
1

Edited by: 
Chirag Patel, 

Harvard Medical School, 
United States

Reviewed by: 
Yiran Guo, 

Children’s Hospital of Philadelphia, 
United States  

Jing Hua Zhao, 
University of Cambridge, 

United Kingdom  
Shannon Lynch, 

Fox Chase Cancer Center, 
United States  

Elizabeth Handorf, 
Fox Chase Cancer Center, 

United States in collaboration with SL

*Correspondence: 
Molly A. Hall 

mah546@psu.edu

†These authors share first authorship

Specialty section: 
This article was submitted to 

 Applied Genetic Epidemiology, 
 a section of the journal 

 Frontiers in Genetics

Received: 29 November 2018
Accepted: 08 November 2019
Published: 18 December 2019

Citation: 
Lucas AM, Palmiero NE, 

McGuigan J, Passero K, Zhou J, 
Orie D, Ritchie MD and Hall MA 
(2019) CLARITE Facilitates the 

Quality Control and Analysis Process 
for EWAS of Metabolic-Related Traits. 

 Front. Genet. 10:1240. 
 doi: 10.3389/fgene.2019.01240

CLARITE Facilitates the Quality 
Control and Analysis Process for 
EWAS of Metabolic-Related Traits
Anastasia M. Lucas 1†, Nicole E. Palmiero 2†, John McGuigan 2, Kristin Passero 2,3, 
Jiayan Zhou 2, Deven Orie 2, Marylyn D. Ritchie 1 and Molly A. Hall 2,3*

1 Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States, 
2 Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, 
University Park, PA, United States, 3 Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 
PA, United States

While genome-wide association studies are an established method of identifying genetic 
variants associated with disease, environment-wide association studies (EWAS) highlight 
the contribution of nongenetic components to complex phenotypes. However, the lack 
of high-throughput quality control (QC) pipelines for EWAS data lends itself to analysis 
plans where the data are cleaned after a first-pass analysis, which can lead to bias, or 
are cleaned manually, which is arduous and susceptible to user error. We offer a novel 
software, CLeaning to Analysis: Reproducibility-based Interface for Traits and Exposures 
(CLARITE), as a tool to efficiently clean environmental data, perform regression analysis, 
and visualize results on a single platform through user-guided automation. It exists as 
both an R package and a Python package. Though CLARITE focuses on EWAS, it is 
intended to also improve the QC process for phenotypes and clinical lab measures for a 
variety of downstream analyses, including phenome-wide association studies and gene-
environment interaction studies. With the goal of demonstrating the utility of CLARITE, 
we performed a novel EWAS in the National Health and Nutrition Examination Survey 
(NHANES) (N overall Discovery=9063, N overall Replication=9874) for body mass 
index (BMI) and over 300 environment variables post-QC, adjusting for sex, age, race, 
socioeconomic status, and survey year. The analysis used survey weights along with 
cluster and strata information in order to account for the complex survey design. Sixteen 
BMI results replicated at a Bonferroni corrected p < 0.05. The top replicating results were 
serum levels of g-tocopherol (vitamin E) (Discovery Bonferroni p: 8.67x10-12, Replication 
Bonferroni p: 2.70x10-9) and iron (Discovery Bonferroni p: 1.09x10-8, Replication Bonferroni 
p: 1.73x10-10). Results of this EWAS are important to consider for metabolic trait analysis, 
as BMI is tightly associated with these phenotypes. As such, exposures predictive of BMI 
may be useful for covariate and/or interaction assessment of metabolic-related traits. 
CLARITE allows improved data quality for EWAS, gene-environment interactions, and 
phenome-wide association studies by establishing a high-throughput quality control 
infrastructure. Thus, CLARITE is recommended for studying the environmental factors 
underlying complex disease.
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InTRODUCTIOn
Genome-wide association studies (GWAS) have been successful 
at identifying variants associated with complex disease; yet, it is 
becoming clearer that many complex diseases have environmental 
contributions as well (Dempfle et al., 2008). Environment-
wide association studies (EWAS) have identified behaviors and 
exposures that are associated with a given phenotype, such as with 
type II diabetes (Patel et al., 2010; Hall et al., 2014), high blood 
pressure (McGinnis et al., 2016), metabolic syndrome (Lind 
et al., 2013), and arterial disease (Zhuang et al., 2018). Though 
the backbone of EWAS is regression, a traditional and established 
statistical method, the series of data preprocessing steps the user 
takes to reach the analysis stage has not been standardized. Where 
GWAS shines is its standardized genomic quality control (QC) 
pipelines (Lemke et al., 2010; Turner et al., 2011; Ellingson and 
Fardo, 2016; MacArthur et al., 2017), made easily executable by 
a variety of popular and sophisticated platforms, such as PLINK 
(Purcell et al., 2007), PLATO (Hall et al., 2017; Ritchie Lab and 
Geisginger Health Systems, 2017), and GCTA (Yang et al., 2011). 
EWAS, however, falls behind GWAS in this regard. In contrast 
to single nucleotide polymorphism (SNP) and other types of 
genetic data, the majority of environmental data, such as survey 
data or clinical lab measures, are often cleaned manually. The 
lack of standardization of high-throughput pipelines for these 
types of data lends itself to analysis plans where the data are not 
cleaned until after a first-pass analysis is initially completed, and 
this can lead to false negatives (Supplemental Figures 1 and 2, 
Supplemental Table 1) and/or data-fudging (Van Den Broeck 
et al., 2005; Motulsky, 2015; Peng, 2015). Alternately, data are 
cleaned manually before analysis, which often takes great time 
and effort. Furthermore, manual cleaning is subjective since it 
relies on the individual investigator’s assessment of the data, 
leading to a “cleaned” dataset having potentially many different 
forms. This subjective nature of data cleaning contributes to the 
reproducibility problems that have plagued the field and have 
been the source of increasing criticism (Gentleman et al., 2004). 
Still, removing the user completely from the data cleaning process 
is both unwise and infeasible. We recognize that it is in the best 
interest of the individual study to treat each dataset differently 
depending on both the data itself and the inferences made. Here, 
we propose an easily accessible software package (available in 
both R and Python), CLeaning to Analysis: Reproducibility-
based Interface for Traits and Exposures (CLARITE), as a tool to 
ease the process of cleaning environmental and trait data through 
user-guided automation.

