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Dyslipidemia is a major risk factor for cardiovascular disease. Although many genetic
factors have been unveiled, a large fraction of the phenotypic variance still needs further
investigation. Chromosome 1 (Chr 1) harbors multiple gene loci that regulate blood lipid
levels, and identifying functional genes in these loci hasprovedchallenging.Weconstructed a
mousepopulation,Chr 1 substitution lines (C1SLs),where onlyChr1differs from the recipient
strain C57BL/6J (B6), while the remaining chromosomes are unchanged. Therefore, any
phenotypic variance between C1SLs and B6 can be attributed to the differences in Chr 1. In
this study, we assayed plasma lipid and glucose levels in 13 C1SLs and their recipient strain
B6. Through weighted gene co-expression network analysis of liver transcriptome and
“guilty-by-association” study, eight associated modules of plasma lipid and glucose were
identified. Further joint analysis of human genome wide association studies revealed 48
candidate genes. In addition, 38 genes located on Chr 1 were also uncovered, and 13 of
which have been functionally validated in mouse models. These results suggest that C1SLs
are ideal mouse models to identify functional genes on Chr 1 associated with complex traits,
like dyslipidemia, by using gene co-expression network analysis.

Keywords: plasma lipid, Chr 1 substitution lines, gene network, genome wide association studies, candidate gene
INTRODUCTION

Plasma lipid levels of total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C),
Low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), are major contributors to
cardiovascular diseases (Kathiresan et al., 2007). Current evidence demonstrates that both
environmental and genetic factors contribute to these lipid levels. Therefore, discovery of the
genetic regulators would be beneficial to determine individual susceptibility to dyslipidemia and
eventually for developing gene therapies.
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Recent genome wide association studies (GWAS) in humans
have linked hundreds of genetic loci to plasma lipid metabolism,
including genes APOE, PCSK9, CETP, LIPC, LPL, and APOA5
(Willer et al., 2013a; Helgadottir et al., 2016). Furthermore,
several rare variants have been uncovered with next generation
sequencing technology (Natarajan et al., 2018). Although
significant achievements have been made, the identified genetic
loci only explain a small portion of the phenotypic variance,
suggesting most of the genetic regulators remain unknown.

Mouse models have been widely used for deciphering
regulatory genes of quantitative traits. Hundreds of genetic loci
have been identified through quantitative trait loci (QTL)
mapping in F2 or backcross mouse populations (http://www.
informatics.jax.org/). However, it’s challenging to identify
causative genes within QTLs. During the past decade, mouse
genetic reference populations, such as BXD recombinant inbred
strains (Wang et al., 2016), Collaborative Cross (Consortium,
2012), Hybrid Mouse Diversity Panel (Ghazalpour et al., 2012),
and chromosome substitution strains (CSSs) (Nadeau et al.,
2000), have significantly accelerated the precise QTL mapping
and functional gene identification through improved mapping
power and resolution (Buchner and Nadeau, 2015). CSSs, which
typically involve two inbred strains with significant phenotypic
differences, are a panel of inbred strains by backcrossing the
donor and recipient parents over 10 generations. The final panel
contains the entire genome information of both strains, and each
CSS carries one intact donor chromosome in the genetic
background of the recipient strain. Therefore, any phenotypic
differences between CSSs and recipient strain can be attributed to
the substituted chromosome.This allows for easy detection of genes
for multi-genic traits and quick identification of QTLs through
linkage analysis in F2 population and fine mapping with congenic
strains. Previously, we proposed a novel strategy of developing a
Chr 1-specific CSS substitution line (C1SL) to dissect the complex
traits.With this strategy, Chr 1 of the recipient strainC57BL/6J (B6)
was replaced by different wild mice individually (Xiao et al.,
2010; Xu et al., 2016). Compared to CSSs, C1SLs are suitable for
both association studies and systems genetics analysis.

