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Long noncoding RNAs (lncRNAs) are a class of noncoding RNA molecules longer than
200 nucleotides. Recent studies have uncovered their functional roles in diverse cellular
processes and tumorigenesis. Therefore, identifying novel disease-related lncRNAs might
deepen our understanding of disease etiology. However, due to the relatively small
number of verified associations between lncRNAs and diseases, it remains a
challenging task to reliably and effectively predict the associated lncRNAs for given
diseases. In this paper, we propose a novel multiview consensus graph learning
method to infer potential disease-related lncRNAs. Specifically, we first construct a set
of similarity matrices for lncRNAs and diseases by taking advantage of the known
associations. We then iteratively learn a consensus graph from the multiple input
matrices and simultaneously optimize the predicted association probability based on a
multi-label learning framework. To convey the utility of our method, three state-of-the-art
methods are compared with our method on three widely used datasets. The experiment
results illustrate that our method could obtain the best prediction performance under
different cross validation schemes. The case study analysis implemented for uterine
cervical neoplasms further confirmed the utility of our method in identifying lncRNAs as
potential prognostic biomarkers in practice.

Keywords: lncRNA–disease association, multiple similarity matrices, consensus graph learning, multi-label
learning, survival analysis
INTRODUCTION

With the completion of ENCODE project, researchers have found that only 2% of genes in the human
genome encode proteins, while approximately 75% of the human genome is involved in the process of
primary transcripts (Djebali et al., 2012; Li and Chang, 2014; Zhang et al., 2018b). The discovery of
extensive transcription of largeRNA transcriptswhich donot code for proteins, termed longnoncoding
RNAs (lncRNAs), provides a newperspective inunderstanding the centrality ofRNA ingene regulation
(Rinn and Chang, 2012). Evidences have shown that lncRNAs are key regulators for many cellular
functions, including splicing, gene regulation, and hormone-like activity (Gao et al., 2019a; Mongelli
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et al., 2019). Moreover, the dysregulation of lncRNAs has been
proved to be closely related with various human diseases, such as
typesof cancer, neurological aswell as cardiovascular diseases (Feng
et al., 2018;Zhang et al., 2019b). Consequently, identifyingpotential
disease-related lncRNAs is of great importance andmight shednew
light on the understanding of the pathogenesis of complex diseases.

As a powerful complementary tool for biological and clinical
experiments, many computational approaches have been
developed to effectively predict the lncRNA-disease associations
(Zou et al., 2016; Chen et al., 2017; Zhang et al., 2018c; Gong et al.,
2019; Yue et al., 2019). Under the assumption that similar diseases
are more likely to be associated with functionally similar lncRNAs,
Chen et al. proposed Laplacian regularized least squares for
lncRNA-disease association in terms of a semi-supervised
learning framework(Chen and Yan, 2013). Liu et al. combined
the gene expression profiles, lncRNA expression profiles and
disease-associated genes to infer the potential associated diseases
for human lncRNAs globally (Liu et al., 2014). In addition to the
aforementioned datasets, Chen also incorporated the Gaussian
interaction profile kernel similarity into their model and adopted
the KATZ measure for lncRNA–disease association (Chen, 2015).
Zhou et al. first constructed a heterogeneous network in terms of
three sub-networks and then ranked the relevant lncRNAs for a
given disease by applying the random walk with restart on the
constructed network (Zhou et al., 2015). Chen et al. further
improved the random walk with restart framework by initializing
the probability vector according to the integration of lncRNA
expression similarity and disease semantic similarity (Chen et al.,
2016). Fu et al. decomposed the datamatrices ofheterogeneous data
sources into low-rank matrices via matrix tri-factorization to
explore the intrinsic as well as the shared structure, and then used
theoptimized low-rankmatrices toobtain thepotential associations
(Fu et al., 2018). Lu et al. extracted a set of primary feature vectors
and used the inductive matrix completion framework to infer the
lncRNA-disease association (Lu et al., 2018). Lan et al. constructed a
web server for lncRNA-disease association prediction by
integrating multiple biological data resources (Lan et al., 2017).
Xiao et al. obtained the association probability for a given lncRNA-
disease association according to the lengths of the paths linking
them in the constructed heterogeneous network (Xiao et al., 2018).
Huetal. adopted thebi-randomwalkalgorithmtoconstruct a linear
model for the lncRNA-disease association prediction (Hu et al.,
2019). Yu et al. applied a collaborative filteringmodel together with
the Naive Bayesian Classifier on a constructed lncRNA-miRNA-
disease tripartite network to effectively predict novel lncRNA-
disease associations (Yu et al., 2019). Both Xie et al. and Chen et
al. first fused different similarity matrices for lncRNAs and diseases
based on a similarity kernel fusionmodel and then applied different
classification frameworks to predict potential associations (Chen
et al., 2019; Xie et al., 2019). Cui et al. developed a novel
computational framework based on bipartite local model with
nearest profile-based association inferring for prediction (Cui
et al., 2019). Recently, Guo et al. employed the autoencoder to
obtain the optimal feature space from the original feature set which
was constructed from different types of similarities (Guo et al.,
2019). The newly constructed features were then fed to a rotating
Frontiers in Genetics | www.frontiersin.org 2
forest to classify the lncRNA–disease associations and achieved
remarkable performance.

