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Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq) has
opened new avenues of research in the genome-wide characterization of regulatory DNA-
protein interactions at the genetic and epigenetic level. As a consequence, it has become
the de facto standard for studies on the regulation of transcription, and literally thousands
of data sets for transcription factors and cofactors in different conditions and species are
now available to the scientific community. However, while pipelines and best practices
have been established for the analysis of a single experiment, there is still no consensus on
the best way to perform an integrated analysis of multiple datasets in the same condition,
in order to identify the most relevant and widespread regulatory modules composed by
different transcription factors and cofactors. We present here a computational pipeline for
this task, that integrates peak summit colocalization, a novel statistical framework for the
evaluation of its significance, and motif enrichment analysis. We show examples of its
application to ENCODE data, that led to the identification of relevant regulatory modules
composed of different factors, as well as the organization on DNA of the binding motifs
responsible for their recruitment.

Keywords: ChIP-seq, colocalization analysis, transcription factor (TF), transcriptional regulation, transcription
factor binding sites (TFBS)
INTRODUCTION

Next-generation sequencing based assays have opened novel avenues of investigation in every
aspect of research in genomics. In particular, they have become the standard in the genome-wide
characterization of all the elements concurring to the regulation of gene transcription, like
nucleosome positioning (Buenrostro et al., 2013; Pajoro et al., 2018), DNA accessibility (Giresi
et al., 2007), DNAmethylation, histone modifications and chromatin states (Roadmap Epigenomics
Consortium et al., 2015), transcription factor binding (Johnson et al., 2007), and long-distance
enhancer-promoter interactions (Fullwood and Ruan, 2009; Lieberman-Aiden et al., 2009).
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Ronzio et al. Discovery of Genome-Wide Regulatory Modules
As a consequence, literally thousands of experiments have
been published on one or more of the above aspects in different
species and conditions, and large scale projects like ENCODE
(Gerstein et al., 2012) and Roadmap Epigenomics (Roadmap
Epigenomics Consortium et al., 2015) have been launched. It is
now standard practice also for small or midsize labs to produce
several datasets with different experiments, and to merge the
results obtained into a single overall picture of the regulatory
landscape of the condition studied.

Genome-wide NGS-based assays usually produce as a main
result a list of genomic regions, where base pairs included in
these regions satisfy the condition being tested, e.g., they are
nucleosome-free, bound by a transcription factor, occupied by a
nucleosome carrying a given histone modification, and so on.
Further information can be associated with each region, as for
example, its enrichment in the sequenced sample, that can be
expressed according to different measures. Key factors for the
reliability of the results produced are both wet lab protocols and
the downstream bioinformatic analysis of the data, and indeed,
as of today, a consensus has been reached for which are to be
considered the best practices for both (Landt et al., 2012).
However, we are far from having de facto standards for the
integrative analysis of the results of different experiments. In
principle, a single base pair on the genome appearing in the
output of two or more experiments can be considered to satisfy
simultaneously the different conditions that have been tested.
How this information can be interpreted depends on the
experiments producing the data to be analyzed. For example,
ChIP-Seq assays for different histone modifications in the same
condition can be processed with approaches like segmentation
(Ernst and Kellis, 2017), in order to identify their most relevant
combinations on the genome, and to produce a genome-wide
map of chromatin states each characterized by a different
combination of modifications, mapping the location of active
or repressed promoters, enhancers, transcribed regions, and so
on. However, the integrative analysis of different ChIP-Seq
experiments for DNA binding proteins like transcription
factors is usually performed with different criteria and
principles, often designed ad hoc for the protein or
condition studied.

In this work we present a simple pipeline for the integrative
analysis of any number of ChIP-Seq experiments for
transcription factors (TFs) or cofactors. Each ChIP-Seq
experiment returns a genome-wide map of the binding
locations on DNA of the protein studied. While this
phenomenon is usually represented as a single protein
interacting with DNA, in reality different factors and
cofactors form large protein complexes, binding DNA at
distal and proximal regions, that recruit RNA polymerase
and initiate transcription. Thus, it is of the utmost importance
for obtaining a complete understanding of the mechanisms
behind the regulation of transcription not to treat each factor
as a separate entity, but to identify combinations of different
factors binding DNA as a complex at the same loci of the
genome, and evaluate if these coassociations can constitute
widespread regulatory modules.
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Given the results of ChIP-Seq experiments for any number of
different TFs or cofactors, our pipeline has been designed to
answer the following questions: (1) Which are the combinations
of factors and cofactors that are found with higher frequency on
the genome? (2) Are the combinations found actually significant,
that is, not resulting from random associations between different
proteins but indeed found with high frequency on the genome,
thus signaling a higher level of organization in transcriptional
regulation? (3) Which are the recruiting rules on DNA, that is,
which are the factors actually bound to DNA, and are there
specific combinations (e.g., distance or orientation requirements)
for their DNA-binding sites?

