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If dental caries (or tooth decay) progresses without intervention, the infection will advance
through the dentine leading to severe pulpal inflammation (irreversible pulpitis) and pulp
death. The current management of irreversible pulpits is generally root-canal-treatment
(RCT), a destructive, expensive, and often unnecessary procedure, as removal of the
injurious stimulus alone creates an environment in which pulp regeneration may be
possible. Current dental-restorative-materials stimulate repair non-specifically and have
practical limitations; as a result, opportunities exist for the development of novel
therapeutic strategies to regenerate the damaged dentine-pulp complex. Recently,
epigenetic modification of DNA-associated histone ‘tails’ has been demonstrated to
regulate the self-renewal and differentiation potential of dental-stem-cell (DSC)
populations central to regenerative endodontic treatments. As a result, the activities of
histone deacetylases (HDAC) are being recognised as important regulators of
mineralisation in both tooth development and dental-pulp-repair processes, with
HDAC-inhibition (HDACi) promoting pulp cell mineralisation in vitro and in vivo. Low
concentration HDACi-application can promote de-differentiation of DSC populations and
conversely, increase differentiation and accelerate mineralisation in DSC populations.
Therapeutically, various HDACi solutions can release bioactive dentine-matrix-
components (DMCs) from the tooth’s extracellular matrix; solubilised DMCs are rich in
growth factors and can stimulate regenerative processes such as angiogenesis,
neurogenesis, and mineralisation. The aim of this mini-review is to discuss the role of
histone-acetylation in the regulation of DSC populations, while highlighting the importance
of HDAC in tooth development and dental pulp regenerative-mineralisation processes,
before considering the potential therapeutic application of HDACi in targeted biomaterials
to the damaged pulp to stimulate regeneration.

Keywords: histone deacetylases, dentinogenesis, regenerative endodontics, dental pulp, acetylation,
histone acetyltransferases
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INTRODUCTION

Dental caries (decay) is the most prevalent global non-
communicable disease (WHO, 2017). The caries process
initiates with a microbial biofilm forming on the tooth surface,
which ‘fuelled’ by a dietary source of fermentable carbohydrates,
ecologically shifts the plaque to an acidogenic flora, breaking
down the hard tooth tissues of enamel and dentine (Nyvad et al.,
2013). If the carious lesion progresses without remedial
treatment, the pulp tissue in the centre of the tooth will
become progressively infected and inflamed (Mjor and
Tronstad, 1972; Mjor and Tronstad, 1974). The pulpal
inflammation (pulpitis) provokes a robust defensive reaction
with new dentine produced by the pulp’s secretory cells, the
odontoblasts, locally beneath the caries in a process called
reactionary dentinogenesis (Smith, 2002). If the advancing
caries continues until the bacteria invade the pulp tissue,
odontoblast death will occur, prior to more widespread pulpal
necrosis. Traditional treatment for pulp necrosis is root-canal-
treatment (RCT) (Table 1), which effectively removes all pulp
tissue; however, this is a very destructive and empirical approach.
The absence of vital pulp tissue has other consequences,
including removal of the tooth’s developmental, reparative, and
immune capacity as well as loss of the pulps proprioceptive
sensors, accompanied by a significantly greater risk of fracture
and tooth loss (Paphangkorakit and Osborn, 1998; Smith, 2002).
The pulp; however, has considerable potential to regenerate if the
insult is removed and the tooth effectively restored during vital-
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pulp-treatment (VPT) (Mjor and Tronstad, 1974). The damaged
odontoblast layer can regenerate in a stem-cell (SC) led process,
in which stem/progenitor cells cyto-differentiate under the
influence of bioactive molecules released from the damaged
dentine and pulp cells (Lesot et al., 1994; Smith et al., 2016;
Neves et al., 2017). Unfortunately, current therapies, which aim
to maintain and regenerate the pulp in VPT, are limited by low-
quality hard-tissue formation and non-specific responses (Nair
et al., 2008; Sangwan et al., 2013). As a result, there is significant
interest in developing scientific understanding of the
mechanisms that control dental SC (DSC) fate as well as
identifying potential therapeutic targets to promote more
effective tissue regenerative processes.