It is well known that genes do not act in isolation, but interact
with one another to regulate complex traits. In addition, co-
expressed genes usually have similar biological functions or are
involved in same biochemical pathways. Therefore, building gene
networks would provide an alternate way to identify potential
regulators and gain insight into the underlying mechanisms of
lipid metabolism (Stuart et al., 2003). To date, several algorithms
have been developed to construct gene networks (Henry et al.,
2014), and weighted gene co-expression network analysis
(WGCNA) is the most widely used (Langfelder and Horvath,
2008). In addition to constructing gene networks, this method
also allows one to summarize hub genes and module eigengenes
(MEs). These can be used to subsequently identify trait-associated
modules by performing “guilt-by-association” between phenotypes
and eigengenes.

Several studies have demonstrated that Chr 1 harbors multiple
genetic loci that regulate plasma lipid and glucose levels (Orozco
et al., 2009; Leduc et al., 2011). In order to identify the casual genes,
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we measured plasma lipid and fasting glucose levels in C1SLs and
quantified transcriptome levels of liver with RNA-seq technique.
By combining gene co-expression network analysis with human
GWAS and gene functional annotation, several plasma lipid and
glucose regulating candidate genes, especially those located on
Chr 1, were identified (Figure 1).
MATERIALS AND METHODS

Mice and Diet
All animal procedures were performed in accordance with
guidelines of the Laboratory Animal Committee of Donghua
University. 13 C1SLs and one B6 strain of adult male mice (an
average of seven per strain; n = 97) were housed in a room
maintained at 18–22°C with a 12-h light and 12-h dark cycle
(6:00 A.M. to 6:00 P.M.). All animals were given a chow diet
(M01-F25; Shanghai SLAC Laboratory Animal, Shanghai,
China) for eight weeks, then fed with D12450B diet containing
4.3% fat, 19.2% protein, and 67.3% carbohydrate (Research
Diets, New Brunswick, USA) until sacrificed by cervical
dislocation at 20 weeks of age.

Experiment Measurement
Blood was collected into 1.5-ml tubes with EDTA by retro-
orbital bleeding from mice fasted for 4 h in the morning. Blood
serum was separated by centrifugation at 2,500g for 15 min and
frozen at −20°C until performing cholesterol enzymatic assays
assay. Enzymatic assays for CHOL, HDL-C, LDL-C, TG, and
glucose (GLU) were performed with biochemical blood analyzer
(Hitachi 7180; Hitachi, Tokyo, Japan) by Sino-British SIPPR/
B&K Lab Animal (Shanghai, China).

RNA Isolation and Quality Control
RNA was extracted from liver tissues using RNAiso Plus reagent
(TaKaRa Biotechnology, Dalian, China) according to the
manufacturer’s protocol. RNA quality was analyzed using
NanoDrop 2000c and Bioanalyzer. Samples with A260/A280 of
1.8–2.0 and RNA integrity number greater than 8 were
subsequently used for sequencing library preparation.

RNA Library Preparation and Sequencing
Twenty nine mRNA samples (two samples per strain except for
strain LY) were used for RNA library preparation and sequencing.
The poly(A) mRNA isolation was performed using Poly(A) mRNA
Magnetic Isolation Module or rRNA removal Kit. The mRNA
fragmentation and priming was performed using First Strand
Synthesis Reaction Buffer and Random Primers. First strand
cDNA was synthesized using ProtoScript II Reverse Transcriptase
and the second-strand cDNA was synthesized using Second Strand
Synthesis Enzyme Mix. The purified double-stranded cDNA by
beads was then treated with End Prep Enzyme Mix to repair both
ends and add a dA-tailing in one reaction, followed by a T-A ligation
to add adaptors to both ends. Size selection of Adaptor-ligated DNA
was thenperformedusing beads, and fragments of∼420 bp (with the
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approximate insert size of 300 bp) were recovered. Each sample was
then amplified by PCR for 13 cycles using P5 and P7 primers, with
both primers carrying sequences which can anneal with flow cell to
perform bridge PCR and P7 primer carrying a six-base index
allowing for multiplexing. The PCR products were cleaned up
using beads, validated using an Qsep100 (Bioptic, Taiwan, China),
Frontiers in Genetics | www.frontiersin.org 3
and quantified by Qubit3.0 Fluorometer (Invitrogen, Carlsbad,
USA). Then libraries with different indices were multiplexed and
sequencedon IlluminaX-ten instrument (Illumina, SanDiego, USA)
by GENEWIZ (Suzhou, China) according to the manufacturer’s
instructions. Sequencingwas carried out using a 2x150bp paired-end
(PE) configuration.
FIGURE 1 | Schematic of the methodology. A total of 14 strains (13 C1SLs and one recipient strain B6) were involved in this study. The upper panel shows the
characteristics of C1SLs genome background. Orange bars represent B6 chromosome while the others represent different donor chromosomes from wild mice. Blood lipid
and fasting glucose levels were measured at 20 weeks of age. Liver gene co-expression network was constructed with WGCNA. The trait-associated modules were
identified through testing the association between traits and MEs. The candidate genes were further dominated by integrating human GWAS and HMDC data.
January 2020 | Volume 10 | Article 1258
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Reads Mapping and Quantification
Reads were aligned to the mouse reference genome (GRCm38)
using Tophat2 (Kim et al., 2013) with default parameters. The
Cufflinks program Cuffnorm (Trapnell et al., 2010) was used to
generate tables of expression values (Fragments Per Kilobase of
transcript per Million mapped reads, FPKM) which were
normalized for library size based on GRCm38 gene annotation
downloaded from iGenome (https://support.illumina.com/
sequencing/sequencing_software/igenome.html). Expression
data were further filtered to remove genes that had less than 1
FPKM in 20% or more samples and then log-transformed with
log2 (FPKM+1).