These questions have become more and more relevant over
the years, once large datasets, like the assays performed by the
ENCODE project, have been released. Indeed, curated databases
containing thousands of ChIP-Seq datasets for TFs in different
species and conditions are now publicly available, like ChIP-
Atlas (Oki et al., 2018) or ReMap (Chèneby et al., 2018). An
important feature of these repositories is that, like in the
ENCODE project, all datasets included have been uniformly
reprocessed, in order to make their comparison as less biased as
possible by different choices in data analysis.

TF colocalization on the genome has been already defined
and tacked with different approaches, ever since the
introduction of the first NGS-based assays, as for example in
(Chen et al., 2008). Several works have addressed the problem
by starting from the position of TF binding peaks on the
genome [see among many others (Chen et al., 2008; Gerstein
et al., 2012)]. Colocalization, and its significance, is then
assessed starting from the number of overlapping peaks, and
evaluated with explorative or correlation measures like
Pearson correlation (Chen et al., 2008), z-scores (Gerstein
et al., 2012), the Jaccard index (Salvatore et al., 2019), or with
machine learning based techniques like self-organizing maps
(Xie et al., 2013).

An orthogonal approach is to analyze regions resulting from a
single ChIP-Seq experiment for enrichment of sequence motifs
known to represent sites be bound by other TFs, as for example
in (Wang et al., 2012; Levitsky et al., 2019). Candidate TFs thus
identified can be likely members of the same regulatory module.
The pipeline we introduce here is indeed a combination of these
two approaches, peak colocalization and motif enrichment
analysis, with the additional introduction of a statistical
framework designed ad hoc to assess both.
METHODS

Transcription Factor Colocalization
Defining Overlapping Peaks and Cobinding Regions
The overlap among two or more genome-wide datasets can
formalized in different ways, both in the definition of common
features and in the evaluation of the significance of the overlap
found, as reviewed for example in (Kanduri et al., 2019; Salvatore
et al., 2019).
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ChIP-Seq experiments for DNA binding proteins like TFs
produce as output enriched regions usually called “peaks.” This is
due to the experimental protocol preparing the DNA to be
sequenced (Figure 1). The fragments, produced by random
DNA sonication, are usually of about 200 bps. Once mapping
on the genome of the sequenced reads has been performed, the
actual fragment size can be reestimated according to the distance
between clusters of reads mapping on opposite strands, (Zhang
et al., 2008; Bailey and MacHanick, 2012; Mathelier et al., 2016)
in order to improve the resolution obtained by the experiment.
The result is a coverage “signal” map, giving an estimate of how
many times each base pair of the genome was present in the
sequenced DNA sample. Since the actual point of interaction
between the protein studied and DNA is present in each of the
fragments, enriched regions show a typical “peak” shape in the
signal map (Figure 1).

Algorithms for “peak calling” thus return regions where the
observed enrichment and respective signal is not considered to
be due to random experimental noise (Thomas et al., 2017). A
typical region is reported to be a few hundreds of base pairs long,
while the sites actually bound by TFs are much smaller, usually
no more than 10–12 base pairs. However, the local maxima of the
Frontiers in Genetics | www.frontiersin.org 3
peaks correspond, or at least are not too distant from, the actual
binding site of the protein studied (Zhang et al., 2008). Indeed,
ChIP-Seq peaks usually show a good “centrality,” that is, the
likely binding site of DNA returned by sequence analysis is
usually found to be within a few dozen base pairs from the
summit (Zhang et al., 2008; Bailey and MacHanick, 2012;
Mathelier et al., 2016). For proteins like cofactors, not directly
in contact with DNA, the argument still holds, with the only
difference that summits and binding sites are related to the
protein(s) of the complex tethering the cofactor on DNA.

The above considerations should be kept in mind when
performing colocalization analyses for TF binding. Simply
defining a DNA locus as “cobound” by two different
transcription factors if two peak regions overlap might
correspond to cases in which the actual binding sites of the
factors are hundreds of base pairs apart. Thus, our approach to
defining two (or more) TFs or cofactors as “colocalizing” on the
genome is based instead on peak summits coordinates. In other
words, we do not require two peak regions just to overlap, but we
consider the location of the respective summits. We then define
two peaks as “overlapping,” and the TFs to bind DNA in close
proximity, if the respective summits are within ds base pairs from
FIGURE 1 | The typical peak shaped enrichment plot for a ChIP-Seq experiment resulting from read mapping on the genome. The actual point of contact of the
protein studied on DNA is usually close to the point of maximum local enrichment (peak summit).
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one another, with an approach similar to (Chen et al., 2008),
where the “center” of peak regions was employed to assess
colocalization. With respect to (Chen et al., 2008), however, we
introduce also a statistical assessment of the significance of
overlaps, as detailed in the next section. As a default threshold
for this step we set as maximum distance ds = 150 bps, a distance
commonly employed in studies of this kind (Wang et al., 2012),
which also makes the calculation of the statistical significance of
overlap straightforward as shown in the next section.

We define pairs of peaks satisfying this criterion as cobinding
peaks. This, in turn, usually corresponds to having the binding
sites on DNA of the two factors located within a number of base
pairs (dbs) not too much different from the ds distance. Or,
alternatively, summit proximity could be due to only one of the
two factors in contact with DNA, with the other one being
anyway part of the same complex (Figure 2).