Epigenetic modulations, DNA-methylation and histone
modifications, are important regulators of DSC fate
(Gopinathan et al., 2013), with histone acetylation being
identified as an important regulator of bone, periodontal
ligament, and dental pulp mineralisation processes as well as
being a target for therapeutic inhibition (Duncan et al., 2016;
Huynh et al., 2016; Ricarte et al., 2016; Cantley et al., 2017). The
acetylation of DNA-associated histone (and non-histone)
proteins is controlled by the enzymes histone-deacetylases
(HDACs) and histone-acetyl-transferases (HATs), which alter
chromatin architecture in response to cellular needs, regulating
transcr ipt ion (Kouzar ides , 2007) . HATs or lys ine
acetyltransferases, are bi-substrate enzymes, which are
generally divided into categories of which the GCN5-Related
N-Acetyltransferases (GNAT) and MYST families the largest,
although others such as CBP/p300 may also be functionally
important (Lalonde et al., 2014). HATs are further classified by
their nuclear or cytoplasmic distribution (Richman et al., 1988)
and have been implicated in a range of inflammatory diseases
(e.g. asthma) and cancer (Ito et al., 2002; Yang, 2004). To date,
HATs have not been the focus of the same level of attention as
HDACs in regenerative medical or dental research and although
HAT inhibitors are available, in vitro performance has not been
replicated therapeutically (Wu et al., 2009; Lasko et al., 2017).
This has been attributed to the difficulty in designing effective
HAT inhibitors, as they influence a range other cellular
substrates and operate as part of multi-function complexes
(Wapenaar and Dekker, 2016).

There are eighteen human HDAC enzymes categorised into
four separate classes, with classes I, II, and IV containing zinc-
dependent enzymes (Seto and Yoshida, 2014). Class I HDACs
demonstrate ubiquitous expression, while class II show tissue-
specific expression and cellular localisations (Montgomery et al.,
2007). The importance of class II HDAC expression in
mineralising tissues has been demonstrated in bone (Ricarte
et al., 2016) and teeth (Klinz et al., 2012), with the individual
isoforms, -6 (Westendorf et al., 2002), -5, and -4 (Nakatani et al.,
2018), highlighted as being important cellular mediators which
regulate osteoblast differentiation. HDACs’ roles in the
regulation of mineralisation and developmental cellular
processes (Gordon et al., 2015), also make them attractive
therapeutic targets for pharmacological inhibition (Richon
et al., 1996). Several HDAC inhibitors (HDACis), including
TABLE 1 | A list of abbreviations and definitions used in the text and figures.

Abbreviations Definition

BDNF Brain-derived neurotrophic factor
BMP Bone morphogenetic protein
DFPC Dental follicle progenitor cell
DMC Dentine matrix component
DMP Dentin matrix acidic phosphoprotein 1
DPC Dental pulp cell
DPSC Dental pulp stem cell
DSC Dental stem cell
DSPP Dentin sialophosphoprotein
ESC Embryonic stem cell
FDA US Food and Drug Administration
GDF-15 Growth/differentiation factor 15
GF Growth factor
GNAT GCN5-related N-acetyltransferases
HAT Histone acetyl transferase
HDAC Histone deacetylase
HDACi Histone deacetylase inhibitor
LMK-235 N-[[6-(hydroxyamino)-6-oxohexyl]oxy]-3,5-dimethyl-benzamide
MMP Matrix metalloproteinase
MYST MOZ, YBF2/SAS3, SAS2, and TIP60
PDLC Periodontal ligament cell
RCT Root canal treatment
SAHA Suberoylanilide hydroxamic acid
SC Stem cell
TGF Transforming growth factor
TSA Trichostatin A
VPA Valproic acid
VPT Vital pulp treatment
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trichostatin A (TSA), valproic acid (VPA), and suberoylanilide
hydroxamic acid (SAHA), have been shown to have clinical
application in a range of diseases including cancer and
inflammatory and neurodegenerative disorders (Bolden et al.,
2006; Das Gupta et al., 2016; Naftelberg et al., 2017). The medical
and dental literature also reports that HDACis are associated
with anti-inflammatory effects, pro-mineralisation, increased SC
differentiation, and overall improved regenerative responses
(Halili et al., 2009; Xu et al., 2009; Wang et al., 2010; Duncan
et al., 2013; Luo et al., 2018). Consequently, HDACis have the
potential to enhance dentine regenerative processes in VPT by
directly influencing DSC populations (Duncan et al., 2012; Luo
et al., 2018) and indirectly, by inducing the solubilisation of
dentine matrix components (DMCs) rich in growth factors (GFs)
and other bioactive molecules (Smith et al., 2016; Duncan et al.,
2017). An emerging role for HDACs in tooth development and
regeneration presents an opportunity for HDACi use in novel
dental regenerative materials.

