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Recently, an increasing number of studies sequence multiple biopsies of primary tumors,
and even paired metastatic tumors to understand heterogeneity and the evolutionary
trajectory of cancer progression. Although several algorithms are available to infer the
phylogeny, most tools rely on accurate measurements of mutation allele frequencies from
deep sequencing, which is often hard to achieve for clinical samples (especially FFPE
samples). In this study, we present a novel and easy-to-use method, PTI (Phylogenetic
Tree Inference), which use an iterative top-down approach to infer the phylogenetic tree
structure of multiple tumor biopsies from same patient using just the presence or absence
of somatic mutations without their allele frequencies. Therefore PTI can be used in a wide
range of cases even when allele frequency data is not available. Comparison with existing
state-of-the-art methods, such as LICHeE, Treeomics, and BAMSE, shows that PTI
achieves similar or slightly better performance within a short run time. Moreover, this
method is generally applicable to infer phylogeny for any other data sets (such as
epigenetics) with a similar zero and one feature-by-sample matrix.

Keywords: phylogenetics, tumor evolution, multi-region sequencing, lineage tracing, allele frequency
INTRODUCTION

Cancer is an evolutionary process that is shaped by selection pressure and the accumulation of
somatic mutations, resulting in a high level of heterogeneity within and between tumor samples
(Marusyk et al., 2012; Yates and Campbell, 2012). Such heterogeneity in genomes can be used to
distinguish tumor subclonal populations and track the evolutionary trajectory of cancer
progression. Metastasis is normally considered as the last step during cancer progression and is
still the major cause of cancer death but poorly understood mechanistically. A number of studies
sequenced multiple biopsies of primary and metastatic tumors to elucidate the order of mutation
accumulation and the origin of distal metastasis (Gundem et al., 2015; Yates et al., 2017; Ferronika
et al., 2019). A better understanding of metastasis process may eventually lead to novel diagnosis
and treatment strategies.

Anumber of computationalmethods are available to infer the genotypes of tumor cell populations.
However, most existingmethods infer the phylogeny of cancer evolution based on somatic mutations
variant allele frequencies (VAFs) from DNA deep sequencing data (Jiao et al., 2014; Malikic et al.,
2015; Yates et al., 2015; Nieboer et al., 2018). Several traditional phylogenetic inference methods
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utilize multiple sequence alignments, neighbor joining with
Pearson correlation distances, maximum parsimony algorithm
or maximum likelihood algorithm based on variant presence
patterns across samples (Kim et al., 2015; Lu et al., 2016; Zhao
et al., 2016; Choi et al., 2017; Naxerova et al., 2017; Zhai et al.,
2017). Most of these methods are computationally intensive and
require a long running time. In 2015, LICHeE was developed to
construct multi-sample tumor phylogenetic trees and tumor
subclonal decomposition from accurate VAFs of somatic single
nucleotide variants (SSNVs) obtained by deep sequencing (Popic
et al., 2015). LICHeE first groups subsets of somatic mutations
that have similar presence-absence patterns as well as similar
VAFs across multiple tumor samples. Then, it constructs a
constrained network to infer the relationships among clusters of
somatic mutations and identify tumor phylogenetic trees. Several
other methods adopt similar principles but different
methodological frameworks, such as Treeomics and BAMSE
(Reiter et al., 2017; Toosi et al., 2019). Treeomics was developed
to reconstruct the phylogeny of metastases and map subclones to
their anatomic locations. It uses total reads and variant reads of
SSNVs from multiple related normal and tumor samples of
individual cancer patients as input files. Then it uses a Bayesian
inference model to identify evolutionarily compatible mutation
patterns and then infer evolutionary trees. Another probabilistic
method, named BAMSE infers subclonal history and lineage tree
reconstruction of heterogeneous tumor samples using somatic
mutations read counts as input. The posterior probability of tree is
inferred by a Bayesian model that integrates prior belief about the
number of subclones, the composition of the tumor, and the process
of subclonal evolution. However, users have to decide the number of
subclones, which is normally difficult to estimate. There are two
major issues common for thesemethods.Most importantly, it is often
difficult to obtain accurate allele frequency from clinical samples,
such as formalin-fixed, paraffin-embedded (FFPE) samples (Astolfi
et al., 2015). Results of these methods are also sensitive to several key
parameters, and yet there is no easy way for users to decide on
these parameters.