Weighted Gene Co-Expression Network
Analysis (WGCNA)
Log2 transformed expression values were analyzed withWGCNA
package in R (Langfelder and Horvath, 2008) to construct gene
co-expression networks. Briefly, a correlation matrix was
obtained by calculating pair-wise Pearson correlation
coefficients between all genes across all samples. Then, a soft
thresholding power b = 6 was chosen based on scale-free topology
(R2 > 0.9) to generate weighted adjacency matrix. The adjacency
matrix was further transformed into Topological Overlap Matrix
which assesses transcript interconnectedness. Following this, a
dissimilarity measure was calculated. Genes were aggregated into
modules by hierarchical clustering based on Topological Overlap
Matrix and further refined using the dynamic tree cut algorithm.
ME is the first principal component of a given module, and it was
used to evaluate the module membership, which assessed the
importance of genes in the network.

Candidate Gene Analysis Using Publicly
Available Resources
We prioritized the candidates using the following public resources:

1. Human–Mouse: Disease Connection (HMDC). This resource
included mouse and human gene-trait relationships from
several databases, including Mouse Genome Informatics data-
base (MGI), National Center for Biotechnology Information
(NCBI), Online Mendelian Inheritance in Man (OMIM), and
the Human Phenotype Ontology (HPO).

2. Human GWAS. Human GWAS for plasma lipid and fasting
glucose levels were obtained from GRASP (https://grasp.
nhlbi.nih.gov) (Leslie et al., 2014) and GWAS Catalog
(https://www.ebi.ac.uk/gwas/) (Macarthur et al., 2016). GRASP
includes available genetic association studies with p value <0.05.
GWASCatalog collects SNP-trait associations with p value <1 ×
10−6. In the present study, mapped genes or genes nearest to the
marker with p value < 1 × 10−4 were used to looking for overlap
with module gene lists.

3. Gene expression atlas across mouse tissue. Gene expression
profiles for 22 mouse tissues, which were generated by the
Mouse ENCODE project using RNA-seq (Yue et al., 2014),
were queried from NCBI (https://www.ncbi.nlm.nih.gov/).
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We define genes with “high liver expression” as those with an
expression level in liver greater than threefold of the mean
expression value across the 22 tissues.
Identification of Genetic Variants for
the Candidate Genes
Genetic variants between C1SLs and B6 were identified with
whole genome sequencing as previously described (Xu et al.,
2016). Variant annotation was performed using Variant Effect
Predictor (Mclaren et al., 2016).
RESULTS

C1SLs Exhibits Broad Phenotypic
Variability in Plasma Lipid and Fasting
Glucose Levels
In this study, plasma lipid (CHOL, HDL-C, LDL-C, and TG) and
fasting glucose levels of 13 C1SLs and one recipient strain B6
were examined using enzymatic assays (Figure 2A). Assay
results demonstrate broad phenotypic variability with fold
change 1.62 in GLU, 1.55 in CHOL, 1.51 in HDL-C, 2.11 in
LDL-C and 1.58 in TG (Figures 2B–F and Supplementary Data
S1). Compared to the C1Sls, recipient strain B6 showed relatively
low levels of GLU, CHOL, HDL-C, and LDL-C and a high level
of TG.

