khatri et al., 2012; García-Campos et al., 2015; 
Fabris et al., 2019).

Overrepresentation Analysis
We conducted pathway enrichment using genes that exhibited a 
q value <0.05 using a one-sided Fisher's exact test (Fisher, 1992) 
for each of the pathways in all pathway databases. We consider a 
pathway to be significantly enriched if its q value is smaller than 
0.05 after applying multiple hypothesis testing correction with 
the Benjamini–Yekutieli method under dependency (Benjamini 
and Yekutieli, 2001).

Functional Class Scoring Methods
We selected GSEA, one of the most commonly used FCS 
methods (Subramanian et al., 2005). We performed GSEA with 
the Python package, GSEApy (version 0.9.12; https://github.
com/zqfang/gseapy), using normalized RNA-seq expression 
quantifications (FPKM-UQ) obtained for the BRCA, KIRC, 
LIHC, and PRAD datasets containing both normal and tumor 
samples (Table 2). All genes were ranked by their differential 
expression based on their log2 fold changes. Query gene 
sets for GSEA included pathways from KEGG, Reactome, 
WikiPathways, and MPath. GSEA results were filtered to 
include pathway gene sets with p values below 0.05 and a 
minimum gene set size of 10 or a maximum gene size of 3,000. 
Similarly, GSEApy was used to perform ssGSEA (Barbie et al., 
2009) (Table S2) to acquire sample-wise pathway scores using 
FPKM-UQ for BRCA, KIRC, LIHC, OV, and PRAD datasets, 
irrespective of phenotype labels (Barbie et al., 2009). Datasets 
were filtered to only include normalized expression data for 
genes found in the pathway gene sets of KEGG, Reactome, 
WikiPathways, and MPath and then used for ssGSEA. 
Expression data were ranked and sample-wise normalized 
enrichment scores were obtained.

TABlE 2 | Statistics of the five TCGA cancer datasets used in this work.

Cancer type TCgA abbreviation Tumor samples Normal samples Surviving patients Deceased patients

Breast invasive carcinoma BRCA 1,102 113 946 153
Kidney renal clear cell carcinoma KIRC 538 72 365 173
liver hepatocellular carcinoma LIHC 371 50 240 130
Prostate adenocarcinoma PRAD 498 52 498 10
Ovarian cancer OV 374 0 143 229

The statistics correspond to those retrieved from the GDC portal and cBioportal on 14-03-2019. Longitudinal statistics of survival data are presented in Figure S1.
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Pathway Topology-Based Enrichment
To evaluate PT-based methods, we selected the well-known 
and highly cited SPIA method (Tarca et al., 2008) for two main 
reasons: firstly, the guidelines outlined by a comparative study 
on topology-based methods (Ihnatova et al., 2018) recommend 
the use of SPIA for datasets with properties similar to TCGA 
(i.e., possessing two well-defined classes, full expression profiles, 
many samples, and numerous differentially expressed genes). 
Secondly, SPIA has been reported to have a high specificity while 
preserving dependency on topological information (Ihnatova 
et al., 2018). Because the R/Bioconductor's SPIA package only 
contains KEGG pathways, we converted the pathway topologies 
from the three databases used in this work to a custom format in 
a similar fashion as graphite (Sales et al., 2018) (Supplementary 
Text). We declared significance for SPIA-based pathway 
enrichment, if the Bonferroni corrected p value was <5%.

Evaluation Based on Enrichment of Pathway Analogs
To better understand the impact of database choice, we compared 
the raw p value rankings (i.e., before multiple testing correction) 
of pathway analogs across each possible pair of databases (i.e., 
in KEGG and Reactome, Reactome and WikiPathways, and 
WikiPathways and KEGG) and in each statistical enrichment 
analysis (i.e., hypergeometric test, GSEA, and SPIA) with 
the Wilcoxon signed-rank test. It assessed the average rank 
difference of the pathway analogs and reported how significantly 
different the results were for each database pair. Importantly, we 
only tested statistical enrichment of the analogous pathways in 
order to avoid statistical biases due to differences in the size of 
pathway databases.