Here, we propose PTI (Phylogenetic Tree Inference), a novel
method which use an iterative top-down approach to infer the
phylogenetic tree structure of multiple tumor biopsies from same
patient using somatic mutations without the needs of accurate
allele frequencies. In addition, PTI has only one parameter
to set, and we also provide clear instructions on how to set
this parameter.
METHODS

PTI is a method designed to use an iterative top-down approach
to infer the rooted phylogenetic tree among multiple samples of
the same patient. In this section, we provide an overview of our
approach (Figure 1). First, PTI identifies shared mutations for all
samples and defines the number of shared mutations as the length
of the root trunk. Then, PTI uses an iterative top-down approach
to find the optimal branch split until all samples reach the leaf
nodes. PTI also annotates the mutations of known driver genes on
Frontiers in Genetics | www.frontiersin.org 2
the tree structure, which facilitates an intuitive understanding of
the key mutation events during cancer progression.

Identify and Remove the Shared Mutations
From All Samples
Assume we obtained multiple samples s, s ∈ {1,2,…,n} from same
patient. Using somatic mutation caller, such as Mutect2 or
VarScan2 (Koboldt et al., 2012; Cibulskis et al., 2013), we can
detect themutation allele frequencies in each sample. Define these
somatic mutations by r1,r2…,rm. We then build a binarymatrixM
with rows labeled r1,r2…,rm, and columns labeled s1,s2…,sn, such
thatMij= 1 if and only if theVAF of somaticmutation ri in sample
sj is greater or equal to a given threshold. The more high-
confidence mutations are used to construct a phylogenetic tree,
the more accurate the structure of the tree. However, when the
number of somatic mutations within a patient is too large, an
optional filtering step of somatic mutations based on allele
frequency (default is 0.1) can be implemented by PTI. Matrix M
is the input of PTI. We calculate the intersection of mutations in
all samples of the same patient and define the intersection as the
length of the root trunk. After removing the shared mutations
from all samples, the next step is to find the optimal branch split
for the filtered data setMfilter.

Find the Optimal Branch Split
Genomic variations in cancer cells gradually accumulate over
the course of carcinogenesis and cancer development
(Gerlinger et al., 2012; Sato et al., 2016). So despite the
complexity in cancer evolution, more than two ways split is
rarely observed on the evolutionary tree in existing studies
(Hong et al., 2015; Schwarz et al., 2015; Brown et al., 2017).
Therefore, PTI will iterate through all possible two-way branch
splits, S = f(1, n − 1), (2, n − 2),…(j n2 j, n − j n2 j)g to infer the
optimal branch split. Notably, our method indeed is able to
detect more than two ways split at any given evolutionary node
(Supplementary Note 1).

For each possible branch split St, t ∈ f1, 2,…, j n2 jg, ∁tn
combinations are included. Let q be an object of the numbers
of shared mutations measured on all possible branch splits. For
each possible branch split St and combination c, c ∈ f1, 2,…, ∁tng
the corresponding element qtc, represents the number of shared
mutations in the larger group. If n is even, there is no larger
group of the possible branch split ( n2 , n − n

2 ). Then in this case,
qn

2c
 presenting the smaller number of shared mutations in two

equal size groups.
In order to determine which possible branch split is the best, we

define ∂ to be an vector of ratio measured on all possible branch
splits which is calculated via the Equation (1), where qt max

represents the maximum value and qt sec_max represents the
secondary maximum value in qt:

∂t =
qt max

qt sec_max
(1)

If the optimal split occurs in St, then the ratio between the best
combination and second best combination should be much
larger compared with non-optimal splits (see Supplementary
Note 2 for details description of rationale of using this ratio).
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Then, the samples that reach the leaf node after the optimal
split will be removed from the data set Mfilter. This method will
iterate over the rest of the samples until all samples are split into
leaf nodes. For a patient, there may be more than one tree
structures with an equal ∂ value. To determine the optimal tree
structure, an aggregated mutation count (WT) is calculated for
each tree structure using mutations on all trunks that contain
two or more leaf nodes. The tree with the largest scores will be
the optimal tree. Let i, i ∈ {0,1,…,k}, represents all trunk levels in
each tree structure. In trunk level i, there are Ni trunks so that we
let j, j ∈ {1, … , Ni}, represent all trunks in each trunk level. We
also define wij as the length of trunk j in trunk level i and define
cij which represents the number of leaf nodes involved in trunk j
in trunk level i. Then, the weight scoreWT of tree structure T will
be calculated by:

WT =o
k

i=1
o
Ni

j=1
wijcij   (2)

without root trunk level (i = 0) because the tree structures of
same patient have same root trunk.

Annotation of Driver Mutations on
Phylogenetic Tree
It is well known that there are more passenger mutations than
driver mutations in cancer genome. Understanding the time of
occurrence and the distribution of driver mutations in different
samples is important to understand the evolution of tumor
Frontiers in Genetics | www.frontiersin.org 3
progression. Therefore, our method also annotates the putative
299 driver genes on the branches of the tree for downstream
analysis (Bailey et al., 2018). It should be noted that in the tree
structure, there may be more than one tree branch with
annotation information of the same driver gene. This may be
caused by the same mutation or different mutations of the same
driver gene, which can be answered by an auxiliary information
file corresponding to the tree structure file.

As this method assume there is a major single clone for each
sample due to multiple biopsies, we do notice that in rare cases
this method will output multiple solutions instead of one optimal
solution when some samples are consisted of more than one
major clones (Supplementary Note 3).
RESULTS

Results on High-Grade Serous
Ovarian Cancer
To evaluate our method, we compared the performance of PTI
with two state-of-the-arts methods, LICHeE and Treeomics on
high-grade serous ovarian cancer (HGSC) data set which were
obtained from European Genome-Phenome Archive (accession
EGAS00001000547) (Bashashati et al., 2013). PTI used all
mutations with AF >= 0.01 while LICHeE and Treeomics were
run with the parameter defined in their published paper. Then
we compared the results of these three methods with the results
given in the original literature based on mutations and copy
FIGURE 1 | The overview of PTI. (A) The workflow of PTI. (B) Taking the patient with six samples as an example, the specific process of PTI inferring the phylogenetic
tree is shown in detail. The square grid indicates that the leaf node has been reached, and the circle indicates that the remaining samples still have to be iterated to find
the best branch split. (C) An example of a phylogenetic tree inferred by PTI. The phylogenetic tree is a rooted tree whose leaf nodes are samples. The annotation
information on the branches includes the length of the branches, which is equal to the number of shared mutations, and the annotation of driver genes.
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number alterations. In order to evaluate the similarity of two tree
structures, we defined a tree structure similarity scoring system.
The similarity score represents the proportion of the identical
paths in the tree topology and ranges from zero to one
(Supplementary Note 4). PTI showed slightly better
performance compared with LICHeE and Treeomics. Only PTI
correctly predicted identical structure in case 4, where sample j
and f-i are grouped into one branch (Table 1 and Figure 2A). 4
of 6 results predicted by PTI showed the identical structure
which similarity score is equal to 1. None of the three methods
showed highly consistent structures in Case 1 and 5 as original
Frontiers in Genetics | www.frontiersin.org 4
results (Table 1 and Figure 2B). In Case 1, results from PTI and
LICHeE were highly consistent. For Case 5, when PTI use all
somatic mutations with AF >= 0.01, there are only minor
differences between the tree structures inferred by PTI and
Treeomics. However, if PTI use all single nucleotide somatic
mutations obtained from original paper including 8 tumor
samples of Case 5, in contrast to the results in the original
literature which suggested an early divergence of sample c, PTI
first separated the sample h to achieve the most common
mutations (n = 4) in the remaining samples (Supplementary
Note 5). Careful analysis of the somatic mutation data set
revealed that if the sample c is diverged first, there is only one
shared somatic mutation in the remaining samples.