WGCNA Identifies Several Modules
Significantly Associated With Plasma Lipid
and Fasting Glucose Levels
We carried out high throughput RNA-seq using Ilumina X-ten
platform to comprehensively quantify the gene abundance of
liver tissue for 29 samples. A total of ~2.3 billion reads were
obtained, ranging from 26 million to 0.42 billion per sample
(Supplementary Data S2). The raw reads were mapped onto the
mouse genome with an average of 80% of the read pairs that are
properly assigned. Gene expression levels were generated and
normalized with Cuffnorm program. Further filtration was
applied (See Materials and Methods), which resulted in 10,525
genes for subsequent analysis (Supplementary Data S3).

To identify regulatory genes for plasma lipid and glucose levels.
We constructed gene co-expression networks using WGCNA.
With the soft-thresholding power parameter (b = 6) determined
by the scale-free topology (Figures 3A, B), a total of 24 modules
(after excluding module gray) were identified (Figures 3C, D and
SupplementaryData S3). Themodule size (i.e., the total number of
genes in a module) varies significantly, ranging from 39 genes in
moduleM5 to 2,141 genes inmoduleM24. Among those modules,
M19 (83 genes) is significantly associated with all five traits (Figure
3D), whileM1 (930 genes), M14 (99 genes), M20 (389 genes), M21
(117 genes) are significantly linked to TG level andM7 (491 genes),
M8 (311 genes), and M12 (247 genes) are associated with fasting
glucose level (Figure 3D).
January 2020 | Volume 10 | Article 1258
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Gene Prioritizing of Trait-Associated
Modules
M19 is the module most significantly associated with all of the
traits. There are 83 genes in this module, and 74 are significantly
correlated (p < 0.05) with these traits and MEs simultaneously
(Supplementary Data S4). Gene ontology (biological process)
enrichment analysis revealed that these genes are significantly
enriched in lipid metabolism and gluconeogenesis regulation
(Supplementary Data S5). In addition, 14 genes are found in
human GWAS with p value <1 × 10−4 (Figure 4A and
Supplementary Data S6) and 11 genes are known regulators for
blood lipid or glucose metabolism (Figure 4C). Four of them,
Creg1, Abcc3, Cyp2b9, and Cyp26a1, are highly expressed in liver
(Supplementary Figure 1). More importantly, the module hub
gene, Tmem176a, is significantly correlated with blood lipid levels
(Figure 4B and Supplementary Data S4) and have been mapped
to CHOL in human GWAS with a p value of 2 × 10−8

(Supplementary Data S6).
For other modules associated with TG level (M1, M14, M20,

andM21), 505 genes are significantly correlatedwith TGand their
MEs simultaneously (Supplementary Data S7), 26 genes are
found in human GWAS (Figure 5A and Supplementary Data
S6), and 40 are essential for TG metabolism (Figures 5B–E). In
addition, six genes, Egfr, Hsd17b13, Cyp3a11, Arg1, Fads2, and
Ahcy, are highly expressed in liver (Supplementary Figure 1).

For other modules associated with fasting glucose level (M7,
M8, and M12), 377 genes are significantly associated with fasting
glucose and their MEs simultaneously (Supplementary Data
S8). Among them, eight genes are found in human in GWAS
(Figure 6A and Supplementary Data S6), and 27 genes are
Frontiers in Genetics | www.frontiersin.org 5
known glucose metabolism regulators (Figures 6B–D).
Furthermore, three of them, Pck1, Fads1, and Gckr, are highly
expressed in liver (Supplementary Figure 1).

