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Single-cell RNA-seq (scRNAseq) is a powerful tool to study heterogeneity of cells. 
Recently, several clustering based methods have been proposed to identify distinct cell 
populations. These methods are based on different statistical models and usually require 
to perform several additional steps, such as preprocessing or dimension reduction, 
before applying the clustering algorithm. Individual steps are often controlled by method-
specific parameters, permitting the method to be used in different modes on the same 
datasets, depending on the user choices. The large number of possibilities that these 
methods provide can intimidate non-expert users, since the available choices are not 
always clearly documented. In addition, to date, no large studies have invistigated the role 
and the impact that these choices can have in different experimental contexts. This work 
aims to provide new insights into the advantages and drawbacks of scRNAseq clustering 
methods and describe the ranges of possibilities that are offered to users. In particular, 
we provide an extensive evaluation of several methods with respect to different modes 
of usage and parameter settings by applying them to real and simulated datasets that 
vary in terms of dimensionality, number of cell populations or levels of noise. Remarkably, 
the results presented here show that great variability in the performance of the models 
is strongly attributed to the choice of the user-specific parameter settings. We describe 
several tendencies in the performance attributed to their modes of usage and different 
types of datasets, and identify which methods are strongly affected by data dimensionality 
in terms of computational time. Finally, we highlight some open challenges in scRNAseq 
data clustering, such as those related to the identification of the number of clusters.

Keywords: single-cell RNA-seq, clustering methods, benchmark, parameter sensitivity analysis, high-dimensional 
data analysis

INTRODUCTION
Single-cell RNA sequencing (scRNAseq) has emerged as an important technology that allows 
profiling gene expression at single-cell resolution, giving new insights into cellular development 
(Biase et al., 2014; Goolam et al., 2016), dynamics (Vuong et al., 2018; Farbehi et al., 2019), and 
cell composition (Darmanis et al., 2015; Zeisel et al., 2015; Segerstolpe et al., 2016). Although the 
scRNAseq analysis inherits many features from bulk RNA-seq approaches, the algorithms require 

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1253

ORIgINAl ReSeARCh

doi: 10.3389/fgene.2019.01253
published: 11 December 2019

https://creativecommons.org/licenses/by/4.0/
mailto:monika.sonia.krzak@gmail.com
mailto:m.krzak@na.iac.cnr.it 
https://doi.org/10.3389/fgene.2019.01253
https://www.frontiersin.org/article/10.3389/fgene.2019.01253/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01253/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01253/full
https://loop.frontiersin.org/people/609037
https://loop.frontiersin.org/people/806402
https://loop.frontiersin.org/people/862881/overview
https://loop.frontiersin.org/people/805647
https://loop.frontiersin.org/people/127651
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01253
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01253&domain=pdf&date_stamp=2019-12-11


Benchmark of scRNAseq Clustering MethodsKrzak et al.

2

constant adaptation due to the several types of challenges 
present in scRNAseq data (Kiselev et al., 2019). For example, 
current droplet-based technologies allow measuring hundreds of 
thousands of cells which greatly exceeds the number of samples 
typically handled by bulk RNA-seq protocols. The low amount 
of measured RNA transcripts per cell and stochastic nature of 
the genes expression can also introduce missing information 
about gene profiles (dropouts). The scRNAseq data specific noise 
and the increasing number of scRNAseq protocols differing in 
accuracy and scalability (Svensson et al., 2017; Svensson et al., 
2018) make the systematic data analysis even more challenging.

Over the last few years, a number of computational algorithms 
have been proposed to analyze scRNAseq data, focusing on 
different aspects (Chen et al., 2019). In particular, a growing class of 
computational methods is being developed for identifying distinct 
cell populations (Andrews and Hemberg, 2018). These methods are 
based on various types of clustering techniques, which aim to divide 
cells into groups that share similar gene expression patterns. In this 
way, each group can be associated with a specific cell type or subtype 
on the basis of well-known markers, or novel cell subtypes can be 
identified. However, before applying the clustering algorithm, such 
methods often require to perform a series of mandatory or optional 
steps that include preprocessing, filtering or dimension reduction 
(Luecken and Theis, 2019). In several cases, such steps can be 
adapted by the user by choosing an appropriate set of parameters. 
Thus, methods turn to be very heterogeneous in the way they model 
data and perform the individual steps. Differences arise at each stage 
of the analysis and are not yet fully understood. For example, some 
algorithms work with raw count dataset (Zurauskiene and Yau, 
2016; Lin et al., 2017; Sun et al., 2018), others require normalized 
gene expression values (Macosko et al., 2015; Ji and Ji, 2016; 
Senabouth et al., 2019) or can handle both formats (Yip et al., 2017; 
Qiu et al., 2017; Kiselev et al., 2017; Wang et al., 2017). Some of the 
tools do incorporate an additional method-specific preprocessing 
step in terms of filtering or normalization (Senabouth et al., 2019; 
Yip et al., 2017), to remove noise present in the data, other require 
such step to be done externally before the execution of the method 
(Julia et al., 2015). In addition to preprocessing, many methods 
often utilize dimension reduction techniques, such as Principal 
Component Analysis (PCA) or t-Distributed Stochastic Neighbor 
Embedding (tSNE), in order to reduce the high-dimensional space 
(expression of tens of thousands of genes) prior to clustering (Julia 
et al., 2015; Herman and Grün, 2018; Ren et al., 2019).

Another great difference is given by the specific clustering 
techniques implemented in each method. Some of the methods 
use partitioning algorithms (Kiselev et al., 2017; Wang et al., 
2017) in order to infer distinct cell populations, others are based 
on hierarchical clustering (Senabouth et al., 2019; Lin et al., 2017), 
graph theory (Macosko et al., 2015) or density based-approach 
(Ester et al., 1996). There is also a growing class of model-based 
algorithms (Fraley and Raftery, 2002; Ji and Ji, 2016; Sun et al., 
2018) which utilize probabilistic properties of a given model to 
account for distinct challenges present in the data. Moreover, some 
methods require the number of cell populations to be known in 
advance (Zurauskiene and Yau, 2016; Sun et al., 2018), while 
others estimate the optimal value with an external procedure or as 
part of the clustering inference (Macosko et al., 2015; Senabouth 

et al., 2019; Ren et al., 2019). The available methods also vary in 
terms of the programming language they have been implemented 
in (i.e. R, Matlab, Python), computational cost and other system 
requirements.

All of the mentioned variations across clustering pipelines 
affect the performance of the methods. Currently, there is a 
limited amount of studies that infer clustering performance and 
robustness under various data-driven scenarios (Freytag et al., 
2018; Duò et al., 2018; Tian et al., 2019). The main purpose of 
existing studies is to investigate the performance of the methods 
limited to a selected parameter setting. Such limitation leads 
to a narrow view on the performance of the methods making 
it difficult to explore their full potential and identify the open 
challenges. For example, some algorithms provide multiple 
possibilities in the choice of parameters (Julia et al., 2015; Qiu 
et al., 2017; Herman and Grün, 2018; Ren et al., 2019) that can 
allow the user to adapt/modify the main method in each step. 
At the same time, the selection of parameter settings can be 
crucial in various data-driven conditions. The performance of 
the algorithms can also depend on the presence or absence of any 
preprocessing steps, either external or method-specific, carried 
out prior to clustering. Since both, parameter settings and data 
preprocessing can greatly affect the clustering result, we decided 
to investigate both aspects on the performance of the methods by 
carrying a comprehensive benchmark of the existing clustering 
methods and performing parameter sensitivity analysis.

For that purpose, we first described different modes of usage 
and parameter settings of 13 among the most widely used 
scRNAseq clustering methods implemented in R, then we applied 
them on a large set of real scRNAseq and simulated datasets. In 
order to fully understand the potential of each method, we tested 
them varying a wide range of available parameter settings which 
greatly expands the number of possible results. Through the 
analysis pipeline, we evaluated the performance of the methods 
with respect to several factors. First, we divided the real datasets 
into two groups, those that were expressed in the raw counts 
and those expressed on normalized fragments per kilobase 
of transcript per million mapped reads (FPKM) or reads per 
kilobase of transcript per million mapped reads (RPKM) counts. 
On the first group, we evaluated the performance of the methods 
on three data basic preprocessing types (not preprocessed counts, 
filtered counts, filtered and normalized counts). On the second 
group, we evaluated the performance of the methods depending 
on a various number of dimensions supplied to dimension 
reduction techniques prior to clustering. Synthetic datasets were 
used to prove the capacity of each method in handling varying 
dataset dimensions that can additionally be diverse in the number 
of simulated cell groups and the type of group balance. In the 
simulation, we also accessed the accuracy of the methods in 
recovering cell population structure in the presence of noise. The 
type of noise that we simulated were dropouts and overlapping 
cell populations which are key features of scRNAseq datasets. In 
all cases, we evaluated the performance of the methods in terms 
of i) Adjusted Rand Index (ARI) index, ii) accuracy of methods 
in estimating the correct number of clusters, iii) running time.