The goal of CLARITE is to guide a dataset from the “raw” 
data stage to EWAS analysis and subsequent visualization of 
results. The package is designed to lead a user through the 
stages of data cleaning: from generating descriptive statistics, 
to making QC decisions informed by the descriptive statistics, 
to running analyses on the filtered dataset and visualizing the 
results. CLARITE’s framework consists of a number of functions 
intended for filtering, summarizing, and plotting continuous, 
categorical, and binary data. We recognize that users may have 
different needs that fall outside of our package. For this reason, the 
code for the CLARITE R package is publicly available on GitHub 

(https://github.com/HallLab/clarite) and can be easily modified. 
The same is true of the Python package (https://github.com/
HallLab/clarite-python) which also has online documentation 
(https://halllab.github.io/clarite-python/) and is available on 
the Python Package Index (https://pypi.org/). For simplicity, the 
analysis is described here using the R package, although it was 
performed using both versions with concordant results.

Herein, we introduce CLARITE as a high-throughput method 
of cleaning and analyzing environmental data. To demonstrate 
this, we applied CLARITE to a novel EWAS of body mass index 
(BMI) using data from the National Health and Nutrition 
Examination Survey (NHANES), obtained from https://github.
com/chiragjp/nhanes_scidata (Patel et al., 2016; Kohane and 
Avilach, 2018), which contains over 1,100 measures on a total of 
22,624 adult samples across four surveys from 1999–2006. Here, 
we present our QC pipeline and EWAS on categorical, binary, and 
continuous exposures (including questionnaire, nutrient, and 
pharmaceutical measures, among others) on BMI in Discovery 
and Replication datasets. Results of this EWAS are important to 
consider for metabolic trait analysis, as BMI is tightly associated 
with these phenotypes, and as such, exposures predictive of BMI 
may be useful for covariate and/or interaction assessment of 
metabolic-related traits.

By creating a robust pipeline from the raw data stage 
through EWAS, we show that cleaning and analyzing a dataset 
of this size can be streamlined and is feasible from both a user 
and computational standpoint. The pipeline described here 
using CLARITE is recommended for ensuring high quality 
data included in big data analyses that utilize large-scale 
environmental and/or phenotype data such as EWAS, phenome-
wide association studies (PheWAS), and gene-environment 
interaction analysis. Improving the quality of data with CLARITE 
will allow for increased reproducibility and replication of results 
and ultimately will lead to enhanced understanding of the 
environmental underpinnings of complex human phenotypes.