Machine learning
ssGSEA was conducted to summarize the gene expression profile 
mapping to a particular pathway of interest within a given patient 
sample, hence resulting in a pathway activity profile for each 
patient. We then evaluated the different pathway resources with 
respect to three machine learning tasks:

 1. Prediction of tumor vs. normal
 2. Prediction of known tumor subtype
 3. Prediction of overall survival

Prediction of Tumor vs. Normal
The first task was to train and evaluate binary classifiers to predict 
normal versus tumor sample labels. This task was conducted for 
four of the five TCGA datasets (i.e., BRCA, KIRC, LIHC, and 
PRAD), while OV, which only contains tumor samples, was 
omitted. We performed this classification using a commonly used 
elastic net penalized logistic regression model (Zou and Trevor, 
2005). Prediction performance was evaluated via a 10 times 
repeated 10-fold stratified cross-validation. Importantly, tuning 
of elastic net hyper-parameters (l1, l2 regularization parameters) 
was conducted within the cross-validation loop to avoid over-
optimism (Molinaro et al., 2005).

Prediction of Tumor Subtype
The second task was to train and evaluate multi-label classifiers 
to predict tumor subtypes using sample-wise pathway activity 
scores generated from ssGSEA. This task was only conducted 
for the BRCA and PRAD datasets, similar to the work done by 
Lim et al. (2018), because the remaining three datasets included 

FIgURE 2 | Design of the benchmarking schema. The influence of alternative pathway databases on the results of statistical pathway enrichment (left) and machine 
learning classification tasks (right) are compared.
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in this work lacked subtype information. From the five breast 
cancer subtypes present in the BRCA dataset by the PAM50 
classification method (Sorlie et al., 2001), we included four 
subtypes (i.e., 194 Basal samples, 82 Her2 samples, 567 LumA 
samples, and 207 LumB samples). These four were selected as 
they constitute the agreed-upon intrinsic breast cancer subtypes 
according to the 2015 St. Gallen Consensus Conference (Coates 
et al., 2015) and are also recommended by the ESMO Clinical 
Practice Guidelines (Senkus et al., 2015). For the PRAD 
dataset, evaluated subtypes included 151 ERG samples, 27 
ETV1 samples, 14 ETV4 samples, 38 SPOP samples, and 87 
samples classified as other (Cancer Genome Atlas Research 
Network, 2014). Similar to the approach by Graudenzi et al. 
(2017), support vector machines (SVMs) (Cortes and Vapnik, 
1995) were used for subtype classification by implementing 
a one-versus-one strategy in which a single classifier is fit for 
each pair of class labels. This strategy transforms a multi-
class classification problem into a set of binary classification 
problems. We again used a 10 times repeated 10-fold cross-
validation scheme, and the soft margin parameter of the linear 
SVM was tuned within the cross-validation loop via a grid 
search. We assessed the multi-class classifier performance in 
terms of accuracy, precision, and recall.

Prediction of Overall Survival
The third task was to train and evaluate machine learning models 
to predict overall survival of cancer patients. For this purpose, a 
Cox proportional hazards model with elastic net penalty was used 
(Tibshirani, 1997; Friedman et al., 2010). Prediction performance 
was evaluated on the basis of five TCGA datasets (i.e., BRCA, 
LIHC, KIRC, OV, and PRAD) (Table 2) using the same 10 times 
repeated 10-fold nested cross-validation procedure as described 
before. The performance of the model was assessed by Harrell's 
concordance index (c-index; Harrell et al., 1982), which is an 
extension of the well-known area under receiver operating 
characteristic (ROC) curve for right censored time-to-event 
(here: death) data.