Although the methods mentioned above have made great
contributions to discover potential disease-related lncRNAs, the
prediction accuracy is still limited in several ways. For example, in
spite of the multiple biological data sources used in existing
methods, the integration of the similarity matrices constructed
from these data sources was simply performed by averaging
them, which might be suboptimal. Furthermore, since the
lncRNA–disease association data was relatively sparse, how to
fully take advantage of the existing information during the
prediction process remains challenging. To solve these issues, we
here propose a multiview consensus graph learning method for
disease-related lncRNAs prediction. Concretely, a set of similarity
matrices for lncRNAs and diseases are first constructed by
leveraging the known lncRNA–disease associations, respectively.
We then iteratively learn a consensus graph from the multiple
similarity matrices and obtain the final association probabilities
between lncRNAs and diseases using a multi-label learning
framework. To confirm the utility of our method, we compare the
proposed method with several state-of-the-art methods on three
widely used datasets under different evaluation metrics. The
experimental results of various cross validation schemes clearly
indicate that our method could achieve better prediction
performance compared to the other three methods. Furthermore,
we illustrate the potential of our method in identifying prognostic
biomarkers for uterine cervical neoplasms in a case-study analysis.
MATERIALS AND METHODS

Human lncRNA–Disease Associations
The LncRNADisease database is used as the data of known
lncRNA–disease associations (Chen et al., 2013; Bao et al., 2019).
We used three versions of LncRNADisease, June-2012 Version
(marked as Dataset1), January-2014 Version (marked as
Dataset2), and June-2015 Version (marked as Dataset3) in our
experiments (Li et al., 2019). After filtering the lncRNA-disease
associations with irregular disease names or lncRNA names and
merging duplicate items, we obtained 276 interactions between
150 diseases and 112 lncRNAs for dataset1, 319 interactions
between 169 diseases and 131 lncRNAs for dataset2, and 621
interactions between 226 diseases and 285 lncRNAs for dataset3,
respectively (Table 1). For convenience, we use Y ∈ Rp × q to
represent the known lncRNA–disease association matrix, where
p and q denote the number of lncRNAs and diseases,
respectively. If disease j has an association with lncRNA i, then
Yij = 1, otherwise Yij = 0.
TABLE 1 | Details of the three datasets used in this study.