METhODS

nhAnES Dataset
The focus of this study was to identify associations between 
BMI and environmental exposures in adults using data from the 
NHANES, a program aimed at studying health and nutrition 
for adults and children in the United States. The survey consists 
of dietary, socioeconomic, and general health measurements 
obtained through both questionnaire responses and clinical 
laboratory measurements. Curated data for 41,474 individuals 
and 1,191 variables across four survey periods (1999–2000, 2001–
2002, 2003–2004, 2005–2006), are freely available on GitHub 
(https://github.com/chiragjp/nhanes_scidata) and through 
the NHANES Dataset Explorer (Patel et al., 2016; Kohane and 
Avilach, 2018).

Participants included in the present study were at least eighteen 
years of age at the time of study participation. We employed a 
discovery and replication protocol in our pipeline, whereby QC 
and EWAS were first performed in a specified Discovery set of 
the NHANES data and the results that were significant when 
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allowing for a 10% false discovery rate (FDR) were considered 
for replication in a separate subset of NHANES (Replication 
dataset). Participants in the 1999–2000 and 2001–2002 NHANES 
data release cycles were included in the Discovery dataset (N = 
9,063; 52% female, 47% white, 19% black, 25% Mexican, 5% other 
Hispanic, 3% other ethnicity) and participants in the 2003–2004 
and 2005–2006 NHANES data release cycles were included in 
the Replication dataset (N = 9,874; 52% female, 49% white, 23% 
black, 21% Mexican, 3% other Hispanic, 1% other ethnicity). For 
both Discovery and Replication datasets, only variables available 
for both survey years within the datasets were considered 
for analysis. For instance, if an exposure was only available in 
release cycle 1999–2000, it was dropped and not considered 
for Discovery EWAS. Additionally, variables were excluded if 
a suitable survey weight could not be determined based on the 
NHANES documentation (https://wwwn.cdc.gov/nchs/nhanes/
ContinuousNhanes/).

Accounting for the Complex Sampling 
Design of nhAnES
Complex survey designs incorporate survey (sample) weights 
to ensure sample data is representative of the population from 
which it was obtained (Lumley, 2004; Johnson et al., 2013). 
Sample weights both account for the probability of selecting a 
given individual for a survey and adjust the contribution of each 
sample in the analysis to correct under- or over-representation of 
population subgroups (Lee and Forthofer, 2006). Data collected 
using a complex design can lead to biased results if the data is 
treated as though obtained through simple random sampling 
(Lumley, 2004; Lee and Forthofer, 2006). Incorporating survey 
weights and accounting for the complex survey design is prudent 
for unbiased analysis of NHANES data.

CLARITE was used along with the R survey package to account 
for the strata, primary sampling units (PSU), and sample weights 
available in the NHANES data. Variance was estimated using the 
Taylor series linearization method (Lumley, 2004). CLARITE’s 
ewas() function accepts survey weights and utilizes the correct 
variance estimation procedure to account for PSU and strata. It 
can accept a single weight to use for all tests, or for heterogeneous 
tests, where the desired weights vary depending on the variables 
and covariates in the model, CLARITE can flexibly accept a 
named list of weights that match each regressed variable with the 
correct weight for that model. As per the NHANES guidelines, 
each variable was matched with the weight corresponding to the 
smallest subsample of individuals (Johnson et al., 2013).

The NHANES data collection for the 1999–2006 surveys was 
tiered. All samples were included in the home interview stage, 
from which a random sample was selected to participate in the 
mobile examination center (MEC) assessment. From the MEC 
subsample, smaller random subsamples were derived to collect 
additional information (ex: dietary recall subsample, fasting 
subsample, laboratory environmental subsample). For each 
survey cycle, distinct 4-year/2-year weights were calculated for the 
interview section, MEC examination, and individual subsamples. 
Each regression model retained the outcome, logBMI (calculated 
from the variable BMXBMI) and the covariates (sex, ethnicity, 

socioeconomic status, age, and survey year). Each covariate was 
assessed in the home interview portion of the survey and was thus 
assigned the home interview weight. BMXBMI was measured 
in the MEC examination and assigned MEC weights. Because 
the MEC examination comprised a smaller subsample than the 
home interview, the MEC weights were used for each regression 
model unless the predictor variable came from a smaller analytic 
subsample. When low-density lipoprotein (LDL) was assessed 
as a potential confounder, the weight for the LDL measure was 
used because it was measured in a smaller subsample than the 
predictor variables. The variables from the Unified NHANES 
dataset were manually assigned their respective four-year and/
or two-year weights.

