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The regulation of mitochondrial proteome is unique in that its components have origins in
both mitochondria and nucleus. With the development of OMICS technologies, emerging
evidence indicates an interaction between mitochondria and nucleus based not only on
the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large
parts of the non‐coding genome are transcribed into various ncRNA species. Although
their characterization has been a hot topic in recent years, the function of the majority
remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding
RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the
mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly
by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore,
reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly
regulating mitochondrial gene expression suggest the import of RNA to mitochondria,
but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been
also shown to hide small open reading frames (sORFs) encoding for small functional
peptides termed micropeptides, with several examples reported with a role in
mitochondria. In this review, we provide a literature overview on ncRNAs and
micropeptides found to be associated with mitochondrial biology in the context of both
health and disease. Although reported, small study overlap and rare replications by other
groups make the presence, transport, and role of ncRNA in mitochondria an attractive,
but still challenging subject. Finally, we touch the topic of their potential as prognosis
markers and therapeutic targets.

Keywords: mitochondria, ncRNA, lncRNA, miRNA, mtDNA, micropeptide
BACKGROUND

Molecular biology has historically described RNA as an intermediate between genetic information
stored in DNA and protein synthesis. The estimated number of protein-coding genes is around
20,000 (Pertea et al., 2018). Classical approaches to classify RNAs with protein-coding potential—
the messenger RNAs (mRNAs)—were typically based on the existence of open reading frame (ORF)
longer than 300 nucleotides (nt), conservation, and/or functional domains (Dinger et al., 2008).
Nevertheless, as protein-coding regions encompass only ∼2% of the human genome, the rest has
been considered as “dark matter”. Detected RNAs not translated into proteins were named non-
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coding RNAs (ncRNA) and initially regarded as a transcriptional
noise or the byproducts of genetic information flow from DNA
to protein. Nevertheless, since the discovery of transfer RNAs
(tRNAs) and ribosomal RNAs (rRNAs), the number and
understanding of new and putative functional ncRNAs have
expanded. Moreover, the boundaries between the coding and
non-coding RNAs have become more blurry. Evidence is
emerging that some RNAs, initially classified as non-coding,
hide small ORFs (sORFs, < 300 nt) encoding for small functional
peptides- micropeptides. Currently, we know dozen of different
ncRNAs, which can be can be classified as housekeeping or
regulatory ncRNS, according to Szymanski et al. (2003).

Housekeeping ncRNAs are constitutively expressed and
mostly well functionally characterized classes of rRNAs,
tRNAs, small nuclear RNAs (snRNAs), small-nucleolar RNAs
(snoRNAs), Ribonuclease P RNA (RNase P), Ribonuclease MRP
RNA (MRP RNase, RNRP), and Telomerase RNA component
(TERC). rRNAs are the most abundant class of RNAs in most
cells, composing around 80% of cellular transcriptome. They
serve as the essential binding site for ribosomal proteins within
the assembled ribosome and contribute to the binding of extra-
ribosomal factors and ribosome-associated proteins, resulting in
the protein translation machinery (Noller et al., 2017; Simsek
et al., 2017). tRNAs provide the interface between nucleic acids
and proteins during translation by carrying an amino acid on its
3′ end and reading the mRNA by base-pairing induced by the
ribosome, which uniquely determines the position of amino
acids in proteins (Schimmel, 2018). snRNAs participate in the
assembly and function of canonical spliceosomes (Wang and
Burge, 2008). snoRNAs are localized to the nucleolus and guide
the methylation and pseudouridylation of rRNAs, tRNAs, and
snRNAs (Maxwell and Fournier, 1995). RNase P has a role in
precursor-tRNA cleavage, RMRP in precursor-rRNA cleavage,
and TERC in telomere synthesis (discussed later).