Overall, this work aims to provide new insights into the 
advantages and drawbacks of several scRNAseq clustering methods, 
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by describing the ranges of possibilities that are offered to users and 
the impact that these choices can have on the final results. We also 
tried to identify some open challenges for future research that still 
need to be faced when doing the population inference.

MATeRIAlS AND MeThODS

Real Datasets
In order to evaluate the performance of the clustering methods 
considered in this study we used 17 real scRNAseq datasets 
popular in the literature and listed in Table 1. To prepare the 

gene expression matrix for clusterization, we followed the main 
instructions for data import and processing from the online 
repository https://hemberg-lab.github.io/scRNA.seq.datasets/.

The selected scRNAseq datasets vary in terms of organisms, 
tissues under study and experimental protocols. As illustrated in 
Table 1, some datasets were profiled using 3′ or 5′ tag and droplet-
based approaches (such as inDrop), others using full-length 
plate-based approaches, such as Smart-Seq protocols. Moreover, 
depending on the used platform, each study investigates a different 
number of cells and data are subjected to a different proportion 
of dropouts. Depending on the protocol, count matrices were of 
different types (see Table 2) including Raw unique molecular 

TABle 2 | Brief description of the main features of each real dataset considered in this study. 

Single cell dataset Data type Nr cells Nr cell populations Publication

Baron2016_m Raw UMI counts 1886 13 Baron et al. (2016)
Klein2015 Raw UMI counts 2717 4 Klein et al. (2015)
Zeisel2015 Raw UMI counts 3005 9 Zeisel et al. (2015)
Darmanis2015 Raw read counts 466 9 Darmanis et al. (2015)
Deng2014_raw Raw read counts 268 6 Deng et al. (2014)
Goolam2016 Raw read counts 124 4 Goolam et al. (2016)
Kolodziejczyk2015 Raw read counts 704 3 Kolodziejczyk et al. (2015)
Li2017 Raw read counts 561 9 Li et al. (2017)
Romanov2016 Raw read counts 2881 7 Romanov et al. (2016)
Tasic2016_raw Raw read counts 1679 18 Tasic et al. (2016)
Deng2014_rpkm RPKM 268 6 Deng et al. (2014)
Segerstolpe2016 RPKM 3514 15 Segerstolpe et al. (2016)
Tasic2016_rpkm RPKM 1679 18 Tasic et al. (2016)
Xin2016 RPKM 1600 8 Xin et al. (2016)
Yan2013 RPKM 90 6 Yan et al. (2013)
Biase2014 FPKM 56 4 Biase et al. (2014)
Treutlein2014 FPKM 80 5 Treutlein et al. (2014)

Datasets can contain counts of 3 different types: Raw UMI counts, Raw read counts, and normalized FPKM/RPKM counts. Raw counts stands for the non-normalized counts that 
differ in terms of gene expression quantification method. FPKM/RPKM counts mean library size and gene length normalized counts. The number of reported cell populations is 
obtained from the annotation as described in the corresponding datasets publications.

TABle 1 | List of the real datasets used to perform the clustering evaluation. 

Single cell dataset Organism Cells under study Protocol Accession

Baron2016_m Mouse Pancreas inDrop GSE84133
Klein2015 Mouse Embryonic stem cells inDrop GSE65525
Zeisel2015 Mouse Cerebral cortex STRT/C1 UMI GSE60361
Darmanis2015 Human Brain SMARTer GSE67835
Deng2014_raw Mouse Preimplantation embryos Smart-Seq GSE45719
Goolam2016 Mouse Early embryos Smart-Seq2 E-MTAB-3321
Kolodziejczyk2015 Mouse Stem cells SMARTer E-MTAB-2600
Li2017 Human Colorectal tumors SMARTer GSE81861
Romanov2016 Mouse Hypothalamus Fluidigm C1 GSE74672
Tasic2016_raw Mouse Brain SMARTer GSE71585
Deng2014_rpkm Mouse Preimplantation embryos Smart-Seq GSE45719
Segerstolpe2016 Human Pancreas Smart-Seq2 E-MTAB-5061
Tasic2016_rpkm Mouse Brain SMARTer GSE71585
Xin2016 Human Pancreas SMARTer GSE81608
Yan2013 Human Preimplantation embryos Tang GSE36552
Biase2014 Mouse Embryos SMARTer GSE57249
Treutlein2014 Mouse Lung epithelial cells SMARTer GSE52583

Datasets (named by the author and date of publication) contain gene expression of cells from various organisms and tissues that have been processed by different experimental 
protocols. Protocols include 3’ or 5’ tag and droplet-based approaches (inDrop and STRT/C1 UMI), or full-length plate-based approaches, such as Smart-Seq, Smart-Seq2, 
SMARTer or Fluidigm C1. Tang protocol corresponds to mRNA-Seq assay described in (Tang et al., 2009). For more information about protocols see (Svensson et al., 2018).
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identifier (UMI) counts (3 datasets), Raw read counts (7 datasets) 
and FPKM/RPKM counts (7 datasets). The raw counts (either 
UMI or read counts) consist of datasets with gene expression 
quantified in terms of the number of mapped reads (counts) and 
that have not been further processed, while FPKM or RPKM 
data are library size and gene length adjusted counts. Note that 
two datasets in Table 2, Deng2014 and Tasic2016, were of both 
types (raw read counts and FPKM/RPKM counts). Overall, the 
datasets cover various ranges of experimental complexity in 
terms of the number of sequenced cells (from tens to several 
thousands) and number of cell populations in the sample (with 
minimum of 3 and maximum of 18 number of cell populations). 
The cell populations (hidden groups to detect) can represent 
distinct cell types or cells at various time points of differentiation. 
Within this study, we will consider the cell population annotation 
(available from the corresponding datasets studies) as ground 
truth, although we are aware that there could be some errors 
in the annotations, since datasets could contain some rare cell 
subpopulations, that were not identified at the time of the study, 
or some misclassified cells.

Simulated Datasets
We evaluated methods performance also on synthetic datasets. 
The simulation study was performed using Splatter package 
(Zappia et al., 2017). Splatter allows simulating single-cell RNA 
sequencing count data with a varying number of cells and cell 
groups, with different degree of cluster separability and varying 
rate of dropouts. We designed three simulation setups that 

allowed us to investigate various aspects of the performance 
of the methods (see Figure 1). Each simulation setup has been 
repeated 5 times choosing 5 different values of the seed.

In the first simulation setup (Figure 1A), we focused on assessing 
both the scalability (the capacity of each method in handling datasets 
with an increasing number of cells) and the complexity of the 
dataset (the ability of each method when the number of true groups 
increases or when the balancing between each group is disrupted). 
For this purpose, we simulated counts using three different values 
for the number of cells: 500, 1000 and 5000; three values for the 
number of groups: 4, 8, 16 and two possibilities for the number of 
cells in each of the group: balanced and unbalanced group size. In 
each of the modes, we set the number of genes to 1000. Therefore, 
the resulting 18 simulated datasets represent different levels of data 
complexity and size for the clustering task.

In the second simulation setup (Figure 1B), we fixed dataset 
dimension (1000 cells, 1000 genes) as well as the cell groups 
(fixed to four groups balanced in sizes) and we investigated the 
performance of each method with respect to the group separability 
ranging from poorly to well-separated groups. In such setup, we 
varied the probability of a gene to be differentially expressed 
to 0.1, 0.5, and 0.9, to obtain 3 simulated datasets: expression 
probability close to 1 gives highly separable cell groups that 
should be less difficult to be detected by any clustering algorithm.