Prior to 2000, a 2-year survey weight was calculated for each 
survey cycle using data from the 1990 U.S. Census. Beginning 
with the 2001–2002 data release, the sample weights were 
calculated using data from the new 2000 U.S. Census. Four-
year survey weights are available in NHANES for combined 
analysis of these two survey cycles. For the replication analysis, 
the NHANES guidelines for creating a combined 4-year survey 
weight were followed.

Data Quality Control Using CLARITE in 
Discovery Dataset
A broad overview of CLARITE’s QC, analysis, and visualization 
pipeline is displayed in Figure 1. In order to ensure data integrity, 
the following QC pipeline was executed using the CLARITE R 
package. Prior to QC, 962 environmental variables from the 
NHANES dataset were considered for the Discovery dataset.

Missingness-Based Sample Exclusion
Of the initial Discovery participants in the NHANES dataset, 
9,063 had nonmissing values for BMI and all covariates (age, sex, 
socio-economic status (SES), self-reported race, and data release 
cycle year) and were included for analysis. Any participant with 
a  missing covariate, survey weight, or BMI value was excluded.

Variable-Type Extraction
The NHANES dataset contains mixed variable types (i.e., binary, 
categorical, and continuous variables). To split the data into sets 
of homogenous variables, we used CLARITE’s collection of get* 
functions, get_binary(), get_categorical(), get_continuous(), and 
get_check(), the last of which returns variables that the package is 
not able to confidently identify and the user will need to sort by 
hand. These functions work by extracting variables according to a 
user-defined minimum and maximum number of unique values 
in each variable (note: get_binary() always extracts variables with 
two unique values and does not take a min/max user input). 
For this study, variables having between 3 and 5 unique values 
were extracted as categorical (get_categorical()) and those with 
15 or more unique values were extracted as continuous (get_
continuous()). Those variables with between 6 and 14 unique 
values were initially extracted as indeterminate/ambiguous (get_
check()) for manual inspection and then added to the continuous 
or categorical lists accordingly using CLARITE. The variable-
type extraction step is critical to downstream QC and analysis, 
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as different filters are only appropriate for certain variable types. 
This family of functions is one of CLARITE’s premier features 
as classifying variables by data type can be one of the most 
important and time-consuming QC steps. The get* functions 
reduced the number of variables that needed to be manually 
sorted from >900 variables in our initial dataset to just 22 that 
were flagged as indeterminate by CLARITE.

Sample-Size-Based Variable Exclusion
To ensure optimal power, variables with sample size less than 200 
were dropped as recommended previously (Wilson Vanvoorhis 
and Morgan, 2007). For categorical/binary variables, a further 
requirement of at least 200 samples for every category was 
implemented.

Data Distribution Check
CLARITE also has the ability to perform high-throughput data 
visualization on continuous measures (histograms, quantile-
quantile plots, box plots) and categorical/binary variables (bar 
charts). Histograms were generated to visually inspect the 
distributions of the continuous variables for abnormalities. 

The distribution of BMI was visibly right skewed; thus, a log 
transformation was performed on the BMI values to normalize 
the data and address the skewness (Supplemental Figures 
3A, B). Visualization of continuous exposure variable histograms 
further allowed identification of several variables with some 
samples having a highly skewed distribution. For the majority 
of these cases, the variable was assessing use of a supplement 
(e.g., calcium supplement). To restrict our analysis to variables 
with sufficient nonzero values, we removed any variable that had 
more than 90% of the samples with a value of zero. As seen in 
Table 1, Discovery QC left 376 remaining exposures for EWAS 
analysis: 312 continuous, 60 binary, and 4 categorical variables. 
Replication QC using the same procedure left 419 exposures (343 
continuous, 71 binary, and 5 categorical). Only variables passing 
QC in both datasets were retained for the EWAS portion of the 
analysis, leaving the same 332 exposures (280 continuous, 48 
binary, and 4 categorical) in each dataset.