Assessing Statistical Significance of Peak Overlaps
Let TF1 and TF2 be two TFs on which the cobinding analysis is
performed; let n andm the respective number of peaks, and k the
number of cobinding peaks defined as at the previous point. We
want to assess the probability of finding by chance k cobinding
peaks (hence, regions bound by both TFs), given n and m.

In our approach, we also define a constant N, denoting the
number of regions across the genome available for TF binding,
whose size equals our “cobinding” region size of 150 bps. A
straightforward way to estimate N would be to count the overall
number of regions bound by all the TFs active in the condition
studied. This approach, however, would have the effect of
underestimating N if binding data were available only for a
limited number of TFs, i.e. several regions would not be included
in the count simply because the ChIP-Seq experiments for the
TFs binding them had not been performed.

However, since a region bound by a TF usually corresponds to
accessible DNA, estimate for N can be obtained from the number
of nucleosome-free regions, and their respective size. Thus, we
took advantage of maps of accessible DNA produced in several
different cell lines in the framework of the ENCODE project,
through digital genomic footprinting (Sabo et al., 2004; Vierstra
Frontiers in Genetics | www.frontiersin.org 4
and Stamatoyannopoulos, 2016). The advantage of these datasets
(retrieved from the UCSC genome browser track “UW DNaseI
DGF” on the GRCh37 assembly) is that the genome is split into
regions of exactly 150 bps, that corresponds to the maximum ds
distance between summits we allow for peak overlap. Thus,
cobinding peaks can be seen as two peak summits falling exactly
within the same accessible region. The value of N is naturally cell-
and condition-specific, ranging roughly from 200,000 to 250,000
for most of the ENCODE cell lines on which this assay has been
performed. In case this number is available for the condition
studied it can be thus employed in a straightforward way. If not, we
advise to employ N = 250,000, a value we consider to be reliable
enough for all different conditions in human, and also in other
mammalian genomes like mouse. The only exception to this rule
are embryonic stem cell lines, in which nucleosome occupancy has
been shown to be significantly lower (Celona et al., 2011; Harwood
et al., 2019), with an average number of genomic loci available for
binding almost doubled. Thus, for these the suggested value is
N = 500,000.

Indeed, the vast majority of the accessible regions results to be
bound by TFs (80%–90% in the different ENCODE cell lines for
which digital footprinting data are available). Once again, the
sole exception are stem cell lines, where the percentage is lower
(70% in ENCODE H7-ESC cells), also because less TF ChIP-Seq
experiments are available for this condition. The number of
regions actually bound (more than 300,000) is anyway larger,
nearly twice as much as the other cell lines.

Similar estimates can be derived for other species and taxa,
since nucleosome occupancy and DNA accessibility data are
available for all the most widely studied species, as for example in
Drosophila (Thomas et al., 2011), or Arabidopsis thaliana
(Tannenbaum et al., 2018). In these two species the smaller
genome size (hundreds of millions of base pairs) in turn results
in a proportionally lower number of estimated accessible regions
(tens of thousands).

An alternative, if data are available, could be to focus on regions
annotated as active promoters or enhancers, as revealed by
presence of specific histone marks or resulting from a genome
segmentation approach like ChromHMM (Ernst and Kellis, 2017).
FIGURE 2 | Definition of cobinding peaks. Peak summits are usually close of the point of contact of the corresponding transcription factor (TF) with DNA. Two peak
summits within a given number of base pairs ds (150 in this work) should thus correspond to two TFs binding DNA in close proximity with one another (left, with the
respective binding sites within dbs base pairs), or to one of the two TF tethering the other on DNA (right).
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An estimate for N can be thus derived by the number of regions of
size ds found annotated as active promoter or enhancer. Also, the
overlap between two TFs can be assessed in either subset of
regions, thus identifying promoter- or enhancer-specific modules.

Once an estimate for N has been produced, the probability of
finding k cobinding peaks for two TFs by chance given n and m
(the number of peaks for the two TFs, respectively) can be
computed with different approaches, for example with the
hypergeometric distribution:

p k; n,m,Nð Þ =

n

k

 !
N − n

m − k

 !

N

m

 !

or the Poisson distribution:

p k; n,m,Nð Þ = e−llk

k !

where l = mn
N . In our experiments we employed the latter,

since the p-values returned are more conservative. Since both
distributions are two-tailed, low p-values can point to significant
colocalization across the genome (k higher than the expected
value), or vice versa if k is lower than the expected value than the
two TFs considered tend to avoid one another on the genome.

This analysis is performed on every pair of experiments
available. If several pairwise comparisons are performed, then
the p-values should also be corrected for multiple testing. For
example, in the results we present here we analyzed 329
ENCODE datasets for TFs in the K562 cell line, thus with
329 × 329 pairwise comparisons. We employed once again the
most conservative choice, the Bonferroni correction, multiplying
the p-values by 3292 = 108,241.