Dataset lncRNAs# diseases# interactions#

Dataset1 112 150 276
Dataset2 131 169 319
Dataset3 285 226 621
Fe
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Disease Semantic Similarity
To calculate the disease semantic similarity, we followed the
same approach as described in previous work (Wang et al., 2010).
Specifically, each disease d can be described by a Directed Acyclic
Graphs (DAGs) that consists of three items DAG = (d, T(d), E
(d)), where T(d) and E(d) are all the parent nodes of d including
itself and all links from the ancestor nodes to child nodes,
respectively. The contribution of disease t to the semantic
value of disease d is defined as:

Dd(t) = 1  if  t = d

Dd(t) = max 0:5 ∗Dd(t
0)jt0 ∈ children of  tf g  if  t ≠ d

(
(1)

The overall semantic value of a given disease d can then be
calculated as:

D(d) =ot∈T(d)Dd(t) (2)

As a result, given a pair of diseases i and j, their semantic
similarity is defined as:

S(i, j) = ot∈T(i)∩T(j)(Di(t) + Dj(t))

ot∈T(i)Di(t) +ot∈T(j)Dj(t)
(3)

We use AD(1) ∈ Rq × q to denote the obtained disease
semantic similarity matrix and AD(1)

ij stands for the semantic
similarity for a disease pair i and j.

lncRNA Functional Similarity
Similarly, the lncRNA functional similarity was also calculated
according to previous studies (Wang et al., 2010; Liang et al.,
2019). For each lncRNA pair, we measured their similarity as
follows:

LFS(i, j) =
od∈D(lj)

S(d,D(li)) +od∈D(li)
S(d,D(lj))

m + n
(4)

S(d,D(li)) = max
d1∈D(li)

(S(d, d1)) (5)

where m and n are the number of diseases related to lncRNA li
and lj, and D(l) represents the disease set related to lncRNA l. We
use AL(1) ∈ Rp × p to denote the obtained lncRNA functional
similarity matrix and AL(1)ij stands for the functional similarity
for a pair of lncRNAs i and j.

Gaussian Interaction Profile Kernel
Similarity
Gaussian interaction profile kernel similarity is widely used in
various semi-supervised prediction tasks for measuring
similarities (Zou et al., 2016; Zhang et al., 2017; Zhu et al., 2018;
Panet al., 2019;Yin et al., 2019).Herewealso adopted this similarity
measure to construct the similarity matrices for lncRNAs and
diseases, respectively. Concretely, given two lncRNAs li and lj,
their Gaussian interaction profile kernel similarity is defined as:

KL(li, lj) = exp ( − bl ‖ IP(li) − IP(lj) ‖2 ) (6)
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bl = b 0
l=

1
po

p

i=1
IP(li)k k2

� �
(7)

where IP(li) is in essence the i-th row of matrix Y, b 0
l is a

parameter controlling the kernel bandwidth and p is the number
of lncRNAs. Similarly, for a pair of diseases di and dj, we have:

KD(di, dj) = exp ( − bd IP(di) − IP(dj)
�� ��2) (8)

bd = b 0
d=

1
qo

q

i=1
IP(di)k k2

� �
(9)

where IP(di) is in essence the i-th column of matrix Y, b 0
d

controls the kernel bandwidth and q is the number of diseases.
Finally, we use AD(2) ∈ Rq × q and AL(2) ∈ Rp × p to denote the
kernel similarity matrices for diseases and lncRNAs, respectively.

Cosine Similarity
Cosine similarity is another effective method for measuring
similarities and is widely used in recommender systems (Gao et al.,
2019b; Zhang et al., 2019a). Therefore, we also adopted cosine
similarity to build the similarity matrices for lncRNAs and diseases.
The cosine similarity for apair of lncRNAsordiseases is calculated as:

CL(li, lj) =
IP(li) � IP(lj)

IP(li)k k � IP(lj)
�� �� (10)

CD(di, dj) =
IP(di) � IP(dj)

IP(di)k k � IP(dj)
�� �� (11)

where the definition of IP(·)is the same as that in the previous
section. As a result, we use AD(3) ∈ R q × q and AL(3) ∈ Rp × p to
record the cosine similarities for disease pairs and lncRNA
pairs, respectively.
METHODS

Notations
We first briefly introduce the notations used throughout the paper.
All thematrices are denoted by italic uppercase letters while vectors
are expressed in bold lowercase letters. The transpose, the trace and
the Frobenius norm of a givenmatrixM are denoted byMT, Tr(M)
and ||M||F, respectively. Mij represents the element at the i-th row
and j-th columnofM.1 is a columnvectorwithall elements equal to
1. For a given similarity matrix S, its degree matrix DS is a diagonal
matrixwhosemain diagonal entry is∑j (Sij+ Sji)/2, and its Laplacian
matrix LS is defined as LS = DS − (ST + S)/2.