Additional Features of CLARITE
Although they are not mentioned in the QC steps above, CLARITE 
also provides several additional commonly used functions for 

FIgURE 1 | Flowchart depicting a typical workflow when using the CLARITE package. The user starts with raw data and alternates between summary steps 
(dashed lines) and filtering/quality control (QC) steps (solid lines) based on variable type (indicated by color) and either user-defined or default thresholds informed by 
the summary output. Once data are sufficiently cleaned, environment-wide association studies (EWAS) can be run.
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data management and data exploration. On the data management 
side, CLARITE has functions to quickly merge data frames and 
filter data by variables and samples. Further, due to the common 
issue of analyzing data with multiple missing values or different 
missing values across variables, we have included a function which 
standardizes the missing values based on a user provided data 
map file. For the purpose of data exploration, several summary 
statistic-based functions are also available. Users have the ability 
to create frequency tables for their categorical or binary data and 
obtain Pearson correlation coefficients for their continuous data. 
Additionally, for continuous measures, we have made it easier 
to evaluate the impact of outliers prior to filtering by including a 
function that will compare the summary statistics of a dataset before 
and after removing outliers at a user-specified standard deviation.

Environment-Wide Association Study (EWAS) Using 
CLARITE in Discovery Dataset
Using CLARITE, EWAS was run using linear regression models 
for each of the 332 variables that passed QC in both datasets, 
adjusting for sex, self-reported race (white, black, Mexican, other 
Hispanic, or other ethnicity), socioeconomic status (SES), age, 
and survey year. CLARITE’s ewas() function uses R’s generalized 
linear model (glm) function, and as such, will report the same 
betas and p-values as would ordinarily be reported by glm() in a 
typical regression analysis. When complex survey data is provided, 
the strata, cluster, and weight information is passed to the survey R 
package. In the case of continuous predictors, the beta and p-value 
of the variable in the model are reported in CLARITE’s ewas() 
as in R’s glm(); however, in the case of categorical predictors, R 
reports a separate beta and p-value for each level/category of the 
variable. In order to assess the overall impact of the categorical 
variable, CLARITE performs a likelihood ratio test (LRT) between 
the full (including predictor of interest) and reduced models 
(excluding the predictor of interest) using R’s anova() function 
and therefore reports a single LRT p-value for the variable. The 
regression models for full and reduced models for categorical 
predictors can be written as Y = β0 + β1X + β2cov1 + … + βn+1covn 
and Y = β0 + β1cov1 +…+  βncovn, respectively, where X is again 
a predictor variable of interest and Y is the phenotype. Along 
with this, it is important to note that when running EWAS on 
categorical predictors without covariates, CLARITE will consider 
the reduced model to be the null model.

For each replicating result, further potential confounding 
metabolic-health related traits were assessed, including: Type 
II Diabetes (T2D), coronary artery disease (CAD), high-
density lipoproteins cholesterol (HDL), low density lipoprotein 

cholesterol (LDL), total cholesterol (TC), and triglycerides 
(TG). Each of these potential traits were included as covariates 
individually with the original covariates.

The ewas function takes an optional min_n parameter which 
will prevent a variable from being included in the EWAS if there 
are fewer than that number of samples with no missing values 
across all variables for that particular regression model, instead 
returning a NULL result and printing a warning to the console. 
All of these analyses were run using the default min_n value of 
200. Observations with a weight of zero are also discarded, as 
these observations are ignored when compensating for weights 
in the regression calculation. All variables run in the primary 
analyses had sufficient sample sizes, but some dropped below the 
threshold when adding the metabolic-health traits as covariates. 
Table 3 shows NA when this occurs, since no p-values were 
calculated because sample sizes were below 200.

Replication QC and EWAS
To allow the opportunity for replication of results, we selected 
from the Discovery EWAS those variables associated with BMI 
with an FDR < 10% (Discovery threshold) for consideration in the 
Replication EWAS (99 exposures). Replication involved the same 
protocol and covariate adjustment as the Discovery EWAS, analyzing 
these 99 variables (85 continuous, 12 binary, and 2 categorical).

Lastly, Manhattan plots were generated using CLARITE’s 
eman() function to display the EWAS results. In EWAS Manhattan 
plots, users can organize variables into categories along the x-axis, 
analogous to how SNPs are organized into chromosomes for GWAS, 
so patterns of significance across categories can be easily observed.