The following section of this mini-review is to discuss
specifically the role of histone-acetylation in the regulation of
DSC populations, while highlighting the importance of HDAC in
tooth development (primary dentinogenesis) and dental pulp
regenerative-mineralisation processes (tertiary dentinogenesis).
Finally, the therapeutic regenerative potential of a topically
applied HDACi as part of next-generation dental biomaterials
to regenerate the damaged pulp is considered.
REVIEW

The Need to Regenerate Dental
Pulp Tissue
The tooth consists of the outermost enamel and inner dentine,
which surround a centrally-placed connective tissue called the
pulp. Enamel is a highly mineralised tissue produced by the
ameloblast cell during tooth development; however, after
eruption, enamel has no cellular capacity to continue
development, repair, or regenerate. Dentine is formed by the
secretory odontoblast cells, which reside at the interface between
dentine and pulp, linking the two tissues in a structure that is
known as the dentine-pulp-complex (Pashley, 1996). Primary
dentine forms during tooth development; however, unlike
enamel, secondary dentine continues to form throughout the
life of the tooth and furthermore the tooth can repair damaged
tissue by forming tertiary dentine in response to injurious
stimuli, including caries or tooth wear (Lesot et al., 1994;
Smith, 2002). There are two types of tertiary dentine, with
reactionary dentine formed in response to mild to moderate
irritation due to the upregulation of existing primary odontoblast
activity and reparative dentine generated when severe irritation
leads to odontoblast death followed by the regeneration of a new
layer of odontoblast-like cells from SCs (Lesot et al., 1994).

The origin of the progenitor cells in reparative dentinogenesis
is mesenchymal (Simon and Smith, 2014). Attributed to SC
populations within the pulp (e.g. dental-pulp-SCs [DPSCs])
(Smith and Lesot, 2001), SCs migrating from outside the tooth
Frontiers in Genetics | www.frontiersin.org 3
(Feng et al., 2011; Frozoni et al., 2012) or undifferentiated
mesenchymal cells from cell-rich and central pulp perivascular
regions (e.g. pericytes) (Fitzgerald et al., 1990; Machado et al.,
2016). DPSCs, reportedly account for between 1 and 5% of total
permanent pulpal cells (Gronthos et al., 2000) and reside in
perivascular areas potentially enabling their mobilisation to
wound sites (Shi and Gronthos, 2003; Crisan et al., 2008;
Casagrande et al., 2011). The dentine stores a plethora of
bioactive DMCs including GFs, chemokines, bioactive-proteins,
tissue proteases, and other mobilisation factors, which are
released by the caries process and orchestrate healing
contributing to regenerative process in the tooth (Smith, 2003;
Smith et al., 2016; Duncan et al., 2017; Tomson et al., 2017).
Certain dental materials exhibit the ability to solubilise DMCs
and influence the quality of the new mineral tissue formed, with
the outcome of VPT dependent on the dental biomaterial placed
in contact with the pulp (Nair et al., 2008). Notably, calcium-
silicate materials, such as mineral-trioxide-aggregate have now
superseded calcium hydroxide (Bjorndal et al., 2017) as the VPT
material of choice (Hilton et al., 2013). However, all current
materials are limited by low-quality tertiary dentine formation,
non-specific actions, and the absence of targeted components
focused on tissue regenerative strategies (Duncan et al., 2011).

Regeneration processes within the dentine-pulp-complex
require the presence of vital pulp tissue; however, if the
inflammatory process is allowed to continue without treatment,
pulp necrosis results. Regenerative endodontic efforts to avoid
RCT and ‘regrow’ the dental pulp using either a SC-based (Iohara
et al., 2011) or cell-homing (Shimizu et al., 2012) technique have
demonstrated that pulpal regeneration is possible. DPSCs can be
transplanted in vivo with a scaffold to form a new physiologically
functioning pulp tissue (Nakashima et al., 2017) and although,
development is hampered by expense, risk of immune-rejection,
ethics, and other regulatory issues (Kim et al., 2013) these
therapies have proceeded to clinical trial stage (Nakashima and
Iohara, 2017). In an alternative revitalisation procedure, a
decellularised or synthetic scaffold containing bioactive
molecules such as GFs, pharmacological inhibitors, and
mobilisation factors is placed into the root canal and
endogenous SCs are ‘homed’ into the space before undergoing
differentiation (Galler, 2016). Although, revitalisation can
successfully develop a biological pulp replacement, current
protocols do not specifically regenerate the odontoblast layer or
indeed enable further tooth root growth, which may be necessary
in under developed teeth (Shimizu et al., 2013; Eramo et al., 2018).