Building Modules With More Than Two Factors
The results of the pairwise comparisons described at the previous
step can be further extended to modules composed by more than
two TFs or cofactors.

An initial explorative analysis (see Results) is to define a
colocalization score for each pair of experiments i and j, starting
from the corresponding number of cobinding peaks k, and the
respective p-value pij, as -log10pij if the observed overlap is
higher than the expected value, log10pij (and hence a negative
number) otherwise. The resulting values can be employed to
represent the results as a heatmap, and clustering the heatmap
can in turn highlight groups of TFs with significant pairwise
overlaps, hence likely to be found together in the same
regulatory module.

Another approach we introduce is to choose a “base” TFb, and
determine whether other TFs tend to colocalize within its peaks.
For every pair of TFs (TFi and TFj) different from TFb, this step is
formalized as follows:

- Let kb the number of peaks for the base TFb;

- Let ki and kj the number of cobinding regions with TFb of the
two other TFs (TFi and TFj);
Frontiers in Genetics | www.frontiersin.org 5
- Let kij be the number of cobinding regions for both TFi and TFj
with TFb

At this point, the significance of the cobinding of TFi and TFj
in correspondence to TFb binding sites can be assessed again
with a statistical test as in normal pairwise comparison. That is,
we can compute the probability of finding kij cobinding regions
for TFi, TFj and TFb, given ki, kj, and kb. The p-value can be
computed again with a Poisson distribution:

p kij; ki, kj, kb
� �

=  
e−llkij

kij !

where l =
kikj
kb
.

The resulting p-values can in turn be converted again into
scores, with the respective clustering highlighting groups of TFs
colocalizing, but this time with TFb as “tether” on DNA. Once
the base TFb has been chosen, this step can be performed by
selecting only TFs that had a significant overlap with TFb at the
previous step in their pairwise comparison with it.

If necessary, this step can be iterated any number of times, e.g.
assessing the significance of the overlap of a fourth TF given the
cobinding regions of TFb, TFi, TFj, and so on.

Defining Binding and Recruitment Rules Through
Motif Analysis
Once a list of genomic regions bound simultaneously by two (or
more) TFs has been produced, the next step is to determine if the
respective binding sites are actually present on DNA, and if so if
they present any arrangement, e.g., are found at a precise
distance, further hinting at co-operative binding and
interactions between the respective proteins.

The binding specificity of a TF is usually defined with a position
specific frequency matrix, or profile, obtained by the alignment of a
collection of binding sites for the TF (Stormo, 2000; Zambelli et al.,
2013a), defining its nucleotide preference on DNA. Several
collections of profiles are freely available, derived from large-
scale in vitro assays like SELEX or by the application of motif
discovery tools to ChIP-Seq peak regions (Wingender, 2008;
Mathelier et al., 2016; Khan et al., 2018; Wingender et al., 2018).
For example, the latest version of the JASPAR database (Khan
et al., 2018) includes for human and mouse profiles derived from
the analysis of the ENCODE datasets.

This step can be formalized as a motif enrichment analysis, that
is, the regions are analyzed in order to determine whether the motif
representing the binding specificity of each of the TFs involved can
be considered to be enriched in them, both in number and quality
of instances found. Different tools have been introduced for this
task, including a tool we developed called PscanChIP (Zambelli
et al., 2013b). Since, as we previously discussed, the region more
likely to correspond to the actual point of contact of the TF onDNA
is located near peak summits, PscanChIP requires as input a list of
one base pair peak summit coordinates, and scans the region of 150
base pairs centered on each one employing a collection of motifs
like the JASPAR database or defined by the user.

Actual motif enrichment is evaluated by the tool in
different ways:
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- Global enrichment: enrichment is assessed with respect to a
genomic background, that is, motifs are overrepresented in
the selected regions with respect to the rest of the genome
accessible to TF binding. Hence, a motif with significant
global enrichment could correspond to the actual binding
site of the TF (usually the most significant one), or binding
sites of other TFs which show a clear genome-wide tendency
to bind in association with it.

- Local enrichment: the enrichment of the motif in the peak
summit regions is compared to the regions immediately
upstream and downstream of the summit regions
themselves;

- Positional bias: the localization of the most likely instance of the
motif in each summit regions is identified, and the resulting
distribution is compared to a theoretical uniform distribution.

Thus, the results of motif enrichment analysis can be
interpreted as follows: if a motif corresponding to one of the
TFs binding the regions selected is found to be significantly
enriched according to the global p-value reported by PscanChIP,
then the corresponding TF can be assumed to be in contact with
DNA. Since the regions submitted as input are bound in vivo by
one or more TFs, then the corresponding motifs should be the
ones with the lowest global p-values among those employed in
the analysis. Also, given the centrality of ChIP-Seq peaks, they
should present a positional bias towards the middle of the
regions. Otherwise, TFs for which no significant motif
enrichment is found can be considered not to be directly
binding DNA, although part of a complex in contact with
DNA (Figure 2).