Regulatory ncRNAs are mostly produced in a cell- or tissue-
specific fashion during certain stages of cell differentiation or
organism development, or as a response to changes in the
environment. They are still poorly understood and a very
heterogeneous group that can act in different ways, from gene
expression regulation to modulation of protein and RNA
distribution within cells (Szymanski et al., 2003). They are
divided based on their length into short (<200 nt) and long
(>200 nt, lncRNAs) RNAs. Short ncRNAs consist of microRNAs
(miRNAs), small interfering RNAs (siRNAs) and Piwi-
associated RNAs (piRNAs). miRNAs are endogenous, single-
stranded, 19-23 nt in length RNAs that can bind to a target
mRNA with a complementary sequence to induce its cleavage,
degradation, or interfere with translation. Similar in size, siRNAs
are exogenous RNAs that undergo processing and function in
post-transcriptional gene silencing (Carthew and Sontheimer,
2009). piRNAs are single stranded, 26-31 nucleotides long RNAs
that form complexes with the piwi family of proteins. These
complexes have a role in RNA and epigenetic silencing of
transposons (Siomi et al., 2011). Longer than 200 nt, lncRNAs
represent the most abundant, yet least understood class of RNAs,
with an average length ~ 1000 nt (Ulitsky and Bartel, 2013). They
Frontiers in Genetics | www.frontiersin.org 2
share some features typical for mRNAs, such as transcription by
the RNA-polymerase II (Pol II) , 5 ′end cap, 3 ′end
polyadenylation and presence of alternative splicing isoforms
(Kopp and Mendell, 2018). However, compared to the mRNAs,
they exhibit lower expression levels, more tissue-specific
expression, and poor sequence conservation (Derrien et al.,
2012; Djebali et al., 2012; Kopp and Mendell, 2018; Fazal et al.,
2019). Although often considered as nucleus-enriched, lncRNAs
exhibit variety of subcellular localization, which often helps to
determine their biological function (Carlevaro-Fita and Johnson,
2019). Finally, circular RNAs (circRNAs) are a special class of
RNAs with the 3′ and 5′ ends covalently linked, generally formed
by alternative splicing of pre-mRNA (Salzman et al., 2012). They
have been proposed to act as miRNAs sponges or even as
templates for protein synthesis (Ragan et al., 2019).

Interest in the ncRNAs has been stimulated by the
development of high-throughput OMICS technologies.
Genome‐, transcriptome‐, translatome- and proteome‐wide
measurements by the whole genome sequencing (WGS), RNA-
sequencing (RNA-seq), ribosome profiling (Ribo-seq) and mass
spectrometry (MS), respectively. In combination, these methods
offer the possibility of a systematic analysis of different stages of
gene expression (Ori et al., 2015; Wang et al., 2019). RNA-seq data
have shown that up to 85% of the genome is transcribed and
identified, among others, novel transcript isoforms, transcripts
arising from intergenic regions, overlapping transcripts, and
transcribed pseudogenes (Consortium, 2012; Djebali et al., 2012;
Hangauer et al., 2013). Ribo-seq has shown widespread and
pervasive translation on cytosolic RNAs, with surprisingly ~40%
lncRNAs being engaged with the ribosome (Ingolia et al., 2009;
Kearse and Wilusz, 2017). Reported ribosomal occupancy of
RNAs indicated on the one side presence of different protein
isoforms and regulatory upstream open reading frames ORFs
(uORFs) from the mRNAs, and on the other, more exciting
side, new ways of translational regulation and possible
micropeptide production from lncRNAs (Morris and Geballe,
2000; Andrews and Rothnagel, 2014). It must be taken into
account that the ribosomal occupancy of transcripts need not
automatically lead to the production of stable, functional
polypeptides, and that further evidence is needed in order to
reclassify transcripts as indeed protein-coding (Guttman et al.,
2013). MS has proven as a useful tool to inspect the postulated
translational event, with developing proteogenomics approaches
confirming the presence of some peptides encoded by previously
non-coding regions (Slavoff et al., 2013; Fields et al., 2015; Wang
et al., 2019). However, in order to omit the possibility of false-
positive findings from MS, further functional studies on revealed
peptides are needed, and these studies remain sparse.

The complexity of gene expression has in most cases been
published on the levels of detection and its functional relevance
remains elusive. Still, it has revealed that the distinguishment
between mRNAs and ncRNAs is more challenging than initially
assumed and that automatic gene annotation systems, although
straightforward across large datasets, can sometimes be
misleading. Traditional arbitrary ORF cutoff can lead to
misclassification of some ncRNAs as mRNAs as they can by
February 2020 | Volume 11 | Article 95
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chance contain putative ORFs. This is especially true for
lncRNAs, such as functionally characterized H19, Xist, Mirg,
Gtl2, and KcnqOT1 (Prasanth and Spector, 2007). Some ncRNAs
have evolved from the protein-coding genes, and so will keep
certain features and homologies to mRNAs (Duret et al., 2006).
For example, Xist has evolved into the ncRNA through the
process of pseudogenization, during which proto-Xist had lost
its protein-coding function and its flanking genes had turned
into pseudogenes (Duret et al., 2006). On the contrary,
micropeptide-encoding regions may be incorrectly classified as
non-coding due to their size (Yeasmin et al., 2018). Next, the
absence of ORF conservation does not guarantee an absence of
protein-coding potential. Indeed, the majority of micropeptide-
encoding regions are not conserved (Ji et al., 2015), suggesting
their role in encoding evolutionary young proteins (Ruiz-Orera
et al., 2014). Finally, some genes are bifunctional, and its
products function independently both as RNAs and proteins.
The first report of such a gene was the human Steroid Receptor
Activator (SRA) (Lanz et al., 1999; Chooniedass-Kothari et al.,
2004). SRA was initially characterized as ncRNA which co-
activates steroid hormone receptors (Lanz et al., 1999) and
Frontiers in Genetics | www.frontiersin.org 3
later was revealed to also encode a functional protein (SRAP),
which seems to modulate SRA activity (Chooniedass-Kothari
et al., 2004).