There is significant need to develop regenerative endodontic
techniques by developing our understanding of the epigenetic
processes, which control the fate and the odontogenic potential
of various SC populations (Gopinathan et al., 2013; Ching et al.,
2017). Histone acetylation is an obvious focus, playing a critical
role in a wide range of biological processes including
inflammation, mineralised tissue formation, and SC regulation,
(Schroeder and Westendorf, 2005; Shuttleworth et al., 2010;
Jamaladdin et al., 2014) and can be targeted by HDACi,
potentially benefiting the regenerative response within VPT
(de Boer et al., 2006; Duncan et al., 2016).
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Histone Acetylation Regulation of
Regenerative Mineralisation Processes
The nucleosome consists of tightly-coiled DNA, wrapped around
a histone core. The core contains an octamer of histone proteins
(H2A, H2B, H3, and H4), each with a positively charged N-
terminal tail (Biswas et al., 2011). These tails extend from the
core structure, facilitating post-translational modification by
acetylation, methylation, phosphorylation, ubiquitination, and
SUMOylation (Zhang and Reinberg, 2001). Histone acetylation
generates an architecturally open chromatin structure, which is
transcriptionally active, while deacetylation tightens the DNA-
histone association and represses gene expression (Verdone
et al., 2005). The enzymes, HAT and HDAC, mediate these
processes. Histone modifications, in contrast to DNA-
methylation, are highly labile, presenting attractive targets for
therapeutic intervention (Kelly et al., 2010).

Notably altered HDAC expression occurs during osteogenesis
(Westendorf et al., 2002; Schroeder et al., 2004), dentinogenesis
(Klinz et al., 2012), and cementogenesis (Huynh et al., 2016) in a
tissue-specific manner. Class I and II HDAC expression analysed
in human tooth periodontal ligament cell (PDLC) cultures
demonstrated that all of the five HDACs studied (HDAC-1 to
-4 and -6) were highly expressed, although HDAC3 was
downregulated during osteogenic differentiation (Huynh et al.,
2016). Furthermore, a dental pulp study analysing extracted
adult human molar teeth demonstrated that HDAC-2 and -9
were expressed in DPC, and exhibited a relatively strong
expression in odontoblasts, while HDAC-1, -3, and -4 were
relatively weakly expressed within the pulp tissue (Klinz et al.,
2012). In the developing tooth, the role of histone methylation
and demethylation has been studied (Zheng et al., 2014; Yi et al.,
2016); however, currently little is known about the influence of
acetylation in this process. Several studies have investigated the
importance of HDACs in pulpal mineralisation processes and
odontoblast differentiation in vitro (Duncan et al., 2012; Duncan
et al., 2013; Paino et al., 2014), but further work is required to
understand HDACs role during tooth development in vivo.
Deletion of HDAC-4 in mice inhibited bone resorption and
reduced thickness and cortical bone mass (Nakatani et al., 2016),
and had the additional effect of inhibiting MMP-13 and Sost/
sclerostin expression (Nakatani et al., 2018). Dentally, a mouse
model of HDAC-4 KO demonstrated altered mineralisation in
the roots of developing teeth (Ono et al., 2016) and the volume of
enamel and dentine (Figure 1A). Other histological work has
highlighted strong expression of another class II HDAC, -5, in
the odontoblasts of developing teeth (Figure 1B). Supplementing
DPSC cultures with HDACi has also indicated the importance of
HDAC-3 downregulation during odontoblast differentiation (Jin
et al., 2013), while HDAC-2 silencing in DPSCs promoted matrix
mineralisation and related gene expression (Paino et al., 2014).