Multiview Consensus Graph Learning for
LncRNA–Disease Association Prediction
Given a set of similarity matrices for both lncRNAs and diseases,
our aim is to find an optimal consensus graph based on these
similarity matrices for subsequent prediction. Specifically,
suppose we have n similarity matrices AD(1), AD(2),….,AD(n) ∈
Rq × q constructed for diseases, and m similarity matrices AL(1),
February 2020 | Volume 11 | Article 89
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AL(2),….,AL(m) ∈ Rp × p for lncRNAs, we propose to learn a
consensus graph for the disease space and lncRNA space from
multiple views by the following objective function respectively
(Han et al., 2018; Wang et al., 2020):

min
SD,w(v)

D ,F
SD −o

n

v=1
w(v)
D AD(v)

����
����2
F
+2aTr(FLSDFT ),

s : t :o
q

j=1
SDij = 1, SDij ≥ 0,o

n

v=1
w(v)
D = 1,w(v)

D ≥ 0

(12)

min
SL,w(u)

L ,F
SL −o

m

u=1
w(u)
L AL(u)

����
����2
F
+2bTr(FTLSLF),  

s : t :o
p

j=1
SLij = 1, SLij ≥ 0,o

m

u=1
w(u)
L = 1,w(u)

L ≥ 0

(13)

The weight parameters wL = ½w(1)
L ,…,w(m)

L �T and wD = ½w(1)
D ,

…,w(n)
D �T added for each view guarantee that the objective

functions in Eq. (12) and (13) adaptively learn an optimal
consensus graph in terms of the importance of each view (Liu
et al., 2018b). Finally, we integrate the optimization process from
two spaces into one framework with graph-based multi-label
learning and obtain the final objective function as follows:

min
SD,w(v)

D ,SL,w(u)
L ,F

SD −o
n

v=1
w(v)
D AD(v)

����
����2
F
+2aTr(FLSDF

T )+

SL −o
m

u=1
w(u)
L AL(u)

����
����2
F

+2bTr(FTLSLF) + F − Yk k2F ,

s : t :o
q

j=1
SDij = 1, SDij ≥ 0,o

p

j=1
SLij = 1, SLij ≥ 0,o

n

v=1
w(v)
D = 1,

w(v)
D ≥ 0,o

m

u=1
w(u)
L = 1,w(u)

L ≥ 0, F ∈ Rp�q

(14)

where LSD and LSL are the Laplacian matrices for the
similarity matrices SD and SL, SDij and SLij denote the (i,j)-th
elements in SD and SL, respectively. The constraints imposed on
both SD and SL ensures that the learned similarities have explicit
meanings. Y is the known binary lncRNA-disease association
matrix defined above. Specifically, the objective proposed in Eq.
(14) has two advantages in predicting lncRNA–disease
associations. First of all, it incorporates multiple data resources
to learn a reliable similarity matrix and could be well adapted to
arbitrary number of input similarity matrices. Moreover, the
predicted label matrix F and the learned consensus graph can
collaboratively guide the learning process of each other and thus
lead to better results (Zhang et al., 2018a). We propose an
efficient method to solve Eq. (14) in the following subsection.