Finally, in the third simulation setup (Figure 1C), we 
investigated the performance of clustering methods in the 
presence of various rates of missing information. With the 
number of cells and genes the same as before (1000) and cell 
groups fixed to four, we varied the rate of zero counts by setting 

FIgURe 1 | Data simulation scheme. (A) Simulation of 18 datasets using Setup 1. Simulated datasets are of various dimensions (number of cells), number of cell 
groups and proportion of cells within each group (balance or unbalance group sizes). (B) Simulation of 3 datasets using Setup 2. Simulated datasets vary in terms of 
separability between the groups (from poorly to well separable). This feature has been controlled by setting the de.prob parameter of Splatter simulation function to 
three values: 0.1, 0.5 and 0.9. (C) Simulation of 4 datasets using Setup 3. In this simulation setup, we used one dataset to create 3 others by placing an increasing 
number of zeros (controlled by dropout.mid parameter) on the count matrix. We highlighted by red color three identical datasets across all simulated setups. Each 
simulation setup has been repeated with 5 different values of the seed.
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the midpoint parameter (drop.mid) for dropout logistic function 
to 0, 2, 4, and 6. In this way, we obtained 4 datasets with varying 
percentage of dropouts from 20% to 90%.

In each of the 5 runs of simulation, we have kept the synthetic 
datasets, highlighted in red in Figures 1A–C (i.e., those 
corresponding to 1000 cells, 1000 genes, 4 groups, size-balanced, 
de.prob = 0.5 and drop.mid = 0), identical across all three setups 
for easier direct comparison.

Analysis Pipeline
In order to analyze real and simulated data, we used the procedure 
illustrated in Figure 2. First, all 17 real datasets (Raw UMI/Raw 
read counts and FPKM/RPKM counts) underwent the same quality 
control by filtering not expressed genes and low-quality cells (see 
Figures 2A, B) to remove potential issues from further analysis.

For the raw datasets, we considered three types of 
basic preprocessing before applying the specific clustering 
methods (Figure 2A). After the basic preprocessing, the 
clustering methods were applied with specific combinations 
of the parameters. Note that only a subset of methods (and 
combination of parameters) can be considered for filtered and 
normalized counts.

The FPKM/RPKM counts underwent a different basic 
preprocessing step (see Figure 2B) and were then directly 
clustered. To investigate the influence of the choice in the number 
of retained dimensions on methods performance, we considered 
only those methods and those combinations of parameters that 
allowed us to set the number of reduced dimensions.

In contrast to real data, simulated counts were directly used for 
clustering (see Figure 2C) where all methods and combination of 
parameters have been considered in the evaluation.

FIgURe 2 | Clustering analysis pipeline. (A) (B) Real data analysis is divided into three steps: Quality control, basic preprocessing and clustering. (C) Clustering is 
directly applied to simulated datasets. Note that not all the parameter combinations have been applied to each dataset type. For filtered and normalized raw counts 
we excluded parameter combinations that use an additional method specific preprocessing. For FPKM/RPKM counts we used only those methods that do not 
allow for additional preprocessing (none) and provide option to set the number of reduced dimensions (TRUE).
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More details about data quality control, basic preprocessing of 
Raw and FPKM/RPKM counts, methods and parameter settings 
are described in the next sections.

Quality Control of Real Datasets
All real datasets underwent an identical quality control step using 
the scater package (McCarthy et al., 2017). Firstly, we removed 
features with duplicated gene names and/or not expressed across 
all the cells as they do not include any useful information. Then, 
we performed quality control on the cells excluding those with 
the total number of expressed genes and the total sum of counts 
more than 3 median absolute deviations below the median across 
the genes [as suggested in scater documentation (McCarthy 
and Lun, 2019)]. Cells with the low amount of expressed genes 
and few counts are likely to be stressed or broken and thus 
should be removed from the analysis. The resulting dimensions 
of real datasets before and after quality control are given in 
Supplementary Tables 1 and 2.

Basic Preprocessing of Real Datasets
After quality control, we applied a basic preprocessing step 
that mimics some of the most commonly used procedures 
typically applied before clustering scRNAseq data (McCarthy 
et al., 2017). In the case of Raw UMIs and Raw read counts, 
we considered three independent types of basic preprocessing: 
no preprocessing, filtering, filtering and normalization (see 
Figure 2A). Clearly, in the first case, no further operations 
were performed on the raw counts. In the second case, we used 
scater to remove lowly expressed genes that are genes with 
average expression count (adjusted by library size) equal to 
0, where for the library size we mean total sum of the counts 
per cell. Note that this filtering step did not affect some of 
the datasets including Baron2016_m, Klein2015, Zeisel2015, 
and Romanov2016 (see Supplementary Table 1). In the third 
type, we first applied the filtering as described above, then we 
performed normalization. Both, Raw UMI counts and Raw read 
counts were normalized by scran package using deconvolution 
method. The deconvolution method normalizes data by cells-
pooled size factors that account for dropout biases. More 
details about raw dataset dimensions before and after filtering 
are given in Supplementary Table 1. For illustrative purpose, 
Supplementary Figure 1 reports one realization of the tSNE 
projections of the 10 raw datasets after quality control step that 
were colored by the corresponding cell group annotations. The 
inspection of the figure shows the heterogeneity of the datasets 
with respect to number of cells, number of cell groups and their 
separation.

In case of FPKM/RPKM counts, the basic preprocessing 
involved the same gene filtering as for the raw counts followed 
by high variable gene selection (HVG) (Figure 2B). To extract 
the most informative genes, we used Seurat package (Macosko 
et al., 2015) that defines most variable genes based on mean-
variance dispersion. The dimensions of datasets before and 
after basic preprocessing are given in Supplementary Table 
2. Supplementary Figure 2 shows one realization of the tSNE 
projections (colored by the corresponding cell group annotations) 

of the 7 FPKM/RPKM datasets after quality control and basic 
preprocessing step.

Compared Methods and Modes of Usage
In this study, we evaluated 13 different methods aimed to identify 
cell populations from scRNAseq data. Table 3 lists the methods 
that we have considered. For the sake of code compatibility 
and transparency, we restricted our choice to the methods 
implemented in the R programming language. Some of the 
methods have multiple releases and versions. In this evaluation, 
we only tested the releases with versions reported in Table 3. 
For the sake of completeness, we stress that recently some of the 
methods listed in the table underwent to a major update which 
could have partially improved their performance.

Most of the methods (i.e., all except DIMMSC and pcaReduce) 
considered in this study can be applied by setting different 
parameter combinations, thus providing potentially different 
results. Such combinations of parameters allow the user to tune 
different modes of usage, such as including or not an additional 
preprocessing step, including or not a dimension reduction 
procedure, using different criteria for choosing the suitable 
data dimension, applying different clustering algorithms within 
the same method, setting or estimating the number of clusters. 
Table 4 shows a detailed series of parameters that the user can 
choose with possible parameter choices. Each row defines valid 
parameter settings for the specific method. Within the same 
row, the total number of combinations is given by the product 
of each possibility (the last column of Table 4 summarizes the 
number of combinations). If the method has been reported more 
than once in the table (i.e., Linnorm and sscClust), it means that 
some of the parameters worked only with a subset of the settings 
(i.e., not in a full combinatorial way). By considering all possible 
combinations, we obtained 143 potential different modes of 
usage of the 13 tested methods.

As shown in Table 4, eight methods (corresponding to 43 
parameter combinations) might incorporate an additional 

TABle 3 | List of methods compared in the benchmark. 

Method Version Class of clustering 
technique

Publication

ascend v0.9.0 Hierarchical Senabouth et al. (2019)
CIDR v0.1.5 Hierarchical Lin et al. (2017)
DIMMSC v0.2.1 Model-based Sun et al. (2018)
Linnorm v2.6.1 Partitioning Yip et al. (2017)
monocle3 v2.99.2 Multiple choices Qiu et al. (2017)
pcaReduce v1.0 Hierarchical Zurauskiene and Yau (2016)
RaceID3 v0.1.3 Multiple choices Herman and Grün (2018)
SC3 v1.10.1 Partitioning Kiselev et al. (2017)
Seurat v2.3.4 Graph-based Macosko et al. (2015)
SIMLR v1.8.1 Partitioning Wang et al. (2017)
sincell v1.14.1 Multiple choices Julia et al. (2015)
sscClust v0.1.0 Multiple choices Ren et al. (2019)
TSCAN v1.20.0 Model-based Ji and Ji (2016)

Versions of the R packages (methods) compared in this study. Methods are based 
on various clustering techniques that can be categorized based on the cluster-
model. Multiple choices indicate that the method allows to cluster cells with more 
than one clustering technique.
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preprocessing step (herein, denoted method specific), five 
methods do not have any specific step (herein denoted none). 
Out of the 8 methods that include the additional preprocessing 
step, four methods allow the user to decide it to apply or not 
(both settings available). Methods differ also in the dimension 
reduction step either by providing only an internal procedure 
to reduce dimensions (six methods, herein denoted internal) 
or allowing for multiple choices for this purpose (five methods, 
herein denoted with the name of the specific procedures the 
user can choose, PCA, tSNE, ICA, etc). Note that two methods, 
DIMMSC and Linnorm have to or can, respectively, work directly 
in the high-dimensional space (setting herein denoted with none) 
and one method RaceID3 uses PCA dimension reduction which 
has been not considered as an internal technique (for more details 
see methods description in Supplementary Materials). Within 
all 12 methods that incorporate the dimension reduction step, 
an internal procedure can be used for selecting the number of 
reduced dimensions (herein denoted internal). Nine algorithms 
(63 combinations) also allows to manually set the number of 
dimensions (herein denoted with TRUE). Those with both options 
give to the user the possibility of either choosing the dimension 
or using the internal procedure. In this regard, the setting FALSE 
is related to methods that do not perform dimension reduction.