HDAC and HAT activity preserves the self-renewal
capabilities of mesenchymal SCs (Romagnani et al., 2007; Lee
et al., 2009; Jamaladdin et al., 2014) by maintaining expression of
key pluripotent transcription factors, which are required to
enable an open chromatin structure characteristic of
embryonic SC (ESC) populations (Jamaladdin et al., 2014).
Frontiers in Genetics | www.frontiersin.org 4
Dental pulp tissue in adult teeth contains a characterised post-
natal SC population of DPSCs (Gronthos et al., 2000) and as a
result, modulators of SC behaviour have attracted significant
interest in dentistry with suggestions that dental developmental
anomalies, including dentine dysplasia and dentinogenesis
imperfecta, may be related to dysregulated epigenetic
modifications present during odontoblast differentiation (Sun
et al., 2015). Epigenetic modifications and related differentiation
profiles of two dental SC populations, DPSCs and dental follicle
progenitor cells (DFPCs), were compared via the analysis of
odon tog en i c g ene exp r e s s i on in c l ud ing den t i n e
sialophosphoprotein (DSPP) and dentin matrix acidic
phosphoprotein 1 (DMP-1) (Gopinathan et al., 2013).
Transcript levels were epigenetically-suppressed in DFPCs,
while osteogenic stimulation in vitro demonstrated significant
mineralisation increases only in DPSCs (Gopinathan et al.,
2013). Notably, a highly dynamic histone modification
response was demonstrated in mineralising DFPCs, but not in
DPSCs, with the latter also expressing relatively high levels of the
pluripotency-associated transcripts, Oct4 and Nanog. It was
concluded that these two neural crest-derived SC populations
were distinguished by epigenetic repression of dentinogenic
genes with dynamic histone enrichment in DFPCs during
mineralisation. This study highlighted the potential important
role of epigenetic control in odontoblasts.

HDAC role in modulation of immune and inflammatory
responses are also emerging (Leoni et al., 2002; Shanmugam and
Sethi, 2013; Das Gupta et al., 2016), as well as, their role in
angiogenesis (Mahpatra et al., 2010; Tsou et al., 2016) and
neurogenesis (Cho and Cavalli, 2014), which are critical to the
promotion of regenerative processes in the dental pulp. Together,
these studies highlight that HDACs are involved in range of
cellular events associated with the regeneration of dentine-pulp
complex, suggesting their potential roles as therapeutic targets
for VPT.

HDACi in Regenerative
Endodontic Therapies
HDACis chemically include short-chain fatty acids, hydroxamic
acids, cyclic peptides, and benzamides (Dokmanovic et al., 2007;
Marks and Xu, 2009; Yusoff et al., 2019). VPA is a short-chain
fatty acid that weakly inhibits class I and IIa HDACs, while the
common hydroxamic-acid-based HDACis target classes I and II
HDACs. HDACi are prime discovery targets for introduction
into clinical trials including SAHA (Richon et al., 1998), also
known as Vorinostat, being the first HDACi to obtain US FDA-
approval in 2006 for treatment of lymphoma (Grant et al., 2007).
Although HDACs are critical to the control of transcription, less
than 5% of expressed genes are altered by low-dose HDACi in
primary DPC cultures (Duncan et al., 2016).

Pharmacological inhibition of HDACs can modulate dental-
derived SC populations and promote odontoblast-like cell
differentiation and mineralised tissue formation (Kwon et al.,
2012; Duncan et al., 2013; Paino et al., 2014). Application of pan-
HDACi, TSA, VPA, and SAHA, to rodent and human DPSC
cultures enhanced mineralisation, accompanied by an
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upregulation of genes associated with odontoblast differentiation
and mineralisation, including TGF-b1, bone morphogenic
proteins (BMPs), DMP, and DSPP (Duncan et al., 2012;
Duncan et al., 2013; Paino et al., 2014; Duncan et al., 2016). In
contrast to the general upregulation of mineralisation-associated
transcripts, the expression of the bone metabolism marker
osteocalcin was reduced, a result attributed to the use of VPA
(Jin et al., 2013; Paino et al., 2014). HDACis reduced cell
proliferation and viability at relatively high doses, but at lower
doses did not show cytotoxic or anti-proliferative effects
(Duncan et al., 2013; Paino et al., 2014; Duncan et al., 2017).
SAHA was also shown to promote other reparative processes in
DPC populations, including cell migration (Duncan et al., 2016;
Luo et al., 2018) and cell adhesion (Luo et al., 2018). In addition
to the direct regulation of SCs, HDACis also induce bioactive
DMC release from dentine (Duncan et al., 2017). Bioactive
molecules ‘fossilised’ within the dentine matrix (Cassidy et al.,
1997; Smith, 2003; Grando Mattuella et al., 2007), can be released
by caries, trauma, or by dental materials (Graham et al., 2006;
Tomson et al., 2007). Released DMCs regulate the cyto-
differentiation of progenitor cells and subsequent reparative
dentine formation with bioactive components including BMPs
and other GFs (Smith et al., 2016). Three HDACis, SAHA, TSA,
and VPA, extracted a range of GFs from dentine, less efficiently
than the well-characterised extractant EDTA for certain GFs (e.g.
TGF-b1), but more effectively for others (e.g. Growth/
di ff erent ia t ion factor 15 [GDF-15] , Bra in-der ived
neurotrophic-factor [BDNF]), while interestingly each HDACi
exhibited a different extraction profile (Duncan et al., 2017).
Frontiers in Genetics | www.frontiersin.org 5
Furthermore, an in vivo study analysed the development of the
dentine-pulp complex after systemic injection of TSA into
prenatal mice and highlighted an increase in odontoblast
numbers and dentine thickness compared with control
specimens (Jin et al., 2013).