Prioritizing Causative Genes on Chr 1
Due to the fact that C1SLs only differ from B6 strain by one
chromosome (Figure 1), we believe the phenotypic differences
are partly driven by the genetic variations on Chr 1. In this study,
a total of 38 genes in the trait-associated modules were found
to be located on Chr 1. Of which, 35 harbor missense single
nucleotide polymorphisms (SNPs), and all have 3’ or 5’ UTR
variants (Table 1). In addition, several genes have been
associated with the traits in mouse models, including Creg1
and Aox1 in module M19; Phlpp1, Nr5a2, Rnf149, Ncoa2, and
Abl2 in module M1;Mogat1, Igfbp2, and Col3a1 in module M20;
G0s2, Crp, and Ppox in module M21, M7, and M12, respectively.
DISCUSSION

Recent work has demonstrated that gene co-expression network
analysis is a powerful way to associate genes with specific
phenotypes. Here, WGCNA was applied to investigate liver
transcriptomes of C1SL mice. A total of 24 modules were
identified, with module M19 being significantly associated with
blood lipid and glucose levels (Figure 3D). Searching MGI
database revealed that 13% (11 out of 84) of M19 genes are
involved in blood lipid or glucose metabolism (Figure 4C), such
as acyl-CoA thioesterase 11 (Acot11) (Zhang et al., 2012), cellular
repressor of E1A-stimulated genes 1 (Creg1) (Tian et al., 2017),
FIGURE 2 | Phenotype distributions across C1SLs and B6. (A) Schematic of traits collection (B–F) Bar plot of plasma lipid and fasting glucose levels across C1SLs
and B6 (mean + standard errors). Each bar represents one strain, and the black corresponds to the recipient strain B6.
January 2020 | Volume 10 | Article 1258
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carboxylesterase 1E (Ces1e) (Wei et al., 2010), carboxylesterase
1G (Ces1g) (Wei et al., 2010), and lamin A (Lmna) (Arimura
et al., 2005). This suggests that glucose and lipid metabolism
share common genetic architecture (Parhofer, 2015). We also
identified several TG (M1, M14, M20, and M21) and fasting
glucose (M7, M8, and M12) associated modules. These modules
include several known functional genes (Figures 5 and 6), such
as peroxisome proliferator activated receptor gamma (Pparg)
(Heikkinen et al., 2009), cell death-inducing DFFA-like effector c
(Cidec) (Toh et al., 2008), monoacylglycerol O-acyltransferase 1
(Mogat1) (Agarwal et al., 2016), glucokinase regulatory protein
(Gckr) (Farrelly et al., 1999), and phosphoenolpyruvate
carboxykinase 1(Pck1) (Hakimi et al., 2005). Since co-expressed
genes are assumed to be involved in interconnected biological
pathways (Weirauch, 2011), we believe other genes, along with
the known functional genes in the trait-associated modules, also
serve regulatory roles in glucose and lipid metabolism.
Frontiers in Genetics | www.frontiersin.org 6
Human GWAS in relation to blood lipid and glucose
metabolism have identified hundreds of associated genes
(Kathiresan et al., 2007; Kathiresan et al., 2008; Dupuis et al.,
2010; Willer et al., 2013a; Hwang et al., 2015; Siewert and Voight,
2018). However, most variants identified so far only explain a
small portion of phenotypic variance, leaving the majority of
heritability unexplained (Manolio et al., 2009). The inability to
uncover the remaining spectrum of variance is related to
multiple factors, including sample size, genetic structure, rare
variants, and gene-gene interactions (Manolio et al., 2009; Parker
and Palmer, 2011). In addition, stringent thresholds of p-value
with high multiple testing corrections is also believed to exclude
many positive signals (Lee et al., 2011; Lee and Lee, 2018). Joint
analysis of human GWAS and mouse genetics would help to
“rescue” some of the ‘missing’ heritability (Parker and Palmer,
2011; Ashbrook et al., 2014; Ashbrook et al., 2015; Wang et al.,
2016). In the present study, we identified 48 genes in the trait-
FIGURE 3 | Weighted gene co-expression network analysis of liver transcriptomes. (A) The soft thresholding index R2 (y-axis) as a function of different thresholding
power b (x-axis). (B) Mean connectivity (y-axis) as a function of the power b (x-axis). (C) Twenty four co-expression modules were identified from the liver RNA-seq
dataset. WGCNA cluster dendrogram groups genes (n = 10,520) measured across C1SLs and its recipient strain B6 liver into distinct gene modules (M1–24) defined