RESULTS

Replicating EWAS Results
Of the 332 exposure variables passing QC in both datasets, 99 
were significant in the Discovery dataset when allowing for an 
FDR < 10%. Of these, 62 were significant in Replication when 
allowing for an FDR < 10% (Table 2). Sixteen EWAS results were 
significant in both datasets with a Bonferroni corrected p-value 
below 0.05 and ten passed a Bonferroni corrected alpha of 0.01 
in both datasets (based on 332 tests for Discovery and 99 tests 
for Replication) (Figure 2). In addition to replicating significant 
p-values, these variables demonstrated consistent directions of 
effect across the Discovery and Replication datasets.

The result with the lowest p-value in either Discovery or 
Replication datasets was g-tocopherol(ug/dl) (vitamin E) 

TABLE 1 | Environmental variables and sample sizes for environment-wide 
association studies (EWAS) in Discovery and Replication datasets. 

Dataset Binary Categorical Continuous Overall 
Sample Size

Discovery 60 4 312 9063
Replication 71 5 343 9874
Shared 48 4 280 n/a

Number of variables remaining and overall sample size after quality control (QC) 
included for EWAS in the Discovery and Replication datasets.

TABLE 2 | Overview of number of results in Discovery, Replication, and both 
datasets at varying significance thresholds. 

Dataset Tests FDR 0.1 Bonf 0.05 Bonf. 0.01

Discovery 332 99 18 11
Replication 99 62 29 25
Both NA 62 16 10

Number of tests performed in the discovery and replication analyses, number of 
results passing false discovery rate (FDR) < 0.1, and number of results passing 
Bonferroni p-value threshold (alphas 0.05 and 0.01).
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(Discovery: unadjusted p: 2.61x10-14, Bonferroni p: 8.67x10-12; 
Replication: unadjusted p: 2.73x10-11, Bonferroni p: 2.70x10-9). The 
next lowest was iron, frozen serum (ug/dl) (Discovery: unadjusted 
p: 3.28x10-11, Bonferroni p: 1.09x10-8; Replication: unadjusted p: 
1.75x10-12, Bonferroni p: 1.73x10-10). Results relating to substance 
use also showed significance in the both datasets, including 
smoking behavior (Discovery: unadjusted p: 8.74x10-7, Bonferroni 
p: 2.90x10-4; Replication: unadjusted p: 8.63x10-5, Bonferroni p: 
8.54x10-3), measurable amounts of cotinine in the body from 
smoking (Discovery: unadjusted p: 3.99x10-6, Bonferroni p: 
1.32x10-3; Replication: unadjusted p: 9.67x10-7, Bonferroni p: 
9.58x10-5), and number of days where alcohol was consumed 
(Discovery: unadjusted p: 4.56x10-7, Bonferroni p: 1.51x10-4; 
Replication: unadjusted p: 1.71x10-10, Bonferroni p: 1.69x10-8). 
Another top-ranking and replicating result was related to heavy 
metal exposure: platinum concentration in urine (Discovery: 
unadjusted p: 1.28x10-10, Bonferroni p: 4.25x10-8; Replication: 
unadjusted p: 2.322x10-4, Bonferroni p: 0.023).

The ability of CLARITE to organize Manhattan plots using 
exposure categories allows a global observation of trends in 
significant associations. Nutrient, food component recall, and 
heavy metal values contributed the largest number of exposures 
meeting a Bonferroni corrected significance threshold. In the 
nutrient category, g-tocopherol demonstrated the lowest p-value, 
as described above. In the food component recall category, 
alcohol (gm) demonstrated the lowest p-values (Discovery: 
unadjusted p: 8.10x10-5, Bonferroni p: 0.0269; Replication: 
unadjusted p: 9.21x10-6, Bonferroni p: 9.12x10-4). For the heavy 
metal category, the exposure with the smallest p-values was urine 
platinum (ug/L), also as described above.

Evaluation of Replicating Results With 
Potential Confounding health-Related Traits
To assess the potential impact of complex metabolic-related 
phenotypes known to be associated with BMI, the impact of adding 
each of the following individually as a covariate was evaluated for 
the 16 replicating exposures that met a Bonferroni corrected p-value 
threshold of 0.05: type II diabetes (T2D), coronary artery disease 
(CAD), HDL cholesterol (HDL), LDL cholesterol (LDL), triglycerides 
(TG), and total cholesterol (TC) (Supplemental Figures 4A–F).