Results on Clear Cell Renal Carcinomas
Data Set
We performed a separate comparison between PTI, LICHeE, and
BAMSE on clear cell renal carcinomas (ccRCC) data set from
eight individuals which were obtained from European Genome-
Phenome Archive (accession EGAS00001000667) (Gerlinger
et al., 2014). Since LICHeE only used the variant allele
frequency of somatic single nucleotide variants to reconstruct
FIGURE 2 | The tree structures inferred by PTI for HGSC Cases 1, 4 and 5. (A) The tree structure of Case 4 inferred by PTI, LICHeE, and Treeomics respectively. In
the LICHeE result: yellow line, internal branch; light blue line, trunk; black line, contribution link; the numbers inside the circle, SSNVs; the light purple square, tumor
region. In the Treeomics result: numbers in blue correspond to the acquired variants in the branches. Percentages (gray) denote bootstrap values (1,000 samples).
SC, subclone. (B) For Case 1, PTI first separates the sample c to achieve the best branch split, which is same as the result of LICHeE. For Case 5, the tree structure
inferred by PTI and Treeomics has high similarities using six samples and eight samples (Supplementary Note 5).
TABLE 1 | The comparison of PTI, LICHeE, and Treeomics based on HGSC
data set.

Patient_ID PTI (AF >= 0.01) LICHeE Treeomics

Case 1 0.14 0.15 0.43
Case 2 1 1 1
Case 3 1 1 1
Case 4 1 0.57 0.83
Case 5 0.27 0.23 0.34
Case 6 1 1 1
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the phylogenetic process, PTI took the same set of SNVs with
AF >= 0.01 as the input data set. Since this data set lacked
information about total reads and variant reads of mutation
(Treeomics needs such information), so we only compared
results of PTI, LICHeE, BAMSE with those from original
literature that used VAF-based clustering, variant presence
pattern and maximum parsimony algorithm (Gerlinger et al.,
2014). It should be noted that the trees inferred by BAMSE were
obtained from Toosi et al. (2019). The comparison shows that
PTI and LICHeE performed similarly in terms of accuracy and
speed in the ccRCC data set while all tree structures inferred by
Frontiers in Genetics | www.frontiersin.org 5
BAMSE had single-branch or multi-branch differences (Table 2,
Figure S7).

Results on Breast Cancer Data Set
PTI also was benchmarked with LICHeE and Treeomics on
breast cancer data set and then compared these results with the
results from original literature based on both somatic mutations
and copy number alterations. Breast cancer data set were
obtained from European Genome-Phenome Archive (accession
EGAS00001000760) (Brown et al., 2017). The running time of
PTI, as well as the other two methods, was short, just within
seconds (Table S5). PTI and Treeomics both showed higher
accuracy compared with LICHeE. In results predicted by PTI, 6
out of 8 patients showed identical structures, while the other two
patients P1 and P2 showed highly similar tree structures as the
results in Brown et al. (2017), which may be caused by more
than one subclonal population in one biopsy (Figure 3). For
example, in patient P1, sample M1 (Metastatic tumor sample)
includes A-clone and B-clone, sample M4 (Metastatic tumor
sample) contains only A-clone, and samples M3 and P contain
B-clone. Therefore, the sample M1 is grouped together with the
sample M4 or with the samples P-M3, which is determined by
TABLE 2 | The comparison of PTI and other methods on ccRCC data set.