There are a few main differences between PscanChIP and
other methods for the same task. The presence/absence of a motif
instance in a region is evaluated with a score, ranging from 0 to 1,
instead of a yes/no decision (binding motif present/absent) as for
example in recent works (Dergilev et al., 2017; Czipa et al., 2020;
Levitsky et al., 2019), which are also focused on the analysis of
regions surrounding ChIP-Seq summits. Mean and variance of
scores of best motif instances in each of the summit regions are in
turn employed by PscanChIP to assess motif enrichment not
only with respect to regions flanking peaks (local enrichment), as
in similar tools (Zhang et al., 2011; Bailey and MacHanick, 2012),
but also with respect to the rest of the genome, providing a more
accurate evaluation of their significance.

PscanChIP also permits to perform a “motif centered”
analysis. Once the first round of motif enrichment analysis
has been completed in the neighborhood of peak summits,
users can select one of the motifs resulting to be significantly
enriched, and rerun the analysis centered this time on the
most likely instance of the motif in each of the input regions.
Regions containing a low quality instance for the motif chosen
are automatically discarded. The idea is to replace the peak
summit for the TF of interest with the most likely location of
its actual binding site on DNA. Thus, if two or more TFs have
their respective binding sites enriched in the regions, then the
motif centered analysis is meant to highlight if there is also a
preferential arrangement of their sites in the regions, signaled
Frontiers in Genetics | www.frontiersin.org 6
by the “positional bias” p-value output by PscanChIP. This
fact is in turn a strong indicator that the corresponding TFs
are likely to interact, require a precise arrangement for their
binding sites on DNA, and thus influence the respective
recruitment on DNA. Thus, by submitting to PscanChIP
cobinding peak regions for two of more TFs, we can assess
the enrichment and relative positions of the respective
binding sites.

Given a set of ChIP-Seq experiments for TFs and cofactors,
and the corresponding peaks and summits, our pipeline can be
thus summarized in the following steps:

1. Compute the summit neighborhood overlap for each pair of
TFs, and the corresponding p-values;

2. convert the p-values into scores, and cluster the experiments
according to the scores; this step is optional, but provides a
quick overview of the results obtained;

3. for selected pairs of TFs, define the recruitment and binding
rules on DNA by submitting the list of peak summits of either
one falling in cobinding regions to PscanChIP:
a. If motifs for both TFs are found to be significantly

enriched according to the global p-value, assess whether
there is a preferential arrangement or spacing of the
corresponding binding sites through motif centered
analysis on either one, by checking whether PscanChIP
reports a significant positional bias p-value (< 0.01) for the
other; if so, the distribution of the distances between the
two motifs can be further analyzed, starting from the
relative motif position in each of the input regions
reported by PscanChIP.

b. If only one motif is found to be enriched, then the
corresponding TF can be considered to be recruiting the
other on DNA.

c. If neither motif is enriched, then either the motifs
employed are not correct for the TFs studied, or there
might exist a third factor responsible for the recruitment of
the two factors considered.
4. The previous steps can be iterated in order to find significant
triplets, quadruplets, and so on, of TFs, and the
corresponding binding sites on DNA.

Peak cobinding analysis can be easily implemented with in-
house scripts, or with utilities like bedtools (Quinlan and Hall,
2010). A shell script making use of the bedtools “intersect” function
(bedtools version 2.29) is provided as Supplementary File 1.

PscanChIP is available both through a dedicated web
interface, or as a standalone software package. Both already
contain the latest release of the JASPAR database. Users can
anyway add to the already present collection their own profiles,
e.g., the result of a motif discovery analysis on the regions of
ChIP-Seq experiments with tools like MEME (Machanick and
Bailey, 2011), HOMER (Heinz et al., 2010) or Weeder (Zambelli
et al., 2014). Histograms of motif distance distributions
presented here were produced by plotting the relative distance
between two motifs as output by the motif centered analysis on
one of the two of PscanChIP.
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MATERIALS

ChIP-Seq data (“optimal thresholded” peak and summit
coordinates) for 492 experiments of transcription factors of
cofactors in the K562 cell line were retrieved from the
ENCODE data repository (Davis et al., 2018) (www.
encodeproject.org) as of 31st December of 2018. Each
experiment has been performed in at least two replicates,
whose consistency has been checked according to different
metrics. Only experiments with consistent replicates have been
released by ENCODE, with replicates merged into a single list of
consensus peak and summit coordinates (Landt et al., 2012).

Since in some cases for the same TF data contained more than
one experiment (e.g., with different tagging or antibodies, with or
without stimulation of the cells), we filtered the datasets as
follows: (1) Experiments on stimulated cells were not
considered. (2) In case for the same TF experiments were
performed with antibodies against both the wild-type protein
and a tagged protein (e.g., with flag or GFP), only the former was
kept. Finally, in case of redundant experiments for the same TF
not satisfying any of the above conditions we proceeded as
follows: (a) if an experiment contained less than 10,000 peaks,
and less than half of the peaks of the other(s), it was discarded;
(b) if the overlap among the remaining experiments was above
66% we kept the one with the highest number of peaks; otherwise
all the experiments for the TF were discarded. Peak overlap was
defined as for cobinding peaks, that is, the respective summits
had to be located within 150 bps.