Statistical Assessment of Database Impact on 
Prediction Performance
To understand the degree to which the observed variability of area 
under the ROC curve (AUC) values, accuracies, and c-indices 
could be explained by the actually used pathway resource, 
we conducted a two-way analysis of variance (ANOVA). The 
ANOVA model had the following form:

 performance database dataset database data + + × set  

We then tested the significance of the database factor via 
an F test. In addition, we performed Wilcoxon tests analysis to 
understand specific differences between databases in a dataset-
dependent manner.

Software Implementation
The workflow presented in this article consists of three major 
components: 1) the acquisition and preprocessing of gene set 

and pathway databases; 2) the acquisition and preprocessing 
of experimental datasets; and 3) the re-implementation or 
adaptation of existing analytical pipelines for benchmarking. 
We implemented these components in the pathway_forte 
Python package to facilitate the reproducibility of this work, the 
inclusion of additional gene set and pathway databases, and to 
include additional experimental datasets.

The acquisition of KEGG, MSigDB, Reactome, and 
WikiPathways was mediated by their corresponding Bio2BEL 
Python packages (Hoyt et al., 2019; https://github.com/
bio2bel) in order to provide uniform access to the underlying 
databases and to enable the reproduction of this work as they 
are updated. Each Bio2BEL package uses Python's entry points 
to integrate in the previously mentioned ComPath framework 
in order to support uniform preprocessing and enable the 
integration of further pathway databases in the future, without 
changing any underlying code in the pathway_forte package. 
The network preprocessing defers to PathMe (Domingo-
Fernandez et al., 2019; https://github.com/pathwaymerger). 
Because it is based on PyBEL (Hoyt et al., 2018; https://github.
com/pybel), it is extensible to the growing ecosystem of BEL-
aware software.

While the acquisition and preprocessing of experimental 
datasets is currently limited to a subset of TCGA, it is extensible 
to further cancer-specific and other condition-specific datasets. 
We implemented independent preprocessing pipelines for several 
previously mentioned datasets using extensive manual curation, 
preparation, and processing with the pandas Python package 
(McKinney, 2010; https://github.com/pandas-dev/pandas). Unlike 
the pathway databases, which were amenable to standardization, 
the preprocessing of each new dataset must be bespoke.

The re-implementation and adaptation of existing analytical 
methods for functional enrichment and prediction involved 
wrapping several existing analytical packages (Table S3) in order 
to make their application programming interfaces more user-
friendly and to make the business logic of the benchmarking 
more elegantly reflected in the source code of pathway_forte. 
Each is independent and can be used with any combination of 
pathway database and dataset. Finally, all figures presented in 
this paper and complementary analyses can be generated and 
reproduced with the Jupyter notebooks located at https://github.
com/pathwayforte/results/.

Ultimately, we wrapped each of these components in a 
command line interface (CLI) such that the results presented in 
each section of this work can be generated with a corresponding 
command following the guidelines described by Grüning et al. 
(2019). The scripts for generating the figures in this manuscript 
are not included in the main pathway_forte, but rather in their 
own repository within Jupyter notebooks at https://github.com/
PathwayForte/results.

The source code of the pathway_forte Python package is 
available at https://github.com/PathwayForte/pathway-forte, 
its latest documentation can be found at https://pathwayforte.
readthedocs.io, and its distributions can be found on PyPI at 
https://pypi.org/project/pathway-forte.

The pathway_forte Python package has a tool chain consisting 
of pytest (https://github.com/pytest-dev/pytest) as a testing 
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framework, coverage (https://github.com/nedbat/coveragepy) 
to assess testing coverage, sphinx (https://github.com/sphinx-
doc/sphinx) to build documentation, flake8 (https://github.
com/PyCQA/flake8) to enforce code and documentation 
quality, setuptools (https://github.com/pypa/setuptools) to build 
distributions, pyroma (https://github.com/regebro/pyroma) to 
enforce package metadata standards, and tox (https://github.com/
tox-dev/tox) as a build tool to facilitate the usage of each of these 
tools in a reproducible way. It leverages community and open-
source resources to improve its usability by using Travis-CI (https://
travis-ci.com) as a continuous integration service, monitoring 
testing coverage with Codecov (https://codecov.io), and hosting its 
documentation on Read the Docs (https://readthedocs.org).