Optimization
In this section, we derive an efficient algorithm to solve the
objective function in Eq. (14) in an iterative manner.

i) Updating SD and SL. For clarity, we only give the derivation for
solving SD and the optimization for SL can be obtained similarly. By
fixing the other variables in the objective function, Eq. (14)
degenerates to Eq. (12). It can be rewritten in the following form:
Frontiers in Genetics | www.frontiersin.org 4
minSDo
q

i,j=1
SDij −o

n

v=1
w(v)
D AD(v)

ij

����
����2
F
+ ao

q

i,j=1
Fi − Fj

�� ��2
2SDij,

s : t :o
q

j=1
SDij = 1, 0≤ SDij ≤ 1

(15)

Since different rows of SD are independent, we can then solve
each row separately:

minSDo
q

j=1
SDij −o

n

v=1
w(v)
D AD(v)

ij

����
����2
F
+ ao

q

j=1
Fi − Fj

�� ��2
2SDij,

s : t :o
q

j=1
SDij = 1, 0≤ SDij ≤ 1

(16)

Denoting hi as a vector whose j-th element is hij = ‖ Fi − Fj ‖22,
Eq. (16) can then be converted to:

minSDi
SDi +

a
2
hi −o

n

v=1
w(v)
D AD(v)

i

� �����
����2
2
,

s : t : SDi1 = 1, 0 ≤ SDij ≤ 1

(17)

Eq. (17) could be solved by an efficient iterative algorithm
proposed in (Huang et al., 2015).

ii) Updating wD and wL. When SD, SL, F and wL are fixed, Eq.
(14) becomes:

minwD
SD −o

n

v=1
w(v)
D AD(v)

����
����2
F

,

s : t :w(v)
D ≥ 0,o

n

v=1
w(v)
D = 1

(18)

To solve Eq. (18), we first convert the target graph SD into a
columnvectora ∈ Rq2�1 by stacking its columns together. Similarly,
we convert the multiple input similarity matrices AD(v)(v = 1,2…,n)
into a set of vectorsG(1),G(2),…,G(n) ∈ Rq2�1 and denote a matrix
G as G = ½G(1),G(2),…,G(n)� ∈ Rq2�n. Then Eq. (18) can be
transformed into:

minwD
a − GwDk k22,

s : t :w(v)
D ≥ 0,o

n

v=1
w(v)
D = 1

(19)

Eq. (19) can also be solved by the algorithm proposed in
(Huang et al., 2015; Liu et al., 2018a). The optimization for wL

could be derived in a similar way.
iii) Update F. By fixing the other variables, Eq. (14) is reduced

to the following problem:

minF 2aTr(FLSDF
T ) + 2bTr(FTLSLF) + F − Yk k2F ,

s : t : F ∈Rp�q

(20)

Taking the derivative of Eq. (20) with respect to F and setting
it to zero, we have:

(2bLSL + I)F + 2aFLSD = Y (21)

Eq. (21) could be solved easily as a Sylvester equation (Zha
et al., 2009; Shi et al., 2018).
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The whole optimization process is summarized in
Algorithm 1 and Figure 1 illustrates the overall workflow of
our method. Moreover, the source code of our method can be
freely downloaded at: https://github.com/hjtan516/MCGLLDA.
Algorithm 1.

Input: Known association matrix Y ∈ Rp × q, lncRNA similarity matrices {AL(1),
AL(2),…,AL(m)} from m views, disease similarity matrices {AD(1),AD(2),…,AD(n)} from
n views, parameters a and b.
Output: Final association matrix F.

1. For each view of lncRNAs and diseases, initialize the weights as w(v)
D =

1=n,w(u)
L = 1=m;

2. While not converge do
3. While not converge do
4. Update SD according to Eq. (12);
5. Update SL according to Eq. (13);
6. Update F according to Eq. (21);
7. end while