Methods can be also customized by the clustering techniques 
they apply. Some of them are based on a fixed clustering technique 
(herein denoted fixed), others propose multiple choices in this 
step (herein denoted with the name of the specific technique the 
user can choose, k-means, hclust, etc). The group of methods 
with multiple clustering options include: monocle3 that offers 
two types of clustering techniques, RaceID3 that utilizes two 

partitioning algorithms and a hierarchical clustering algorithm, 
sincell and sscClust which provide more clustering options. 
Depending on the clustering technique, methods either require 
to set the number of clusters by the user (36 combinations, 
herein denoted set) or provide an internal functionality to 
estimate it (107 combinations, herein denoted estimate). For 
more details about specifications, see methods descriptions in 
Supplementary Materials.

Finally, we stress that all 13 methods (with all 143 
combinations of parameters) can be applied to non-
preprocessed or filtered Raw counts as well as simulated 
datasets (see Figure  2). To avoid performing method-specific 
normalization on already normalized data, only methods for 
which the additional preprocessing step can be set to none were 
used on filtered and normalized Raw counts (i.e., 9 methods 
with 100 combinations of parameters) (Figure 2A) or FPKM/
RPKM counts. In addition, according to Figure 2, when using 
normalized FPKM/RPKM counts, we reduced the number of 
methods and parameter combinations to those which perform 
dimension reduction step before clustering, and allow setting 
number of reduced dimensions in that step. In this way, we used 
a subset of 6 methods and 44 combinations of parameters to be 
applied on FPKM/RPKM counts (Figure 2B).

evaluation Metrics
To quantify the agreement between the partition obtained from 
the considered method and the true partition, we used a well-
known and widely used measure, the Adjusted Rand Index (ARI), 
implemented in the R package mclust (Scrucca et al., 2016). The 

TABle 4 | Valid configurations in the parameter settings for each method. 

Method Additional preprocessing Dimension 
reduction

Setting number of 
dimensions

Clustering technique Number of 
clusters

Combinations

ascend method specific internal TRUE/internal fixed estimate 2
CIDR none internal TRUE/internal fixed set/estimate 4
DIMMSC none none FALSE fixed set 1
Linnorm none/method specific tSNE/PCA TRUE/internal fixed set/estimate 16
Linnorm none/method specific none FALSE hclust set 2
monocle3 none/method specific tSNE/UMAP TRUE/internal densityPeak/louvain estimate 16
pcaReduce none internal internal fixed set 1
RaceID3 method specific PCA TRUE/internal k-medioids/k-means/hclust set/estimate 12
SC3 none/method specific internal internal fixed set/estimate 4
Seurat method specific PCA/ICA TRUE/internal fixed estimate 4
SIMLR none/method specific internal TRUE/internal fixed set/estimate 8
sincell none PCA/ICA/tSNE/

classical-MDS/
nonmetric-MDS

TRUE/internal max.distance/percent/
knn/k-mediods/ward.D

estimate 50

sscClust none iCor internal k-means/ADPclust/hclust set/estimate 6
sscClust none iCor internal SNN estimate 1
sscClust none PCA TRUE/internal k-means/ADPclust/hclust set/estimate 12
sscClust none PCA TRUE/internal SNN estimate 2
TSCAN method specific internal internal fixed set/estimate 2

We reported a set of parameters that users can tune in the method such as the additional preprocessing, the dimension reduction strategy, the number of dimensions, the 
clusterring technique and the number of clusters to obtain. In particular, for the key additional processing: none – no additional preprocessing is applied, method specific – an 
additional preprocessing is applied prior clustering (filtering and/or normalization); for dimension reduction: internal – an internal dimension reduction is applied, none – the method 
works in the original domain, PCA, tSNE, ICA, iCor or others listed by names – the user can choose a specific method to reduce the dimensionality; for number of dimensions: 
TRUE or FALSE – method allows or doesn’t allow for setting number of reduced dimensions, internal – method use an internal value for the number of dimensions; for clustering 
technique: fixed –method uses only one clustering technique, otherwise the user can choose among few options that are listed by name; for number of clusters: set or estimate – 
method allows to set or estimate number of clusters.
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values of the ARI range can be negative if the agreement of the 
partitions is worse then the agreement expected by chance, or 
between 0 and 1 for clustering better than chance. The exact 
formulation of the ARI index can be found in (Lawrence and 
Phipps, 1985).

To evaluate the accuracy of methods in estimating the 
correct number of clusters, we used symmetric log-modulus 
transformation defined as follows:

 L x sign x x( ) ( ) (| | )= ∗ +log10 1  (1)

where x is the difference between the estimated number of 
clusters and the true number of cell populations in a given dataset. 
The positive values of log-modulus transformation mean that 
the number of estimated clusters was higher than the number 
of true cell populations. Negative values indicate that methods 
underestimate the number of clusters whereas zero values denote 
the equality between the number of estimated clusters and the 
number of true cell populations.

To identify significant differences in methods performance 
(ARI Index) when applied after different basic preprocessing 
types, we used hypothesis testing procedures implemented in 
stats R package (Hollander and Wolfe, 1973). The Kruskal-
Wallis rank sum test was used to assess the difference in 
methods performance as we vary the basic preprocessing 
(among QC, QC & FILT, QC & FILT & NORM). The Wilcoxon 
signed-rank test was used to infer the differences in accuracy 
with respect to two data basic preprocessing types (QC, QC & 
FILT). In each context, we computed the Benjamini-Hochberg 
adjusted p-values (Benjamini and Hochberg, 1995) to correct 
for multiple comparisons.

Finally, to measure the computational time required by each 
method to complete its task, we used Sys.time function from R 
that allows reporting time when the method starts and finishes 
the script. The difference between those time points constituted 
the computational time of the method in running dataset 
analysis. Note that computational times have been reported in 
the unit of minutes followed by log(t+1) transformation, where 
t is the running time in minutes, and include all the steps 
that the method needs to cluster a dataset (except data basic 
preprocessing) together with the loading of the required packages 
and package dependencies.

Implementation
This clustering benchmark study was implemented in the 
R programming language and scripts necessary for the 
reproducibility were deposited at the time of publication on 
the GitHub page: https://github.com/mkrzak/Benchmarking_
Clustering_Methods_scRNAseq. The repository stores codes for 
data import, processing, and analysis as well as the information 
about system requirements and packages to be installed. When 
performing the analysis, additional HTML reports are produced 
with a detailed description of data analysis steps. Note that 
apart from the required methods, the analysis scripts call for 
other R packages used in plotting and managing R objects. The 
scripts have been tested on R version 3.5.1 and machine with 

specifications—Intel Core i7, 4.00 GHz × 8 and 24 GB RAM 
which are the minimum system requirements for the analysis.

Moreover, for the sake of completeness and to ensure 
the reproducibility of our study, we deposited the real and 
simulated datasets on the following GitHub pages: https://
github.com/DataStorageForReproducibility/Real_data_for_
benchmark_reproducibility and https://github.com/
DataStorageForReproducibility/Simulated_data_for_benchmark_
reproducibility. Both directories include. RData files as 
SingleCellExperiment class objects that store the count matrices and 
the corresponding cell group annotations.

In the clustering benchmark, we set the seed for generating 
pseudo-random numbers globally and applied it to the execution 
of any method in order to assure the stability of the solutions and 
reproducibility of the results. Note that, since the scRNAseq R 
packages we evaluated are often under continuous development, 
other version of the methods (R packages) than those reported 
in Table 3, might output slightly different results.