by dendrogram branch cutting. (D) Module-trait associations. Each row corresponds to a module column to a trait. Each cell contains the corresponding correlation
and p-value. The table is color-coded by correlation according to the color legend. The hub genes were indicated aside each module.
January 2020 | Volume 10 | Article 1258
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FIGURE 4 | Gene prioritization for module M19. (A) Human GWAS overlapping genes for module M19. Genes with GWAS p value <1 × 10−4 for blood lipid and
fasting glucose levels were retrieved from GRASP and GWAS Catalog. (B) Correlations between module M19 hub gene Tmem176a and MEs and traits. (C) Gene
subnetwork for module M19. Green circles represent genes overlapping with human GWAS; blue circles represent genes functionally validated in mouse models;
both functionally validated and GWAS overlapping genes are marked with blue rectangles.
FIGURE 5 | Gene prioritization for TG-associated modules. (A) Human GWAS overlapping genes for TG-associated modules. Genes with GWAS p value <1 × 10−4 of
TG level were retrieved from GRASP and GWAS Catalog. (B–E) Gene subnetworks for module M1, M14, M20, and M21. The coloring scheme is same as Figure 4C.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 12587
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associated modules which have been reported in human GWAS
with p value <1 × 10−4. Among them, several genes not only
achieved GWAS significance threshold (p value <5 × 10−8), but
also functionally validated in mouse models, including acyl-CoA
thioesterase 11 (Acot11) (Asselbergs et al., 2012; Zhang et al.,
2012), estrogen receptor 1(Esr1) (Ohlsson et al., 2000; Asselbergs
et al., 2012), Cd36 molecule (Cd36) (Goudriaan et al., 2003;
Asselbergs et al., 2012), fatty acid desaturase 2 (Fads2) (Stroud
et al., 2009; Teslovich et al., 2010), phospholipase A2, group VI
(Pla2g6) (Zhang et al., 2013; Spracklen et al., 2017), glucokinase
regulatory protein (Gckr) (Farrelly et al., 1999; Scott et al., 2012),
and fatty acid desaturase 1 (Fads1) (Scott et al., 2012).
Furthermore, we also found several functionally validated
genes with modest GWAS p values, such as cellular repressor
of E1A-stimulated genes 1 (Creg1) (Saxena et al., 2007; Tian
et al., 2017), cytochrome P450 family 7 subfamily b polypeptide 1
(Cyp7b1) (Li-Hawkins et al., 2000; Del-Aguila et al., 2014), NAD
(P)H dehydrogenase quinone 1 (Nqo1) (Gaikwad et al., 2001;
Asselbergs et al., 2012), peroxisome proliferator activated
receptor gamma (Pparg) (Heikkinen et al., 2009; Teslovich
et al., 2010), and phosphoenolpyruvate carboxykinase 1(Pck1)
(Hakimi et al., 2005; Dupuis et al., 2010). Although the function
of other genes (GWAS p value > 5 × 10−8) in plasma lipid or
glucose metabolism remain unclear, they are possible candidates
based on the genetic evidence from our results (Figures 4–6).
Therefore, we believe that by intergrating human GWAS and
mouse genetics studies, it is possible to identify more functional
genes and uncover part of the ‘missing’ heritabilities caused by
stringent statistical thresholds in human GWAS.
Frontiers in Genetics | www.frontiersin.org 8
C1SLs are aimed to identify genes associated with complex
traits on Chr 1 by performing association studies or systems
genetics analysis. However, the current study only included 13
C1SLs and one recipient strain B6 and performing association
studies in such a small number of strains could result in many
false positives due to the low statistical power (Flint and Eskin,
2012). Therefore, we used the systems genetics strategy, gene co-
expression network analysis, to prioritize the novel candidate
genes-especially those located on Chr 1. A total of 38 Chr 1 genes
are found in the eight trait-associated modules with an average of
4.75 genes in each. This number is far less than QTL genes
identified by linkage studies in F2 mouse segregation population
or association studies in mouse reference populations (Buchner
and Nadeau, 2015). In addition, we found at least one gene for
each module that has been implicated in regulation of plasma
lipid or glucose metabolism (Table 1). Therefore, this approach
could allow for identification of functional genes (Chr 1) more
efficiently than using previous methods and mouse population.