8 Update w(v)
D ,w(u)

L according to Eq. (19);
9. end while
10. return F
RESULTS

Performance Evaluation
In this section, we compared the proposedmethodwith three state-
of-the-artmethods i.e. BiwalkLDA (Hu et al., 2019), SIMCLDA (Lu
et al., 2018) and KATZLDA (Chen, 2015) on the aforementioned
three datasets. Firstly, two evaluationmetrics Leave-One-OutCross
Valuation (LOOCV) and five-fold Cross Validation (CV) were
conducted to systematically evaluate the prediction performance of
eachmethod.BothLOOCVandfive-foldCVtakepartof theknown
lncRNA–disease associations as test samples and use the remaining
as the training samples. However, LOOCV only takes one
association at a time as the test sample while in five-fold CV all
the knownassociations are randomlydivided intofiveparts andone
part was used as the test set each time. The Receiver Operating
Characteristic (ROC) Curve was plotted in terms of the cross
validation results and the Area Under the ROC Curve (AUC) was
calculated tomeasure the prediction accuracy. As shown inFigures
2 and 3, ourmethod reached the highest AUCs on all three datasets
in both LOOCV and five-fold CV.

Next, we adopted Leave-One-Disease-Out Cross Validation
(LODOCV) to test the ability of all methods in predicting the
potential related lncRNAs for diseases without known associations.
Specifically, for each disease, we removed all its associated lncRNAs
and made predictions by leveraging the information from other
diseases and lncRNAs. As a result, we could obtain a list of AUC
values for each method and we used density plots to demonstrate
the comparison results. As shown in Figure 4, compared with the
other methods, our method obtained the highest numbers of AUC
values greater than 0.9 on all three datasets. The Wilcoxon signed
rank test also validated the significanceofourmethodover theother
three methods in terms of LODOCV (Table 2). In summary, these
results clearly indicated that our method outperformed the
Frontiers in Genetics | www.frontiersin.org 5
other three methods in predicting reliable lncRNA–
disease associations.

Parameter Analysis
In Eq. (14), we used two parameters a and b to balance
the importance between the similarity graph learning and the
predicted association matrix learning. We investigated the
impacts of a and b on the prediction performance of our
method. Specifically, a was tested in the range from 0.0001 to
1 and b was tested from 0.0001 to 10. To determine the best
combination of a and b, five-fold cross validation was carried out
on Dataset3. As a result, when both a and b were set to 0.0001,
our method achieved the best performance (Figure 5).

Convergence Analysis
We also studied the practical convergence speed of our method.
Specifically, Figure 6 illustrated the value variations of Eq. (14)
with the number of iterations on Dataset3. As can be seen from
the figure, the objective function value of Eq. (14) became stable
in 5 iterations, indicating that our method converges rapidly and
can be used in practice.

Case Study
Todemonstrate the potential of ourmethod in identifying lncRNAs
asmeaningful biomarkers for a given disease, we carried out a case-
study analysis on Uterine CErvical Neoplasms (UCEC). Uterine
Cervical Neoplasms is one of the most frequent causes of death in
women and its early detection can significantly decrease its death
rate (Jeonget al., 2003).Tomake reliablepredictions,weappliedour
method on a newer version (July-2017) of lncRNA–disease
associations from LncRNADisease database. In particular,
associations with lncRNAs that were not recorded in BioMart
and diseases that were not included in the MeSH Category C for
diseases were excluded during the implementation. The predicted
associations were then validated by another two widely used
databases recording disease-related lncRNAs, i.e. Lnc2Cancer
(Ning et al., 2016) and MNDR (Wang et al., 2013). As expected,
the two databases confirmed that 9 out of the top 10 predicted
lncRNAswere verified to be relatedwithUCEC (Table 3). The only
unconfirmed lncRNA is MIR7-3HG. To evaluate whether this
lncRNA might be involved in UCEC, we further downloaded the
lncRNAexpressionprofile of 316UCECsamples fromTANRIC(Li
et al., 2015) and performed the Kaplan–Meier survival analysis by
using MIR7-3HG as the biomarker accordingly (Figure 7). The
statistical significance in the survival analysis was calculated using
the log rank test (Bewick et al., 2004). Notably, the results
demonstrated that the higher expression level of MIR7-3HG was
relatedwith significantly decreased survival rates ofUCECpatients,
indicating that MIR7-3HG might play an important role in the
pathogenesis of UCEC.
CONCLUSION