Two variables remained Bonferroni significant when 
adding each of the metabolic-health related traits (alpha: 0.05): 
g-tocopherol(ug/dl) (vitamin E) and iron (ug/dl) (Table 3). 
All variables except for blood cadmium remained significant 
in both datasets when adjusting for CAD, and 9 of the 14 
remained significant when adjusting for type II diabetes: iron, 
g-tocopherol, lutein and zeaxanthin, days drink in year, cis-beta 
carotene, trans-beta carotene, lead, cotinine, “Do you now smoke 
cigarettes,” “Current cigarette smoker,” and urine platinum.

DISCUSSIOn
There has been much concern of late about the problem of 
reproducibility and replication of results in the sciences (Motulsky, 
2015; Peng, 2015). At the heart of poor reproducibility are three 
main issues: lack of 1) standardized infrastructure (i.e., software to 
perform QC protocols), 2) clear documentation of QC and analysis 
protocols, and 3) standardization of QC protocols (Peng, 2015). 
SNP QC has become standardized in terms of protocols (Laurie 
et al., 2010; Turner et al., 2011; Zuvich et al., 2011; Verma et al., 

FIgURE 2 | Environment-wide association studies (EWAS) results for body mass index (BMI) in Discovery and Replication datasets using CLARITE. Manhattan plot 
displays exposure categories along the x- axis with -log10(p-value) along the y-axis, results included for Discovery (circle) and Replication (triangle) datasets. The 
red line denotes the Bonferroni threshold (alpha: 0.05) for the number of tests run in the Discovery dataset (305), and the blue line denotes the Bonferroni threshold 
(alpha: 0.05) for the number of tests run in the Replication dataset (99). The 16 replicating results with Bonferroni-corrected p-value < 0.05 are labeled.
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2014; Ellingson and Fardo, 2016) and infrastructure (Purcell et al., 
2007; Zheng et al., 2012; Hall et al., 2017), and it is commonplace 
for these to be well-documented in publications employing SNP 
data. Exposome QC protocol and infrastructure development, on 
the other hand, have previously received little attention (Engel 
et al., 2013; Zhu et al., 2013; Emwas et al., 2018). To address this 
need, we developed CLARITE software as an infrastructure for 
high-throughput and rigorous QC of exposome data. Employing 
clear and rigorous QC protocols with clear documentation using 
CLARITE offers the opportunity for improved reproducibility of 
results and decreased false positive associations. However, there 
is still a dearth of research-driven consensus of exposome QC 
best practices. As more QC protocols are deemed appropriate 
by the EWAS community and added to CLARITE, the tool’s 
versatility will grow. We recommend CLARITE to perform high-
quality EWAS with exposure big data in order to explore the 
environmental component of complex traits.

With CLARITE, we explored the environmental etiology of 
body mass index (BMI), a complex trait with major implications 
in regard to metabolic disease. The results of this study offer new 
avenues for increased granularity in associations between BMI and 
metabolic traits by evaluating the impact environmental factors 
we identified as covariate adjustment or for interaction analysis. 
A discovery and replication protocol was employed, whereby QC 
and EWAS were performed in a Discovery subset of the NHANES. 
Of the exposures considered, 332 passed QC in both datasets and 
99 were significant when allowing for a false discovery rate (FDR) 
less than 10%. These exposures were considered for replication in 
a separate Replication subset of NHANES. Of these, 16 exposures 
were significant with a Bonferroni-corrected p-value less than 
0.05 in both Discovery and Replication datasets.

CLARITE was successful at replicating previously known 
associations. For instance, we identified an association wherein 
increase in alcohol consumption is associated with increased BMI. 
Well-established relationships between alcohol consumption and 
BMI have been discussed in previous research, though the nature 
of the relationship is complex (French et al., 2010). Another 
lifestyle factor, smoking exposure, has previously been reported 
as being associated with BMI (Jain and Bernert, 2010; Dare et al., 
2015) and was identified in our Discovery and Replication EWAS 
for three NHANES variables: Current cigarette smoker, do you 
smoke now, and cotinine. Lead levels demonstrated a replicating 
positive association with BMI in our EWAS, and this was another 
previously reported finding (Wang et al., 2015; Dip et al., 2017; 
Park et al., 2017). Serum iron levels were also found in our 
NHANES EWAS to replicate in women (measure not available 
in male participants) with an inverse relationship, an association 
that has been previously reported (Mujica-Coopman et al., 2015).