hardware
Computations for each of the tasks were performed on a 
symmetric multiprocessing (SMP) node with four Intel Xeon 
Platinum 8160 processors per node with 24 cores/48 threads each 
(96 cores/192 threads per node in total) and 2.1-GHz base/3.7-
GHz Turbo Frequency with 1,536-GB/1.5-TB RAM (DDR4 ECC 
Reg). The network was 100 GBit/s Intel OmniPath, storage was 
2× Intel P4600 1.6-TB U.2 PCIe NVMe for local intermediate 
data and BeeGFS parallel file system for Home directories. Table 
3 provides a qualitative description of the memory and time 
requirements for each task.

RESUlTS
The results of the benchmarking study have been divided into 
two subsections for each of the pathway methods described 
above. We first compared the effects of database selection on 
the results of functional pathway enrichment methods. In the 
following subsection, we benchmarked the performance of the 
pathway resources on the various machine learning classification 
tasks conducted.

Benchmarking the Impact on Enrichment 
Methods
Overrepresentation Analysis
As illustrated by our results, pathway analogs from different 
pathway databases in several cases showed clearly significant 

rank differences (Figure 3). These differences were most 
pronounced between Reactome and WikiPathways. For 
example, while the "Thyroxine Biosynthesis" pathway was 
highly statistically significant (q value <0.01) in the LIHC 
dataset for Reactome, its analogs in WikiPathways (i.e., 
"Thyroxine (Thyroid Hormone) Production") and KEGG 
(i.e., "Thyroid Hormone Synthesis") were not. However, the 
pathway was found to be significantly enriched in MPath. Such 
differences were similarly observed for the "Notch signaling" 
pathway in the PRAD dataset, in which the pathway was 
highly statistically significant (q value <0.01) for Reactome and 
MPath, but showed no statistical significance for KEGG and 
WikiPathways. Similar cases were systematically observed for 
additional pathway analogs and super pathways, demonstrating 
that marked differences in rankings can arise depending on the 
database used.

Gene Set Enrichment Analysis
Similar to ORA, GSEA showed significant differences between 
pathway analogs across databases in several cases (Figure 3). 
These differences were most pronounced between KEGG and 
WikiPathways in the KIRC and LIHC datasets and between 
KEGG and Reactome in the BRCA and PRAD datasets. Since 
GSEA calculates the observed direction of regulation (e.g., over/
underexpressed) of each pathway, we also examined whether 
super pathways or pathway analogs exhibited opposite signs in 
their normalized enrichment scores (NES) (e.g., one pathway 
is overexpressed while its equivalent pair is underexpressed). 
As an illustration, GSEA results of the LIHC dataset revealed 
the contradiction that the "DNA replication" pathway, one of 26 
super pathways, was overexpressed according to Reactome and 
underexpressed according to KEGG and WikiPathways, though 
the pathway was not statistically significant for any of these 
databases. However, the merged "DNA replication" pathway in 
MPath appeared as significantly underexpressed. Similarly, in 
the BRCA dataset, the WikiPathways definition of the "Notch 
signaling" and "Hedgehog signaling" pathways were significantly 
overexpressed, while the KEGG and Reactome definitions were 
insignificantly overexpressed. Interestingly, both the merged 
"Notch signaling" and merged "Hedgehog signaling" pathways 
appeared as significantly underexpressed (q < 0.05) in MPath.