After filtering, we obtained non redundant experiments for
329 TFs and other DNA binding proteins. The resulting list, with
the respective ENCODE identifiers , is avai lable as
Supplementary Table 1.

Sequence analysis was performed with PscanChIP version 1.3
(Zambelli et al., 2013b) using the JASPAR 2018 collection of
binding sites profi les (Khan et al . , 2018), and the
K562 background.
RESULTS

A preliminary version of the pipeline we present had been
applied to a comprehensive analysis of ENCODE ChIP-Seq
data for transcription factors and cofactors in three different
cell lines, focused on modules containing transcription factor
NF-Y (Dolfini et al., 2016). NF-Y is a trimeric TF composed of
two histone-like subunits (NF-YB and NF-YC) and a sequence-
specific subunit (NF-YA) binding to the CCAAT motif (CCAAT
box). The main difference of our previous work with the pipeline
we present here is that, since the original study was focused on
NF-Y, motif enrichment analysis was performed as a preliminary
step, and cobinding peaks and binding rules were further
investigated only for those TF whose binding regions were
enriched for the CCAAT box motif. Here, instead, motif
enrichment is assessed as a final step, so to include in the
pipeline the analysis of colocalization and recruitment for
factors not directly contacting DNA.
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We consider NF-Y an excellent case study for several reasons.
Its binding sites are functionally very well characterized from the
genetic point of view, are in general important, and in some cases
their presence in promoters is outright essential for the
transcription of the corresponding genes. The binding site
motif has a high information content, spanning 5 base pairs
flanking the central CCAAT, for a total of 10 discriminatory base
pairs. The motif is specific for only one complex, hence avoiding
the daunting task of disentangling subtle differences in binding
preferences among members of large TFs families.

ENCODE data contain experiments for two of the subunits of
the complex (NF-YA and NF-YB) in three cell lines. In each cell
line, the number of peaks for NF-YA is always lower than NF-YB,
and virtually all peaks for NF-YA overlap a peak for NF-YB. Amore
detailed analysis revealed that the peaks identified for NF-YB only
indeed correspond to “quasi-peaks” for NF-YA, that present
enrichment levels below detection thresholds for the bioinformatic
tools employed. The conclusion was thus that the NF-YB antibody
is more efficient than the one for NF-YA, and that the two subunits
can be assumed to be found together bound on DNA, as further
discussed in (Fleming et al., 2013). We thus employed peaks for NF-
YB for our analysis as representative of the whole NF-Y trimer.

Since the original release, new datasets have considerably
expanded the ENCODE repository, for new TFs or new cell lines.
Furthermore, while the initial ENCODE release contained
datasets processed with different tools and strategies, all ChIP-
Seq datasets have been reprocessed with a unique bioinformatic
pipeline, applying also more stringent quality controls for
experiments to be included in the official release. The result is
that some of the TFs originally included in the early ENCODE
releases -and in our study- have been removed, or the original
peak lists changed, both in number of peaks, peak size, or
genomic coordinates of peak regions. We thus reprocessed the
new datasets, focusing on the K562 cell line, with our pipeline
(see also Materials).

An updated version of the results is summarized in Figure 3.
The heatmap shows the significance of pairwise cobinding
between the ENCODE experiments available for the K562 cell
line (result of step 1 of the pipeline). The values represent the
log10 of the p-value resulting by the statistical assessment of the
overlap significance. Blue colors represent overlap higher than
expected (-log10 of the p-value), vice versa for black (log10 of the
p-value). Four main large clusters are clearly identifiable in the
center of the heatmap, formed by general transcription factors as
well as promoter-binding TFs. Several smaller clusters however
emerge, composed by proteins binding DNA at distal regions
away from genes. The complete results are available as
Supplementary Table 2.

Figure 4 shows the significance of the number of cobinding
peaks between pairs of TFs within NF-YB peaks (result of step 2),
restricted only to those TFs that had a significant overlap with
NF-YB at the first step (enriched with p-value < 10-10). It can be
observed how several small clusters emerge, clearly identifiable
along the main diagonal, each corresponding to a potential
genome-wide regulatory module composed by NF-Y and other
factors and cofactors.
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The already identified module containing NF-Y, FOS, and
other factors (Dolfini et al., 2016) was confirmed by the new
analysis on the reprocessed data (cluster in orange in Figure 4).
The presence of NF-YA, which colocalizes with NF-YB as a rule,
highlights the significance of this cluster, that is, it covers a
significant fraction of the NF-Y binding sites on the genome.
FOS is known to form a dimer with JUN, and to bind DNA on
the AP1 motif. The surprising result of our analysis was that in
the regions of FOS/NF-Y overlap the AP1 motif is not enriched,
but indeed seemed to be avoided (under-represented according
to PscanChIP), with the CCAAT box bound by NF-Y as the most
enriched one. Vice versa, FOS summits not overlapping with NF-
Y had the expected AP1 as the most enriched motif. Motif
centered analysis on the NF-Y/FOS cobinding peaks identified a
second binding motif for NF-Y, with the two CCAAT boxes
located with precise spacing on DNA, hinting at two NF-Y
Frontiers in Genetics | www.frontiersin.org 8
molecules forming a complex with FOS (Dolfini et al., 2016;
Zambelli and Pavesi, 2017). The same conclusion has been
confirmed by independent studies, leading to the interesting
hypothesis of a single complex connecting enhancers bound by
JUN/FOS to a promoter bound by NF-Y (Haubrock et al., 2016).