Patient_ID PTI (AF >= 0.01) LICHeE BAMSE

EV003 0.67 0.48 /
EV005 1 0.70 0.24
EV006 0.89 0.17 0.1
EV007 0.86 0.85 0.33
RMH002 0.55 1 0.55
RMH004 0.5 0.57 0.5
RMH008 1 1 0.83
RK26 0.65 0.54 /
FIGURE 3 | Comparison of trees for eight breast cancer patients. Eight phylogenetic tree structures without annotation information about the driver gene inferred by
PTI using all somatic mutations with >=1500X coverage and >=3% VAF (on the left) are compared with the trees (on the right) published in Brown et al. (2017) for each
patient on breast cancer data set. As for PTI results, the number of shared mutations is proportional to the length of branch and labeled above each branch. Also, the
scale bars on the upper right corner of the results given in original published paper represent 10 SNVs and provide an indication of the original length of the trees.
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the proportion of somatic mutations involved in A-clone and B-
clone in sample P (Supplementary Note 6). Treeomics also
showed good performance, and 6 out of 8 results were identical.
However, in the LICHeE results, 5 out of 8 patients showed
single-branch or multi-branch differences in tree structures. We
also tested these two methods on different AF cutoffs. The
accuracy of the tree structures of the three methods was
slightly improved, but PTI still showed better performance
(Table S6). Moreover, we also demonstrated that PTI
performed robustly in the low coverage data set by applying it
to the HISEQ data set for 8 breast cancer patients (Table S7).

Results on 13 Cancer Types Data Set
We also ran PTI on a real data set including somatic single
nucleotide mutations from 40 patients of 13 cancer types where
allele frequency data is not available. This data set were obtained
fromBioStudies database (accession S-EPMC4776530) (Zhao et al.,
2016).WeappliedPTI to infer the tree structure and thencompared
our results with the results that based on the multiple sequence
alignments, maximum likelihood algorithm, the maximal
parsimony algorithm, and the Bayesian inference criteria
implemented in original study. And then, based on similarity
score, we categorized the comparison results into four groups:
similarity score = 1, similarity score∈ [0.5,1), similarity score ∈
[0.2,0.5) and similarity score∈[0,0.2), representing various degrees
of tree structure similarity.The comparison shows that 92.5%ofour
results have the same or similar tree structure (similarity score
greater than 0.2) as the results inZhao et al. (2016) (Figure4,Figure
S8),which again suggest that ourmethodcanbeapplicable in awide
range of applications.
DISCUSSION

As PTI assumes that there is one major clone in each biopsy,
when there is more than one major subclone, PTI will assign the
Frontiers in Genetics | www.frontiersin.org 6
sample to the subclone with a higher mutation count by not their
relative cellular abundances of two subclones (Figure 3 and
Table S4). This may lead to some discrepancies in the tree
structures compared with other methods. But this case is rarely
observed in the studies for multi-region sequencing, we only
observe one case in all cases we tested.

In this study, we present PTI, a novel and easy-to-use method
to infer the phylogenetic tree of tumor progression using just
somaticmutationswithout the need for deep sequencing to obtain
high-confident allele frequencymeasurement. Our comparison to
other existingmethods, such as LICHeE, Treeomics, BAMSE, and
other traditional methods, shows that PTI achieves similar or
slightly better performance within a short run time, normally less
than a minute. This feature is important for studying clinical
samples that are difficult to obtain accurate allele frequency
information, such as formalin-fixed, paraffin-embedded (FFPE)
samples. Moreover, the input file for PTI is a similar zero and one
feature-by-sample matrix so that this method is generally
applicable to infer phylogeny for any other data sets that can be
converted into this format (such as epigenetics). In fact, this
method is also well suited for single cell data sets to evaluate the
similarity between single cells and construct their phylogenies.
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