Signaling Pathway Impact Analysis
The final of the three statistical enrichment analyses conducted 
revealed further differences between pathway analogs across 
databases. As expected, differences in the results of analogous 
pathways were exacerbated on topology-based methods 
compared with ORA and GSEA, as these latter methods do 
not consider pathway topology (i.e., incorporation of pathway 
topology introduces one extra level of complexity, leading to 
higher variability) (Figure 3). Beyond a cursory inspection 
of the statistical results, we also investigated the concordance 
of the direction of change of pathway activity (i.e., activation 
or inhibition) for equivalent pathways. We found that for two 
database (i.e., LIHC and KIRC), the direction of change was 
inconsistently reported for the "TGF beta signaling" pathway, 
depending on the database used (i.e., the KEGG representation 

TABlE 3 | A qualitative description of the computational costs of the analyses 
performed.

Task Relative memory 
usage

Timescale

ORA Low Seconds
GSEA Medium Minutes
ssGSEA Very high Hours
Prediction of tumor vs. normal Medium Minutes
Prediction of known tumor subtype Medium Minutes
Prediction of overall survival Medium Hours

Performing ssGSEA required on the scale of 100 GB of RAM for some dataset/database 
combinations, while the other tasks could be run on a modern laptop with no issues.
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was activated and the WikiPathways one inhibited). A similar 
effect was observed in the "Estrogen signaling pathway," 
found to be inhibited in KEGG and activated in WikiPathways 
in the LIHC dataset. The merging of equivalent pathway 
networks resulted in the observation of inhibition for both 
the "TGF beta signaling" and "Estrogen signaling" pathways in  
MPath results.

Benchmarking the Impact on Predictive 
Modeling
Prediction of Tumor vs. Normal
We compared the prediction performance of an elastic net 
penalized logistic regression classifier to discriminate normal 
from cancer samples based on their pathway activity profiles. 
The cross-validated prediction performance was measured 

FIgURE 3 | Left Distribution of raw p values of pathway analogs across databases [top to bottom: overrepresentation analysis (ORA), gene set enrichment analysis 
(GSEA), and signaling pathway impact analysis (SPIA)]. Right Significance of average rank differences of pathway analogs across pairwise database comparisons for 
the given method.
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via the AUC and precision-recall curve (see the corresponding 
Materials and Methods section). The AUC indicated no overall 
significant effect of the choice of pathway database on model 
prediction performance (p = 0.5, ANOVA F test; Figure 4). 
Similarly, the results of the precision-recall curve did not show a 
significant effect of the database selected on the model's predictive 
performance. Finally, these results were not surprising due to the 
relative ease of the classification task (i.e., all AUC values were 
close to 1).

Prediction of Tumor Subtype
We next compared the prediction performances of a multi-
class classifier predicting known tumor subtypes of BRCA 
and PRAD using ssGSEA-based pathway activity profiles. 
Figure 5 demonstrated no overall significant effect of the 
choice of pathway database (p = 0.16, ANOVA F test). We used 
Wilcoxon tests to investigate if each pair of distributions of 
the accuracies based on each database were different, but did 

not achieve statistical significance (q < 0.01) after Benjamini–
Hochberg correction for multiple hypothesis testing. While 
the lack of significance is probably due to the limited amount 
of datasets (only two contained subtype information) and 
measurements, we would like to note that MPath showed 
the best classification metrics (similar to the previous 
classification task).

Prediction of Overall Survival
As a next step, we compared the prediction performance of an 
elastic net penalized Cox regression model for overall survival 
using ssGSEA-based pathway activity profiles derived from 
different resources. As indicated in Figure 6, no overall significant 
effect of the actually used pathway database could be observed 
(p = 0.28, ANOVA F test). A limiting factor of this analysis is the 
fact that overall survival can generally only be predicted slightly 
above chance level (c-indices range between 55% and 60%) 
based on gene expression alone, which is in agreement with the 

FIgURE 4 | Comparison of prediction performance of an elastic net classifier (tumor vs. normal) using single-sample gene set enrichment analysis (ssGSEA)-based 
pathway activity profiles computed from different resources. Each box plot shows the distribution of the area under the ROC curves (AUCs) over 10 repeats of the 
10-fold cross-validation procedure.
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FIgURE 5 | Comparison of prediction performance of an elastic net classifier (BRCA and PRAD subtypes) using single-sample gene set enrichment analysis 
(ssGSEA)-based pathway activity profiles computed from different resources. Each box plot shows the distribution of the area under the ROC curves (AUCs) over 10 
repeats of the 10-fold cross-validation procedure.