ReSUlTS
Results are organized as follows. We first illustrate the 
performance of the evaluated methods on the 10 raw datasets, 
then on the 7 normalized FPKM/RPKM counts. Finally, we finish 
the summary of the main findings obtained on the simulated 
datasets in the 3 setups described in Figure 1.

Within this paper, methods/parameter combinations are 
referred as string obtained as a concatenation of keys separated 
by underscores. The concatenation takes the name of the method, 
the type of additional preprocessing, the dimension reduction 
technique, the setting of the number of dimensions, the clustering 
technique and the number of clusters. Each of these keys can take 
the values reported in Table 4.

Methods Performance on Raw UMI and 
Raw Read Counts
As mentioned, we independently applied all 13 methods 
(corresponding to 143 parameter combinations) to the 10 raw 
counts datasets after using two basic preprocessing types (QC, 
QC & FILT). Then, we applied only 9 methods (corresponding 
to a subset of 100 parameter combinations) to the same datasets 
after applying quality control, filtering and normalization 
(see the scheme illustrated in Figure 2). In the latter case, 
the 9 methods are those that allow the user to choose none as 
additional preprocessing to avoid renormalization of already 
normalized counts (see Table 4). To compare the methods across 
the basic preprocessing procedures, we first show the results 
corresponding to the combinations that were applied to all three 
basic preprocessing procedures, then the remaining methods/
combinations applied only to QC and QC & FILT data.

Note that some of the methods/parameters combinations 
failed to cluster some datasets (such cases are marked in grey 
in Supplementary Figures 3 and 4) due to the errors occurred 
during their execution. The most frequent error messages 
were reported in Supplementary Table 3, for Data type = 
“Raw counts”. In particular, SIMLR, DIMMSC and Linnorm 
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encountered failures in a limited number of cases, therefore we 
did not consider such datasets in the evaluation of the methods. 
By contrast, sincell (when ICA was chosen for dimension 
reduction) reported a significant number of failures, therefore 
we did not consider such combinations of parameters in the 
evaluation of sincell. Note that this will limit the overall number 
of parameter combinations from 143 to 133 (90 combinations 
applied after all three types of basic preprocessing, 43 applied to 
QC and QC & FILT data, only).

Overall Accuracy
Figure 3 shows the performance of the 9 methods (90 
parameter combinations out of 100) in terms of ARI evaluated 
across all 10 raw datasets and organized with respect to the 
type of basic preprocessing. Analogously, Figure 4 shows the 
same results corresponding to the remaining 8 methods (43 
parameters combinations) independently applied after two basic 

preprocessing types. To evaluate the overall accuracy, we first 
inspected the results regardless of the type of basic preprocessing.

From Figures 3 and 4, we can observe that, most of the 
methods/parameter combinations report a great variability in their 
performance across the different datasets which proves no all-time 
winner across the entire set of cases we have analyzed. Some of the 
methods still performed relatively well (i.e., with most of the results 

FIgURe 3 | Overall accuracy of methods applied to Raw counts. ARI 
accuracy for 9 methods with 90 parameter combinations out of 100, 
independently applied to the 10 raw datasets after the three basic 
preprocessing types (QC, QC & FILT, QC & FILT & NORM). Box colors 
distinguish the different methods, although applied with different parameter 
combinations. Superimposed as reference, a red dashed line at ARI = 0.5.

FIgURe 4 | Overall accuracy of methods applied to Raw counts. ARI 
accuracy for remaining 8 methods with 43 parameter combinations, 
independently applied to the 10 raw datasets after two basic preprocessing 
types (QC, QC & FILT). Box colors distinguish the different methods, although 
applied with different parameter combinations. Superimposed as reference, a 
red dashed line at ARI = 0.5.
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above ARI = 0.5) regardless the preprocessing type. This group 
includes CIDR, Linnorm (with some combinations of parameters), 
SC3 (when set is chosen in number of clusters), some combinations 
of sscClust (i.e., when iCor is used for dimension reduction) and 
TSCAN. On the other hand, few other methods were reporting very 
poor performance. For example, one of the poorest performance was 
observed in sincell (with many parameter combinations), ascend, 
DIMMSC, pcaReduce and Seurat (only when non-internal is chosen 
for the number of reduced dimensions). Although sincell performed 
generally poor, the method also showed good performance for 
few datasets (see, the results over individual datasets showed in 
Supplementary Figure 3).

The analysis of Figures 3 and 4 also shows that the performance 
of some methods strongly depends on the particular choice of the 
parameter settings, i.e. sscClust, Linnorm or Seurat being those 
whose performance strongly rely on that option. We found such result 
partially ignored in previous studies, therefore we will investigate it 
in more detail in Effect of Parameters Settings on Accuracy.

Accuracy in Estimating the Number of Clusters
In order to evaluate the accuracy of a method in estimating 
the correct number of populations, we used log-modulus 
transformation in Eq. 1, and we limited the analysis to the 107 
methods/parameter combinations that allow setting the option 
estimate for choosing the number of clusters (see Table 4).

Figures 5 and 6 show the results, respectively for the 69 
methods/parameters combinations applied after all three types 
of preprocessing procedures (i.e., we excluded 10 combination 
of sincell that reported frequent failtures), and for the remaining 
28 methods/parameter combinations applied after two basic 
preprocessing steps.

We observed that most of the methods/parameter combinations 
either under or overestimated the number of clusters often 
in a systematic way. In particular, boxes below and above the 
dashed lines represent parameter combinations which under or 
overestimated the number of clusters. There are also methods, such 
as CIDR, some combinations of Linnorm, RaceID3 and TSCAN, 
that often provide less biased estimates. We also observed that the 
estimates strongly depend on the specific clustering technique 
used, as for monocle3, sincell and RaceID3 method, or dimension 
reduction applied, as for Linnorm. The group of methods that 
underestimated number of clusters includes monocle3 (when 
densityPeak is used for clustering), SIMLR method, sincell 
(with k-medoids and ward.D chosen as clustering techniques), 
all combinations of sscClust except SNN and RaceID3 (when 
k-means was applied). A special case of overestimating the number 
of clusters method was observed with sincell where a large number 
of cluster was often returned. For example, sincell used with max.
distance technique always returned a number of clusters equal to 
the number of cells in the dataset whereas in combination with 
knn it also returned a very large number of clusters.

Effect of Data Basic Preprocessing on Accuracy
We found that most of the methods performed similarly when 
changing the preprocessing procedures (see Figures 3 and 4), 
although Supplementary Figures 3 and 4 showed that some 
of them (i.e., Linnorm, monocle3, sincell and sscClust) present 

slight variability in the performance when data underwent to 
different preprocessing. However, Kruskal-Wallis rank sum test 
did not identify any significant difference in the performance of 
the methods with respect to the three types of basic preprocessing 
(QC, QC & FILT, QC & FILT & NORM) and Wilcoxon signed-
rank test did not identify any significant difference associated to 
the two types of basic preprocessing (QC, QC & FILT).

Effect of Parameter Settings on Accuracy
As mentioned above, Figures 3 and 4 clearly shows that the 
performance of several methods depends much more on the 
choice of parameters than on the type of basic preprocessing.

To better investigate this, we computed the PCA of the ARI 
matrix obtained using the 133 methods/combination as variables 
and the 10 raw datasets as samples. Figure 7 shows the results 

FIgURe 5 | Estimation of the number of clusters for methods applied to Raw 
counts. Boxplots of L in Eq. 1 for the subset of methods (i.e., 69 parameter 
combinations) that allows to estimate the number of clusters (and with none 
preprocessing). Superimposed as a reference, a red dashed line at L = 0. 
Parameter combinations with difference below or above 0 resulted into under 
or overestimation of the number of clusters, respectively.
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when the clustering methods were applied to QC & FILT 
preprocessed data (the figures after the other preprocessing types 
are very similar, not shown for brevity). Each point depicted 
in the PCA space represents a particular methods/parameter 
combination. Therefore, points that are close in the PCA 
space have similar performance across the 10 datasets. From 
Supplementary Figure 5 we can see that the first component is 
strongly positively correlated with the performance, therefore 
methods located on the right side of the figure tends to have 
better performance than those located on the left side, while the 
second component is not significantly correlated with the ARI. 
Each panel of Figure 7 represents the same PCA projection 
colored by the methods and shaped by one of the parameters of 
interest. The effect of parameters changes in the performance of 

a given method is represented through the spread of the points 
in the same color. Note that DIMMSC and pcaReduce have only 
one valid parameter combination thus we do not discuss them in 
this section, although they are depicted in the figure.