To further substantiate these results we repeated the analysis
of step 2 computing the significance of cobinding peaks between
pairs of TFs within FOS peaks, shown in Figure 5. Two distinct
clusters are easily identifiable, one (highlighted red in the figure)
composed by NF-YA/NF-YB and the other factors clustering
with NF-Y and FOS in the previous analysis. The second one
(green in Figure 5) is composed by factors forming the canonical
AP1 complex (JUN/JUNB/JUND). The two clusters and clearly
separated, and, more interestingly, the members of each show a
significant under-representation of their overlap with the others.
In other words, the number of cobinding peaks between pairs of
FIGURE 3 | Result of step 1 of the pipeline. Clustered heatmap of pairwise coassociation scores among 329 ENCODE ChIP-Seq experiments in the K562 cell line.
Coassociation scores are defined as −log10 of the p-value if the overlap is higher than expected, log10 of the p-value otherwise. Pearson correlation was employed
as distance for clustering.
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FIGURE 4 | Clustered heatmap of pairwise coassociation scores restricted to peaks cobinding with NF-YB for transcription factors (TFs) with significant overlap with
NF-YB (p-value lower than 10-10). Pearson correlation was employed as distance for clustering.
FIGURE 5 | Clustered heatmap of pairwise coassociation scores restricted to peaks cobinding with FOS for transcription factors (TFs) with significant overlap with
FOS (p-value lower than 10-100). Pearson correlation was employed as distance for clustering.
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members belonging to different clusters is significantly lower
than expected, converted into negative scores represented in
grayscale in the heatmap. The overall message thus becomes
clear: FOS is recruited on DNA by forming a complex either with
NF-Y or with JUN factors, but never by both. In fact, when
members of either cluster are found with FOS the others are
avoided, and vice versa.

Another cluster (in red in Figure 4) shows the overlap of NF-
Y with both USF1 and USF2, generalizing to the whole genome
previous observations (Zhu et al., 2003). USF factors in turn
show a significant colocalization within NF-Y peaks together
with RAD51. In this case, the motif enrichment analysis for both
the NF-Y/USF1 and NF-Y/USF2 cobinding regions returns both
the CCAAT-box and the expected E-box as significantly
enriched, with a strikingly precise spacing and orientation
between the two (shown in Figure 6 for NF-Y/USF1 cobinding
peaks). In most of the cobinding regions, the CCAAT is located
downstream of the E-box, at 17 or 18 bps of distance.

Interestingly, the USF1/USF2 cluster emerges in coassociation
with FOS as well (highlighted in yellow in Figure 5). Indeed, the
interactions of FOS with USF1/2 has been known ever since the
discovery of the latter (Blanar and Rutter, 1992; Aperlo et al.,
1996). The USF cluster in Figure 5 does not shows significant
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overlap with either the NF-Y or the AP1 cluster. Thus, to
determine whether FOS colocalizes with USF1/2 with or
without NF-Y, we performed another cobinding analysis
centered on USF1 peaks (Figure 7). Here several clusters
emerge, and, strikingly, one small cluster composed exactly bby
NF-YA, NF-YB, and FOS (highlighted in red in Figure 7).
However, the cobinding of FOS with JUN in USF1 peaks is
also significant, although JUN clusters elsewhere with members
of the AP1 complex (green in Figure 7).

By combining the results obtained from the three different
points of view just studied, the overall picture emerges. FOS can
be recruited either by NF-Y or as a member of the AP1 complex
with JUN factors, and the two modes are mutually exclusive.
When USF1 is found on DNA together with NF-Y or FOS, it is in
general with USF2; when FOS is bound on DNA with USF1/2, it
is mainly found in the NF-Y complex, but not exclusively; that is,
USF1/2 can be found in a smaller, but significant number of
genomic loci also in association with the AP1 complex
containing FOS. Complete cobinding statistics for the three TF
centered analyses are available as Supplementary Tables 3–5.