Currently, most research in medicine and dentistry employs
pan-inhibitors; however, isoform-specific HDACis have been
developed (Khan et al., 2008; Muraglia et al., 2008). It is
proposed that isoform selectivity will counteract the multiple,
often opposing cellular effects of HDACs (Balasubramanian
et al., 2009) and reflect tissue-dependent expression of class II
HDAC enzymes in particular (Verdin et al., 2003). For example,
LMK-235 selectively inhibits HDAC-4 and -5 and was reported
to upregulate odontoblast differentiation from human DPSCs
(Liu et al., 2018). From a therapeutic perspective, low-dose short-
duration HDACi application promotes DPC regenerative
processes highlighting an opportunity for its use in next-
generation VPT biomaterials (Duncan et al., 2016). Ethical,
regulatory, and cost-effectiveness appraisal will need to be
considered and material science aspects developed in order to
create a controlled delivery-mechanism for the pulp. Notably,
dental biomaterials containing antibiotics are commercially
available (Imazato et al., 2007; Kamocki et al., 2015). Certainly,
the low-dose, topical route of administration in dentistry should
reduce the likelihood of systemic side effects such as fatigue,
nausea, vomiting, diarrhoea, and thrombocytopenia
(Subramanian et al., 2010), which have been reported following
systemic-administration of HDACis at high-dose and frequency
for cancer therapy.
FIGURE 1 | Histone acetylation as a potential therapeutic target within the dentine-pulp complex. (A) Morphological comparison of post-natal day 10 maxillary first
molar teeth of (Ai) WT and (Aii) HDAC4−/− mice using haematoxylin and eosin staining of sagittal sections highlighting differences in the volume of dentine and
enamel deposited in the crown of the tooth. (Bi) Immunohistochemical analysis demonstrating HDAC-5 expression was evident in the odontoblasts (arrow),
predentine layer, and pulp of WT adult first molar teeth in rats compared with (Bii) negative control. Dn = mineralised dentine; En = enamel; Pp = pulp tissue. Scale
bars = (Ai) 250 mm, (Aii) 10 mm (original magnification x4), (Bi-ii) 50 mm (original magnification x10) (Duncan, 2017) (C) Schematic illustration of the potential of
HDACi to be applied topically to damaged pulp tissue in a dental procedure to promote regenerative responses in VPT. Odontoblast-like cells are a replacement
secretory cell after the death of primary odontoblast cells, which have been lost during the traumatic or carious insult. The differentiation of this cell type is crucial to
the regeneration of dentine and mineralised tissue within the dentine-pulp complex. HDACi have been shown to augment several cellular processes central to this
regenerative process, including increasing odontogenic gene expression, stimulating stem cell migration, promoting the release of bioactive dentine matrix
components and accelerating mineralisation. SC, stem cell; DMC, dentine matrix component.
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CONCLUSION

A range of HDACs are expressed in the dentine-pulp complex
and pharmacologically targeting them promotes a range of
regenerative processes in DPC populations. Acetylation is
central to orchestrating the differentiation and de-
differentiation potential of DPSCs and understanding the
intricacies of this control is crucial to enable pulpal
regenerative responses as well as for designing novel
therapeutic solutions. Further translational research is required
to address clinical application and safety concerns in
combination with scientific research to understand the
mechanisms of epigenetic regulation of DPSC populations.
Frontiers in Genetics | www.frontiersin.org 6
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