Overall, Figure 7 confirms the poor performance of sincell 
and the good performance of SC3, CIDR, TSCAN, and some 
combinations of Linnorm, as well as the strong impact of 
parameters setting for many methods (i.e., sscClust, Linnorm, 
Seurat, SIMLR).

In particular, the analysis of Figure 7A shows that the 
performance strongly depends on whether the number of 
clusters is estimated or not. Not surprisingly, when using the true 
number of clusters (parameter set) the performance is better for 
most of the methods compared to when estimating it (parameter 
estimate). However, there are few methods that report good 
overall performance also when the number of clusters is 
estimated (see for example, CIDR, monocole3 and sscClust).

In the same spirit, Figure 7B illustrates the effect of an 
additional preprocessing (that can be either method specific or 
none) on the methods performance. The figure does not indicate 
any global difference, but still pointed-out some methods specific 
variability (i.e. SIMLR showed significantly improved accuracy 
after such step).

We also superimposed other features, such as dimension 
reduction or clustering techniques (not shown for brevity). Since 
such parameters can assume multiple values, the figures do not 
allow to identify any suggestion that works well for all methods. 
However, such analysis allowed us to recognize i.e., sscClust with 
iCor and Seurat with internal number of reduced dimensions, as 
one of the good performing combinations.

Computational Time
We compared run times of the methods across all 10 raw datasets 
in order to assess their scalability and identify potential issues 
related to a specific dataset.

Figure 8 reports execution time in minutes on a log plus 
one scale for the methods applied to QC & FILT preprocessed 
datasets. As a reference, we superimposed on the figure dashed 
lines at 1, 10, 60 min, and 10 hours. Overall, computational 
times varied from a few seconds to tens of minutes or till several 
hours (at least for some datasets). We distinguish methods 
that were consistently fast (showing good scalability), methods 
requiring longer but still reasonable run time with increased 
data size (showing limited scalability) and methods requiring 
significant execution time at least in some cases (showing 
either poor scalability or problems related to the analysis of a 
specific dataset). ascend, CIDR, monocle3, pcaReduce, RaceID3 
(with non-internal number of dimensions), Seurat (with PCA 
dimension reduction), sincell, sscClust and TSCAN were among 
the fastest and across the analyzed datasets. Therefore, they 
were assigned to the first group (with average run time below 2 
minutes and maximum time of about 10 minutes). Linnorm and 
SC3 were assigned to the second group (with average run time 
about 5 minutes and maximum time between 20 minutes and an 
hour). Other methods such as DIMMSC, SIMLR, RaceID3 (with 
internal number of dimensions), Seurat (with ICA dimension 
reduction) were among the longest, therefore assigned to the 

FIgURe 6 | Estimation of the number of clusters for methods applied to Raw 
counts. Boxplots of L in Eq. 1 for the subset of methods for the remaining 
methods (28 parameter combinations) with method specific preprocessing 
that allows to estimate number of clusters. Superimposed as reference, a 
red dashed line at L = 0. Parameter combinations with difference below or 
above 0 resulted into under or overestimation of the number of clusters, 
respectively.
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third group (with average run time between 10 minutes and 
about two hours and maximum time between an hour and more 
than 10 hours). In the worst case, RaceID3 took about 12 hours 
before completing the clustering task.

Methods Performance on FPKM/RPKM 
Counts
We used 7 FPKM/RPKM datasets to evaluate the performance 
of the methods/parameter combinations considered in this study 
with respect to the number of reduced dimensions when using 
different dimension reduction techniques. Since FPKM/RPKM 
datasets consist of already normalized counts we limited the 
study to those methods/parameter combinations that do not 
use “method specific” as additional preprocessing and that also 
allow setting the number of reduced dimensions. In total, we 
tested 44 methods/parameter combinations on each of the four 
dimensions: 3, 5, 10, and 15.

As in the previous case, we note that some of the methods/
parameters combinations failed to cluster some of the datasets 
(see grey boxes in Supplementary Figure 6) due to technical 
errors reported in Supplementary Table 3, for Data type = 
FPKM/RPKM counts. Note that three of the methods, Linnorm, 
monocle3 and sincell encountered a significant number of 
failures with the same error message when used with more than 3 
dimensions. We did not consider such cases in further evaluation 
limiting the overall number of combinations from 44 to 33.

Overall Accuracy
Supplementary Figure 7 shows the performance of all 33 
methods/parameter combinations applied to FPKM/RPKM 
datasets. Regardless of the number of dimensions, we can 
observe variability in the accuracy of the methods similar to what 
was reported for the raw counts. Most of the methods that were 
reporting good or poor accuracy on raw counts show similar 
good/poor performance also on the FPKM/RPKM datasets (as 
we could have predicted from the results obtained on the QC & 
FILT & NORM raw datasets). For example, CIDR and sscClust 

(with some of the parameter combinations) are among the 
better-performing methods, whereas sincell with most of the 
combinations reports poor accuracy (although not in all cases). 
Additionally, we can also confirm that the performance of some 
methods depends on the choice of parameter settings.

We also observed a general tendency of the methods to 
perform poorly on datasets with a high number of cells (more 
than 1600) (see Supplementary Figure 6). Although this 
relationship was not clearly visible on the raw counts, it could be 
expected as a consequence of a larger complexity in the data not 
fully explained by the number of selected features and not fully 
captured using low dimensional projections.

Finally, we did not observe any systematic differences in the 
accuracy with respect to the number of reduced dimensions 
(see Supplementary Figures 6 and 7). Some of the methods are 
either robust to the varying number of dimensions or they do 
not show any clear preference when using one or another setting. 
This suggests that data complexity cannot be easily explained by a 
certain parameter and the performance of the methods are often 
data specific.

Accuracy in Estimating Number of Clusters
Supplementary Figure 8 shows the estimated number of clusters 
compared with the true one (as computed using Eq. 1) for all 
methods/combinations that allow the users to estimate such 
value. We observed a similar tendency in the estimates reported 
for raw counts. For example, monocle3 (with densityPeak 
clustering), SIMLR, sincell (with k-medoids and ward.D 
techniques) or sscClust (all except SNN) tend to underestimate 
the number of clusters whereas the rest of the combinations of 
sincell clearly overestimate that value. Moreover, CIDR often 
provides a less bias estimates that result in a better accuracy 
(alike on the raw counts).

Computational Time
Supplementary Figure 9 reports the running time evaluated 
for all methods/parameter combinations (for dimension = 3). 
First, we observe that, since FPKM/RPKM counts underwent to 

FIgURe 7 | PCA plots of methods applied to QC & FILT Raw counts. Two identical PCA projections based on the performance measured in ARI of 13 methods with 
133 parameter combinations out of 143, applied to 10 quality controlled and filtered (QC & FILT) raw datasets. Parameter combinations were colored by the method 
and shaped by the parameter options: (A) way of selecting number of clusters (clust), (B) additional preprocesing (preproc).
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a feature selection step, that greatly reduced the data dimension 
in terms of the number of genes (see Supplementary Table 2), 
we have a consequent reduction of the running time for most 
of the methods. Indeed, we can see that most of the methods 
ran below a minute (CIDR, monocle3 and sscClust) or in few 
minutes (some cases of sincell). SIMLR was the longest method 
and took up to one hour. Our study also shows that the number 
of reduced dimensions (3, 5, 10, or 15) was not so relevant in 
terms of computational time (data not shown).

Finally, note that some of the combinations evaluated on the 
raw counts, such as RaceID3 or Seurat, were not considered in 
the FPKM/RPKM evaluation as they do not allow to set none in 
the additional preprocessing.

Methods Performance on Simulated 
Datasets
Synthetic datasets were used to test the performance of all 143 
methods/parameter combinations. We followed three simulation 
setups in order to simulate the counts (see Figure 1) and we 
repeated the simulation 5 times, each with a different selection of 
the random seed. Simulation setups mimic different characteristics 
of scRNAseq datasets i.e. in terms of dimensionality, group 
structure or levels of noise. In theory, all simulated datasets 
constitute a different level of complexity for the clustering task.

The methods/parameter combinations that failed across 
all runs can be seen in the Supplementary Figure 10 and the 
respective error messages have been reported the Supplementary 
Table 3.

In the next sections, we will describe the performance of the 
methods according to the three simulation setups. Note that the 
overall performance of the methods on the synthetic datasets 
is much higher than in the real data. This can be related to the 
fact that simulation models may not always reflect all types of 
noise present in the real case and thus the clustering task can 
be less challenging. Despite that, synthetic datasets allowed us to 
confirm some of the previously identified trends and to recognize 
the potential limits of the methods.