FIgURE 6 | Comparison of prediction performance of an elastic net penalized Cox regression model (overall survival) using single-sample gene set enrichment 
analysis (ssGSEA)-based pathway activity profiles computed from different resources. Each box plot shows the distribution of the area under the ROC curves 
(AUCs) over 10 repeats of the 10-fold cross-validation procedure.
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literature (Van Wieringen et al., 2009; Fröhlich, 2014; Mayr and 
Schmid, 2014; Zhang et al., 2018).

DISCUSSION
In this work, we presented a comprehensive comparative study 
of pathway databases based on functional enrichment and 
predictive modeling. We have shown that the choice of pathway 
database can significantly influence the results of statistical 
enrichment, which raises concerns about the typical lack of 
consideration that is given to the choice of pathway resource 
in many gene expression studies. This finding was specifically 
pronounced for SPIA because this method is a topology-based 
enrichment approach and therefore expected to be most sensitive 
to the actual definition of a pathway. At the same time, we 
observed that an integrative pathway resource (MPath) led to 
more biologically consistent results and, in some cases, improved 
prediction performance.

Generating a merged dataset such as MPath is non-trivial. We 
purposely restricted this study to three major pathway databases 
because of the availability of inter-database pathway mappings 
and pathway networks from our previous work which enabled 
conducting objective database comparisons. The incorporation 
of additional pathway databases into MPath would first require 
the curation of pathway mappings prior to conducting the 
benchmarking study, which can be labor-intensive. Furthermore, 
performing the tasks described in this work comes with a high 
computational cost (Table 1).

Our strategy to build MPath is one of many possible 
approaches to integrate pathway knowledge from multiple 
databases. Although alternative meta-databases such as 
Pathway Commons and MSigDB do exist, the novelty of this 
work lies in the usage of mappings and harmonized pathway 
representations for generating a merged dataset. While we 
have presented MPath as one possible integrative approach, 
alternative meta-databases may be used, but would require 
that researchers ensure that the meta-databases' contents are 
continuously updated (Wadi et al., 2016).

Our developed mapping strategy between different 
graph representations of analogous pathways enabled us 
to objectively compare pathway enrichment results that 
otherwise would have been conducted manually and 
subjectively. Furthermore, they allowed us to generate super 
pathways inspired by previous approaches that have shown 
the benefit of merging similar pathway representations 
(Doderer et al., 2012; Vivar et al., 2013; Belinky et al., 2015; 
Stoney et al., 2018; Miller et al., 2019). In this case, this was 
made possible by the fully harmonized gene sets and networks 
generated by our previous work, ComPath and PathMe. A 
detailed description of the ComPath and PathMe publications, 
source code, and extensions to existing analyses (i.e., SPIA) to 
better suit the methods used in this work can be found in the 
Supplementary Text.

One of the limitations of this work is that we restricted 
the analysis to five cancer datasets from TCGA and we did 

not expand it to other conditions besides cancer. The use of 
this disease area was mainly driven by the availability of data 
and the corresponding possibilities to draw statistically valid 
conclusions. However, we acknowledge the fact that data from 
other disease areas may result in different findings. More 
specifically, we believe that a similar benchmarking study 
based on data from disease conditions with an unknown 
pathophysiology (e.g., neurological disorders) may yield even 
more pronounced differences between pathway resources. 
Additionally, further techniques for gene expression-based 
pathway activity scoring could be incorporated, such as 
Pathifier or SAS (Drier et al., 2013; Lim et al., 2016).
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