In summary, we identified eight gene networks associated
with blood lipid and glucose levels by performing gene co-
expression network analysis in C1SL mice population. Further
joint analysis of human GWAS resulted in 48 candidate
functional genes. In addition, 38 genes on Chr 1, including 13
well characterized genes, are prioritized as causative genes.
However, these genes still need further studies to illustrate
their potential functional roles. With the development of other
C1SLs and further achiving of sequencing data, Co-expression
network analysis on C1SLs can provide us a new avenue for
identifying other causative genes for complex traits on Chr 1.
FIGURE 6 | Gene prioritization for fasting glucose-associated modules. (A) Human GWAS overlapping genes for fasting glucose-associated modules. Genes with
GWAS p value <1 × 10−4 of fasting glucose level were retrieved from GRASP and GWAS Catalog. (B–D) Gene subnetworks for module M7, M8, and M12. The
coloring scheme is same as Figure 4C.
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SUPPLEMENTARY DATA S1 | Phenotype information.
TABLE 1 | Lists of the module-trait associated genes on Chr 1.

Gene symbol Entrez ID Chr Start End Module Associated traits # Missense SNP # UTR SNP

Creg1 433375 1 165763746 165775308 M19 CHOL, HDL, LDL, TG, GLU 1 118
Atic 108147 1 71557150 71579631 M19 CHOL, HDL, LDL, TG, GLU 4 31
Aox1 11761 1 58029931 58106413 M19 CHOL, HDL, LDL, TG, GLU 18 5
Smyd3 69726 1 178951960 179518041 M19 CHOL, HDL, LDL, TG, GLU 10 152
Igsf8 140559 1 172261641 172319841 M19 CHOL, HDL, LDL, TG, GLU 7 29
Inpp4a 269180 1 37299865 37410736 M1 TG 39 98
Phlpp1 98432 1 106171752 106394250 M1 TG 9 20
Eprs 107508 1 185363044 185428360 M1 TG 14 7
Ino80d 227195 1 62958418 63114667 M1 TG 36 231
Nr5a2 26424 1 136842571 136960448 M1 TG 5 93
Rnf149 67702 1 39551296 39577405 M1 TG 2 15
Ncoa2 17978 1 13139105 13374083 M1 TG 6 59
Abl2 11352 1 156558786 156649568 M1 TG 5 113
Kmo 98256 1 175620381 175662116 M1 TG 20 105
Myo1b 17912 1 51749765 51916071 M1 TG 4 78
Wdr26 226757 1 181173228 181211552 M1 TG 3 100
Rabgap1l 29809 1 160219174 160793211 M1 TG 16 62
Sde2 208768 1 180851127 180868113 M1 TG 21 28
Gm38394 NA 1 133619940 133661318 M1 TG 6 112
1700034P13Rik 73331 1 9747648 9791924 M1 TG 0 0
Etnk2 214253 1 133363572 133380336 M14 TG 12 62
Mogat1 68393 1 78510991 78538173 M20 TG 0 3
Igfbp2 16008 1 72824503 72852474 M20 TG 0 5
Cps1 227231 1 67123026 67231259 M20 TG 1 11
Col3a1 12825 1 45311538 45349706 M20 TG 2 10
Rpl28-ps1 100042670 1 128038569 128038982 M20 TG 0 0
Aox3 71724 1 58113130 58200698 M20 TG 14 35
2810459M11Rik 72792 1 86045863 86055456 M20 TG 6 56
G0s2 14373 1 193272161 193273217 M21 TG 0 7
Mrps9 69527 1 42851233 42905683 M21 TG 5 22
Crp 12944 1 172698055 172833031 M7 GLU 2 10
Ppil3 NA 1 82233112 82235933 M7 GLU 6 40
Tmem131 56030 1 36792194 36943666 M7 GLU 16 19
Tmem185b 226351 1 119526160 119528983 M7 GLU 1 26
Tex30 75623 1 44086613 44102441 M7 GLU 0 24
9430016H08Rik 70225 1 58430994 58445486 M7 GLU 0 0
Gm9747 68115 1 57406328 57417953 M7 GLU 1 10
Ppox 19044 1 171275990 171281186 M12 GLU 9 10
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