Performance on the Simulation Setup 1
Simulation Setup 1 has been used to access the performance of the 
methods depending on three factors: the number of cells present 
in the dataset, the number of cell groups and their balance in size. 
Figure 9 and Supplementary Figure 11 show the accuracy of the 
methods for balanced and unbalanced group design, respectively. 
Supplementary Figures 12–14 give more details about balanced 
group design and correspond to the performance on datasets 
with 4, 8, and 16 number of cell groups, respectively.

By looking across the Supplementary Figures 12–14 we can 
observe high variability of the methods/parameter combinations 
across different numbers of simulated cell groups. Less variability 
was attributed to the runs (see boxplots within Supplementary 
Figures 12–14). Balanced or unbalanced group design slightly 
affected the performance for most of the methods however with 
no clear direction (see Figure 9 and Supplementary Figure 11).

On the synthetic datasets, the well performing methods 
included CIDR, Linnorm, SC3 and some combinations of sscClust 
(see Figure 9 and Supplementary Figure 11), same as for the real 
datasets. Similarly, we could confirm the poor performance of 
methods such as Seurat with an imposed number of dimensions 
or sincell with tSNE dimension reduction. Additionally, on 
the synthetic data we observed high accuracy of the DIMMSC 
method, Seurat with internal number of dimensions and some 
combinations of monocle3, RaceID3 and SIMLR.

We did not observe a large loss in methods performance 
when the number of cells increased from 500 to 5000 (Figure 9 

FIgURe 8 | Computational time of methods applied to QC & FILT Raw 
counts. Log of run times in minutes of 13 methods with 133 parameter 
combinations applied to QC & FILT preprocessed raw datasets. We 
superimposed as reference red dashed lines at log of 1 min, 10 min, 1 h 
and 10 h.
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and Supplementary Figure 11). The only clear exception was 
SIMLR with several combinations that include cluster number 
estimation (denoted estimate) which failed on datasets with 5000 
number of cells (see the error messages in Supplementary Table 
3). We observed that many methods were affected by the growing 
number of simulated cell groups (from 4 to 16 cell groups). In 
particular, see the methods: CIDR, DIMMSC, Linnorm, SC3, 
SIMLR, sincell, sscClust, and TSCAN across Supplementary 
Figures 12–14. pcaReduce worked similarly across all three 
factors (number of cells, number of cell groups, group balance) 

(see Figure 9 and Supplementary Figure 11). Seurat accuracy, 
same for the real datasets, strongly dependent on the number of 
reduced dimensions (denoted as TRUE/internal).

Performance on the Simulation Setup 2
In the simulation Setup 2, we varied the separability between the 
cell groups from lowly to highly separable. Lowly separable groups 
mean that some of the simulated populations could overlap in space 
being the most challenging to detect. Separability was controlled 
by de.prob parameter in the Splatter simulation function.

Figure 10 shows that some of the methods as CIDR, 
DIMMSC, SC3, TSCAN, Seurat (with imposed number of 
dimensions), SIMLR (with estimated number of clusters) and 
many combinations of sincell behaved similarly and their 
performance was mostly affected on the datasets with the lowest 
separability between the cell groups. However, their accuracy 
was still high meaning in most of the cases ARI above 0.5. The 
methods that performed well across all the separability modes 
were some combinations of Linnorm or monocle3, Seurat with 
internal number of dimensions and SIMLR with set number of 
clusters. All those methods/parameter combinations provided 
high accuracy with ARI close to 1.

Performance on the Simulation Setup 3
The third simulation setup was used to access the accuracy of 
the methods with respect to an increasing number of zero counts 
placed in the dataset. We simulated percentage of dropouts 
varying from 20% to 90% by manipulating dropout.mid 
parameter in the Splatter simulation function.

Overall, we noticed that most of the methods had low 
accuracy on the datasets with highest magnitude of missing 
values (dropout.mid = 6) (see Figure 11). Although this is an 
expected result, some of the methods/parameter combinations 
still performed well in this case (see i.e. monocle3, SC3 and 
sscClust). Interestingly, monocle3 and sscClust method 
performed poorly only in particular parameter combinations 
on the highest dropout rate. For the monocle3 method the bad 
performing combinations included additional method specific 
preprocessing and for the sscClust—iCor dimension reduction. 
Beyond that, some of the methods appeared to be affected 
by the increasing percentage of zeros, as CIDR, DIMMSC, 
Linnorm, Seurat, SIMLR, and TSCAN. In particular, Linnorm 
experienced technical errors across all the simulated datasets 
with the highest two modes of dropouts (denoted as dropout.
mid = 4 and dropout.mid = 6). Many combinations of sincell 
performed poorly, notably those that use tSNE as dimensionality 
reduction. Seurat depended highly on the number of dimensions 
used (either TRUE or internal) and pcaReduce seemed to work 
moderate across all four ranges of dropouts.

Computational Time
Computational time for all parameter combinations applied to 
simulation Setup 1 datasets was reported in the Supplementary 
Figure 15. Some of the methods scaled in time all simulated 
datasets dimensions while others took longer on the largest 
datasets (with 5000 number of cells). Note that many of the 
trends observed here were previously mentioned in the real 

FIgURe 9 | Overall accuracy of the methods on simulated datasets 
from Setup1 with balanced group sizes. Performance of 143 parameter 
combinations on Setup 1 simulated data. Selected results are across all runs.
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datasets analysis. The fastest group of methods across all datasets 
dimensions include: ascend, monocle3, pcaReduce, Seurat, many 
combinations of sincell,sscClust when PCA dimension reduction 
was used and TSCAN. Other methods like CIDR, DIMMSC, 
Linnorm with set number of clusters and some combinations of 
RaceID3 and sincell were still relatively fast in time running for 
few minutes on datasets with the highest number of cells. SC3, 
Linnorm (with estimated number of clusters), sincell (when 
nonmetric-MDS was used as dimensionality reduction) and rest 
of the combinations of RaceID3 or sscClust took about one hour 
when applied to the largest simulated datasets whereas SIMLR 
computational time exceed few hours in that case being the 
longest method among all.

DISCUSSION
In this study, we evaluated the performance of several clustering 
methods on a wide range of real and simulated scRNAseq 
datasets. Such methods are distributed as open-source R packages 
and they constitute a significant part of the computational tools 
nowadays available for inferring the unknown composition of 
cell populations from scRNAseq data. Our comparison aimed to 
provide insight into the mode of usage for each of these packages 
depending on the structural assumptions we are willing to 
make. We compared the ability of the different packages to infer 
the unknown number of cell populations, the sensitivity of the 
methods across different datasets and their computational cost. 

FIgURe 10 | Overall accuracy of the methods on simulated datasets from Setup 2. Performance of 143 parameter combinations on simulated data. Selected 
results are across all runs.

FIgURe 11 | Overall accuracy of the methods on simulated datasets from Setup 3. Performance of 143 parameter combinations on simulated data. Selected 
results are across all runs.
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For each method we tested different parameter configurations, 
revealing the great impact of parameter setting on the performance 
of individual methods. In particular, we found that some of the 
methods performed relatively well across most of the datasets 
we have considered and with respect to the different choices of 
the parameter settings (i.e., CIDR, and several combinations of 
Linnorm, SC3 and sscClust), or often poorly, as, sincell (with 
many parameter settings) and ascend. Other methods, such as 
DIMMSC, monocole3, RaceID3, Seurat, SIMLR and TSCAN, 
can be placed in the middle in terms of overall performance 
across all datasets, despite the fact that on few datasets they 
could have reported good performance. However, we should 
consider that the field of clustering of scRNAseq data is rapidly 
evolving. Novel methods are continuously emerging and those 
that we have compared are undergoing to an extensive revision 
that might improve their performance. It is not easy to explain 
why certain methods work better than others, since they 
perform several steps before applying the clustering algorithm. 
However, one of the reasons is that some methods were originally 
developed to analyze scRNAseq data collected under specific 
protocols (i.e., consisting of datasets with a limited number of 
cells). Then, the novel challenges (in particular the increasing 
size and cell heterogeneity) provided by the rapidly evolving 
scRNAseq technology made them not any more competitive 
for the complex types of data that are emerging. Reasonably, 
methods have to be optimized with respect to a specific protocol 
or dataset size, rather than attempting to find methods that work 
well on a wide range of scRNAseq conditions. In fact, our study 
showed that no methods seem to emerge as performing better 
than others on all datasets. Additionally, our results also showed 
that there is still space for improving the overall performance of 
the available methods on large and complex datasets or providing 
novel and more accurate methods.