The top replicating EWAS result was g-tocopherol (vitamin E) 
with a positive relationship. One biological explanation for this 
association is that individuals with elevated BMI have increased 
systemic and adipose tissue contributing to specific oxidative 
stress (Kimmons et al., 2006). Adipose or fat tissue was not 
available in the NHANES datasets to test as a covariate, and 
therefore, research is needed to further elucidate the relationship 
between BMI and vitamin E. Of note, despite previously reported 
associations between vitamin E and lipid levels (Waniek et al., TA
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2017) vitamin E retained significance in our study when adjusting 
for each lipid covariate, indicating the association between 
the two measures is relevant even when controlling for lipids. 
Another top replicating EWAS result was iron, frozen serum 
(ug/dl), which showed a negative relationship. After applying the 
adjustments, iron, frozen serum (ug/dl) remained significant.

Due to the influence of BMI on numerous outcomes, we 
assessed the role of some key metabolic-related health traits in 
the replicating EWAS results to further evaluate their relationship 
with BMI. The 16 results with a Bonferroni-corrected p-value less 
than 0.05 in both Discovery and Replication included blood serum 
levels of nine different compounds: iron (ug/dl), vitamin D (ng/
ml), g-tocopherol (vitamin E, ug/dl), lutein and zeaxanthin (ug/
dl), cis-beta carotene (ug/dl), trans-beta carotene (ug/dl), lead (ug/
dl), cadmium (ug/dl), and cotinine (ng/mL). They also included 
the amount of two compounds in a dietary recall survey (alcohol 
(gm) and eicosatetraenoic acid (gm)), “days drink in year,” “Do 
you now smoke cigarettes?”, “Current cigarette smoker?”, the 
amount of platinum in the urine (ug/L), and the use of lisinopril 
(medication used to treat high blood pressure). All variables except 
for blood cadmium remained significant in both datasets when 
adjusting for CAD. Including T2D as a covariate resulted in five 
variables dropping from Bonferroni significance in the Discovery 
dataset (vitamin D, Lisinopril, cadmium, and both dietary recall 
variables), and one in Replication (urine platinum (ug/L)). 
Only iron and g-tocopherol remained Bonferroni significant in 
both datasets across all tested potential confounding variables. 
Exposures that drop from significance shed important information 
on their relationship with BMI and indicate the exposures’ signals 
may have been due to covarying associations with metabolic-
related traits rather than to BMI itself, reflecting the complex role 
of correlation structure when evaluating the exposome.

In this study, we demonstrated the utility of CLARITE to 
rigorously QC environmental big data prior to EWAS. Although 
we have showcased CLARITE’s ability to improve the QC and 
analysis pipeline with a use case for EWAS data, this tool is designed 
to be a general higher-throughput quality control tool that can be 
applied to many types of data. With this in mind, CLARITE has the 
potential to provide significant improvements to the QC pipelines 
for phenotype data and clinical lab measures, particularly in the case 
of phenome-wide association studies (PheWAS) in which thousands 
of phenotypes may be assessed at once, and due to the volume of 
data, QC is often done after first pass analysis, much like in EWAS.

CLARITE does have limitations and future directions include 
expanding the tool to handle multiple phenotypes and a wider 
range of statistical functions, including incorporating regression 
diagnostic functions, such as those from the gvlma (Global 
Validation of Linear Model Assumptions) package (Peña and Slate, 

2006) and the Shapiro-Wilk test, to flag possible scenarios where a 
typical regression would be inappropriate and additional regression 
methods, such as ordinal and multinomial regression. Other future 
work will involve more sophisticated analysis options, including, 
but not limited to, environment-environment interaction analysis as 
well as the ability to incorporate genetic data for gene-environment 
analysis. However, the flexibility and open source nature of the tool 
allow opportunity for users to customize or add functions to fit their 
analytic and data needs. Finally, it should be noted that NHANES 
dataset is an example of a fairly well preprocessed dataset. While 
CLARITE added ease to the QC and analysis process for this EWAS 
and identified potential problem variables, future applications to 
less processed datasets, such as electronic health record data, will 
further showcase CLARITE’s QC abilities.

Effective and efficient quality control is a crucial component 
of any analysis and should not be ignored due to infeasibility of 
manual inspection of large datasets. Application of CLARITE 
to a wide range of environmental and phenotype datasets has 
the potential to alleviate many of the challenges faced when 
analyzing large-scale data, while encouraging sound quality 
control practices as well as reproducibility. This, ultimately, 
will contribute to uncovering the role of exposures and gene-
environment interactions in complex human phenotypes.
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