Another example of combinations of factors colocalizing with
NF-Y is the SIX5/ZNF143 pair (yellow cluster in Figure 4). The
CCAAT box and the ZNF143 binding motifs show evident
FIGURE 6 | Distribution of distances between the most likely instances of the CCAAT box and the E-box in cobinding peaks of NF-YB with USF1, as reported by
PscanChIP from in the motif centered analysis on the USF1 motif (Supplementary Table 6). The blue histogram shows the distribution of the position of the CCAAT
box when found on the positive strand of the genome; red when on the negative strand. The origin of the x-axis corresponds to the center of the USF1 binding sites
(E-box). The analysis has been performed on 2748 cobinding regions for NF-YB and USF1.
February 2020 | Volume 11 | Article 72

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Ronzio et al. Discovery of Genome-Wide Regulatory Modules
FIGURE 7 | Clustered heatmap of pairwise coassociation scores restricted to peaks cobinding with USF1 for transcription factors (TFs) with significant overlap with
USF1 (p-value lower than 10-100). Pearson correlation was employed as distance for clustering.
FIGURE 8 | Distribution relative positions of the CCAAT box (blue histogram) and the E-box (red histogram) around the most likely instances of the SIX5/ZNF143 binding
site in the cobinding peaks of NF-YB with ZNF143, as reported by PscanChIP from in the motif centered analysis on the ZNF143 motif (Supplementary Table 7). The origin
of the x-axis corresponds to the center of the ZNF143 binding sites. The analysis has been performed on 1424 cobinding regions for NF-YB and ZNF143.
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preferential spacing (Figure 8). Sequence analysis also returned
significant enrichment and positional bias for an additional E-
box motif, also plotted in Figure 8, located in between the
ZNF143 and CCAAT motifs, once again with a strong
positional preference. Thus, in this case, the preferential
arrangement of binding sites on the genome seems to be
ZNF143/E-BOX/CCAAT, on either strand, with a precise
spacing. Since none of the known E-box binding TFs so far
included in the K562 datasets shows relevant cobinding with
ZNF143 inside NF-Y peaks, it remains to be determined what
could be the actual TF binding the E-Boxes, or if there are
different TFs of the same family binding each a subset of them.

A final example is colocalizing peaks with precise motif
arrangement of NF-YB with PBX2 (in turn with significant
overlap with PKNOX1, green cluster in Figure 4): the
respective binding sites on the genome can be found, once
again with a clear distance preference (Figure 9). The
interaction of NF-Y with TALE transcription factors, including
PBX2, and the arrangement of their binding sites on DNA has
indeed been recently reported as for example in zebrafish (Ladam
et al., 2018). In this case, however, PscanChIP motif analysis
reports that in about 20% of the cobinding peaks the CCAAT
box motif is returned to be the most likely candidate also for the
binding of PBX2, since its consensus motif (CTGTCAATCA) in
turn contains a CAAT subsequence (see Supplementary Table
Frontiers in Genetics | www.frontiersin.org 12
8). Also, the p-value associated by PscanChIP to the PBX2 motif
is only marginally significant. Thus, it remains to be ascertained
whether the binding motifs found on DNA are actually bound by
the respective transcription factors in all the cobinding regions,
or, as more likely, there are instances where a single or double
CCAAT box bound by NF-Y is the motif tethering the complex
on DNA.
DISCUSSION

We presented a computational pipeline that, starting from a
collection of peak regions resulting from the analysis of different
TFs and cofactors, is able to single out the most relevant TF
combinations and modules in the condition studied. The
integration of peak and summit overlap with a sequence
analysis method developed specifically for the analysis of
ChIP-Seq regions also permits the characterization of the
recruitment rules on DNA for the complex and the
organization of the respective binding sites on the genome.

A preliminary version of this pipeline has been applied to the
analysis of the complete collection of ENCODE ChIP-Seq
experiments in three different cell lines, focusing on modules
containing transcription factor NF-Y. In this work, we
reanalyzed the updated ENCODE data for K562, essentially
FIGURE 9 | Distribution relative positions of PBX2 binding site with respect to the CCAAT box motif in cobinding peaks of NF-YB with PBX2, as reported by
PscanChIP from in the motif centered analysis on the CCAAT box motif (Supplementary Table 8). The origin of the x-axis corresponds to the center of the CCAAT
box binding sites. The analysis has been performed on 1782 cobinding regions for NF-YB and ZNF143.
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confirming the previous results for NF-Y, as well as finding novel
candidate interactors and genome-wide coassociations involving
also FOS, USF1, and USF2. We are now working on manuscripts
detailing the results obtained also on additional cell lines, on
different TFs and cofactors, as well as linking these findings
to functionality.

Our approach permits to build a picture of the regulatory
landscape of a given condition, highlighting the TF
coassociations found more frequently, and assessing their
significance as well as the corresponding organization of
binding sites on the genome. It can be integrated with
additional sources of information. For example, one could
focus on active promoters or enhancers, as revealed by
presence of specific histone marks, and restrict the
cobinding peak analysis only to those regions that carry a
precise chromatin annotation, resulting for example from a
genome segmentation approach (Hoffman et al., 2009; Ernst
and Kellis, 2017). In this way separate maps of regulatory
modules specific for enhancers and/or promoters can be built.
The data can be complemented with RNA-Seq experiments
performed after inactivation of the single TF, so that the
functionality—positive, negative, or neutral—of the single
modules can be inferred. Finally, the exact pattern of
binding in a single selected region can be further analyzed
by employing more sophisticated sequence analysis
approaches (Gheorghe et al., 2019).
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