Increasing evidences have shown that lncRNAs accomplish a
remarkable variety of biological functions and thus the aberrant
expression or dysfunction of lncRNA might lead to various
February 2020 | Volume 11 | Article 89
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FIGURE 1 | An overall workflow of our method.
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diseases. As a result, discovering newly disease-related lncRNAs
might deepen our understanding of the biological roles of
lncRNAs in carcinogenesis. In this work, a novel multiview
consensus graph learning method for predicting lncRNA–
disease associations was proposed. We first constructed a set of
similarity matrices for lncRNAs and diseases by leveraging the
known lncRNA–disease associations. We then learned a
consensus graph for lncRNAs and diseases from the multiple
similarity matrices and predicted the association probability
between lncRNAs and diseases based on a multi-label learning
framework. The results of LOOCV, five-fold CV as well as
LODOCV on three widely used datasets all confirmed the
superiority of our method. Moreover, the convergence analysis
indicates that our method has a fast convergence rate and could
Frontiers in Genetics | www.frontiersin.org 7
be well adapted in practice. Lastly, the case study conducted for
UCEC indicated that the expression level of MIR7-3HG was
significantly related with the survival rate of patients and thus it
might play important roles in the pathogenesis of UCEC. In
summary, our method could reliably predict potential lncRNA–
disease associations and could be easily extended to incorporate
more data sources.

The success of our method is mainly two-fold. First, the
known lncRNA–disease associations were leveraged to construct
multiple kernel similarity matrices to better characterize the
lncRNA similarities as well as disease similarities. Second, the
view weights imposed for each view during the learning process
guaranteed that more reliable similarity matrices have higher
impacts on the final consensus graph. Despite the commendable
FIGURE 4 | The comparison results between our method and the other three methods in terms of LODOCV using (A) Dataset1; (B) Dataset2; (C) Dataset3.
FIGURE 2 | The comparison results between our method and the other three methods in terms of LOOCV using (A) Dataset1; (B) Dataset2; (C) Dataset3.
FIGURE 3 | The comparison results between our method and the other three methods in terms of five-fold CV using (A) Dataset1; (B) Dataset2; (C) Dataset3.
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results obtained, our method could still be improved in several
ways. For example, the optimal values of the two parameters a
and b might be searched by dynamic objective genetic
algorithms. Besides, the integration of lncRNA expression data
in our model should also be considered in the future.
Frontiers in Genetics | www.frontiersin.org 8
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FIGURE 6 | The convergence rate of our method.
TABLE 3 | The top 10 predicted lncRNAs to be associated with cervical uterine
neoplasms by our method.

Rank lncRNA Evidence

1 UCA1 Lnc2Cancer;MNDR
2 TUG1 Lnc2Cancer;MNDR
3 MIR99AHG MNDR
4 MIR7-3HG Unknown
5 HIF1A-AS1 MNDR
6 HOXC-AS1 MNDR
7 LINC-ROR Lnc2Cancer
8 NEAT1 Lnc2Cancer;MNDR
9 GSEC MNDR
10 HOTTIP MNDR
February 2020 | Vo
FIGURE 7 | Kaplan–Meier survival analysis using MIR7-3HG as a prognostic
biomarker in uterine cervical neoplasms. Patients are divided into “high” and
“low” groups according to their expression level of MIR7-3HG against the
mean expression level across all patients.
FIGURE 5 | The influence of the two parameters a and b on the prediction
accuracy of five-fold cross-validation.
TABLE 2 | Comparison of different methods based on LODOCV using Wilcoxon
signed rank test.

Dataset BiwalkLDA SIMCLDA KATZLDA

Dataset1 8.41e−10 1.84e−09 3.74e−12
Dataset2 4.57e–09 1.22e−07 8.07e−13
Dataset3 5.981e−09 7.49e−07 5.54e−14
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