We have found that despite different basic preprocessing 
options, there is no global pre-processing strategy which 
improves significantly the performance of all methods 
(packages). Instead, we found that the performance of several 
methods strongly depends on their parameter settings: in Seurat 
when varying the number of input dimensions; in SIMLR 
when estimating the true number of cell groups; in sincell 
when varying the clustering techniques and in sscClust when 
changing the dimension reduction step. We believe that the 
impact of the choice of the method-specific parameters on its 
performance has been underestimated till now, while it turns out 
to be crucial when using these methods. Unfortunately, we did 
not identify a golden rule for choosing the parameters. However, 
depending on the methods used, we identified some better 
performing configurations: sscClust performed better with 
iCor as dimensionality reduction step; Seurat with the internal 
choice of the number of dimensions; Linnorm and SC3 with a set 
number of clusters (using the true number of cell populations). 
On the basis of our results, we suggest that users should be more 
aware of the different possibilities that several methods offer in 
terms of parameter choices and modes of usage. Moreover, we 
recommend them to always evaluate the robustness of their 
partition with respect to changes in the parameter settings. At 
the same time, method developers should give more attention in 

better documenting all the possibilities that their methods can 
offer also testing their robustness with respect to changes in the 
settings. To this purpose, the benchmark pipeline developed for 
this study can be easily modified to offer an environment where 
other/novel methods can be evaluated.

We also observed that the poor performance of several 
methods/parameter combinations is often associated with a poor 
estimate of the number of clusters (see for instance estimation 
accuracy of monocle3, SIMLR or sincell). Although a rigorous 
assessment of the number of cell populations on real data dataset 
could be debated, our results show that several methods tend to 
significantly underestimate or overestimate the number of clusters, 
when compared to the true (usually unknown) cell populations. 
Therefore, we can say that the estimation of the number of 
hidden cell populations remains challenging in the scRNAseq 
data analysis and we hope that novel approaches will provide less 
biased estimates. Moreover, by comparing the performance of 
each method when the true number of clusters was imputed with 
those when it has been estimated from the data, it is possible to 
quantify the impact that a more accurate estimate of the number 
of cell populations can have on the overall accuracy.

The dataset dimension and complexity turns out to be clearly 
influential with respect to the running time of the methods and 
to the overall performance that the methods can achieve. In 
particular, SIMLR run time increased together with the sample 
size and was often the longest among other methods by several 
orders of magnitude (requiring up to several hours to analyze 
a given dataset compared to few seconds/minutes for the other 
methods). Similarly, scalability issues were observed in SC3, 
although to a less extent. In contrast, other methods/parameter 
combinations showed a good scalability in their computational 
time, as ascend, CIDR, monocle3, pcaReduce, RaceID3 (with 
non-internal number of dimensions), Seurat (with PCA 
dimension reduction), sincell, TSCAN or sscClust, limiting the 
computational time to few seconds/minutes. We want to stress 
that computational issues are becoming particularly important 
since modern technologies are now allowing to simultaneously 
sequence thousands or even tens of thousands of cells, thus it 
is expected that researchers will have to analyze much larger 
datasets. Hence, it will be important to provide novel methods 
that have good scalability properties either in terms of running 
time and/or computational resources required for their 
execution. This can be achieved either by designing methods 
with efficient algorithms and by better exploiting the parallel and 
high-performance computing in their implementation. From a 
technical point of view, we also observed frequent failures of some 
methods under particular cases. For example, SIMLR method 
failed on most of the simulated datasets with 5000 number of 
cells. We suspect that the method required large amounts of 
memory on the high-sample datasets than that available in our 
system. Other failures, like in monocle3, Linnorm and sincell on 
FPKM/RPKM datasets were related to the choices on the number 
of reduced dimensions. In fact, all of them encountered technical 
errors when used with tSNE dimension reduction and more 
than 3 number of dimensions. Additionally, Linnorm failed on 
raw and simulated datasets with a high percentage of dropouts 
(above 70% of zeros in the dataset) suggesting the low capacity of 
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the method to handle high rates of missing data. Such points are 
probably less relevant and could be solved with future releases of 
the methods.

Finally, it is also worth to mention that some of the 
methods, such as ascend, monocle3, SIMLR, sscClust and 
some combinations of Linnorm and sincell, showed variability 
in the clusterization despite the global setting of the seed. The 
fluctuations can be spotted by looking at the accuracy of methods 
on the identical datasets across three simulation setups (see results 
across Supplementary Figure 12 and Figures 10 and 11) or by 
looking at the accuracy of the methods on datasets not affected 
by filtering (see Supplementary Figures 3 and 4). We notify that 
the results in such cases might not be easily reproducible. In the 
spirit of reproducible computational research, the user should be 
aware of such limits.

CONClUSIONS
Concurrently with technical improvements in single-cell RNA 
sequencing, there is a rapid growth in the development of 
new methods, in particular, those related to the identification 
of cellular populations. Newly developed methods differ 
considerably in their computational design, implemented 
algorithms and available steps giving the user a large number of 
options to select parameters and perform a cluster analysis on 
scRNAseq data. However, such possibilities are often hidden and 
not fully documented in the software code and their impact has 
to be better understood.

We are not aware of any comprehensive studies aiming to test 
various modes of usage of the available methods on large scale 
datasets that have different experimental complexity in terms of 
dimensionality, number of hidden cell populations or levels of 
noise. Our benchmark approach extends the previous comparative 
studies (Freytag et al., 2018; Duò et al., 2018; Tian et al., 2019) 
to a broader range evaluation of the algorithms which depends 
on the parametrization (user-specified parameter choices) and 
previously mentioned dataset differences. The results presented 
here showed that the performance of the methods strongly 
depends on different user-specified parameter settings and that 
the dataset dimensionality and composition often determines 
the overall accuracy of the methods. Overall, this means that 
most of the methods lack of robustness with respect to the 
tuning parameters or differences among the datasets. We found 
that both aspects were partially ignored in the previous studies, 
preventing the user to better understand the potentials and 
limitations of each method. Although, we did not find a “golden” 
rule for choosing optimal parameter configurations, our study 
identified some model-dependent choices which were found 
more robust than others. Despite that, our study also showed 
that the overall performance is still far from being optimal. 
Hence, there is a need for developing novel and more accurate 
methods, in particular for those datasets containing a very large 
and heterogeneous amount of cells. Evaluating and improving 
clustering approaches for scRNAseq data might be beneficial 
for several areas of biomedical science such as immunology, cell 
development and cancer see for example Haque et al. (2017).

The analysis of real and simulated datasets confirmed that the 
high sample size and the high number of cell populations have 
a great impact on scRNAseq clustering methods. In particular, 
we found that the estimation of the number of clusters remains 
challenging. We confirmed these issues in several analyzed 
cases where the methods either under or overestimated 
the true number of cell populations and the simulated cell 
groups. In real scRNAseq applications, overestimation of the 
number of clusters might be just due to methods identifying 
previously unknown biologically relevant sub-groups. However, 
underestimation of the clusters means that methods failed to 
distinguish accurately differences between populations of cells. 
Since in scRNAseq clustering we also aim to identify novel and/
or rare cell populations, we typically do not know the number 
of cell populations. The failure to identify the number of sub-
groups in a consistent manner is a considerable drawback when 
it comes to practical applications of such methods. In fact, such 
failure is usually paid with a lower ARI index. By comparing the 
performance of each method when the true number of clusters 
was imputed with those when it has been estimated from the 
data, one can quantify the impact that a more accurate estimate 
on the number of groups can have on the overall performance.

With the development of new high-throughput scRNAseq 
protocols, the data dimensionality grows and one has to consider 
not only methodological performance but also computational 
requirements of the different approaches. We have demonstrated 
that computational cost does not always trade for empirical 
accuracy and some configurations are just unpractical for specific 
protocols. Since, larger and more complex datasets are going to 
be produced by novel droplet-based protocols, the computational 
feasibility needs to be better faced and more attention should 
be given in designing methods with efficient algorithms and 
in better exploiting high-performance computing in their 
implementation.

Taken all together, our systematic evaluation of the methods 
confirmed some common sense assumptions or expected results, 
but also identified new potential issues in scRNAseq clustering. 
The summary of the methods presented here can guide the 
readers in a number of options that the methods provide also 
giving awareness about their possible limitations. Moreover, the 
benchmark pipeline developed for this study is freely available 
and can be easily modified to add novel methods.
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