Emerging discoveries in the ncRNA field have also raised the
possibility that some ncRNAs affect mitochondrial biology.
Mitochondria are crucial organelles for the integration of
several key metabolic processes and the primary powerhouses
in the cell (Spinelli and Haigis, 2018). The control of
mitochondrial protein homeostasis is unique in that its
components have origins in both mitochondria and nucleus
(Figure 1). Mitochondria contain their own circular genome
(mtDNA). In humans, it is 16,569 bp in length and contains 37
genes- encoding for 2 rRNAs, 22 tRNAs, and 13 proteins of the
oxidative phosphorylation (OXPHOS) system (Anderson et al.,
1981) (Figure 2). The rRNA coding sequences and all but one
protein-coding sequences are separated by tRNAs and deprived
of introns. The mtDNA is transcribed entirely from both
strands, named heavy (H) or light (L). Transcription is
initiated from the two H-strand (HSP1/2) and one L-strand
promoter, located in the major non-coding region named
“control region”, resulting in long polycistronic transcripts.
FIGURE 1 | Proposed mitochondrial proteome and transcriptome. Mitochondrial homeostasis is depending on its own gene expression, but also on the import of nuclear-
encoded proteins from the cytoplasm. In recent years, emerging evidence suggests import, but also mtDNA-transcription of different classes of ncRNAs in mitochondria.
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LSP controls the transcription of eight tRNAs and the ND6
gene. HSP1 transcription produces a transcript containing
tRNAPhe, tRNAVal, and the rRNAs, while transcription from
HSP2 generates a transcript that spans almost the entire
genome (Montoya et al., 1983; Chang and Clayton, 1984).
The main proteins controlling the process are the RNA
polymerase (POLRMT), two transcription factors (TFAM and
TF2BM), transcription elongation factor (TEFM), and
transcription termination factor (mTERF1) (Barshad et al.,
2018). The “tRNA punctuation” model (Ojala et al., 1981)
proposes that individual mRNA, rRNAs, and tRNAs are
released from the polycistronic transcripts by the cleavage of
tRNAs, which is in humans performed by endonucleases RNase
P complex and ELAC2 (Holzmann et al., 2008; Brzezniak et al.,
2011). After release, the rRNAs undergo chemical nucleotide
modifications before becoming part of mitoribosome, the
tRNAs undergo chemical nucleotide modifications, CCA
addi t ion at the 3 ′ -end , deadenyla t ion and fina l ly
aminoacylation, and the mRNAs get 3′ end polyadenylated
(D’Souza and Minczuk, 2018). The half-life of mitochondrial
transcripts and the decay of RNA intermediates are mediated
by a complex of polynucleotide phosphorylase (PNPase) and
SUV3 (Borowski et al., 2013). Finally, the mature mRNAs,
Frontiers in Genetics | www.frontiersin.org 4
tRNAs, and the assembled mitoribosome come together in the
translation apparatus, for the synthesis of 13 subunits of
OXPHOS system.

As mtDNA’s coding capacity is very limited, mitochondria
are heavily dependent on the import of about 1,500 nuclear-
encoded proteins. Besides, there have been indications that
mitochondrial homeostasis is maintained not just through
proteins, but also ncRNAs (Figure 1). The presence of
housekeeping mitochondrial nuclear-encoded ncRNAs has
been postulated for decades. These ncRNAs include tRNAs
(tRNALeu

UAA, tRNAGln
UUG, tRNAGln

CUG, tRNALys
CUU), 5S

rRNA, RMRP, and RNase P (Chang and Clayton, 1987a;
Chang and Clayton, 1987b; Kiss et al., 1992; Yoshionari et al.,
1994; Magalhaes et al., 1998; Puranam and Attardi, 2001;
Holzmann et al., 2008). A systematic analysis of mitochondrial
transcriptome further strengthened these claims. RNA-seq from
143B cells mitochondria and mitoplasts revealed the presence of
several nuclear- and mitochondrial-encoded small RNAs and
antisense transcripts (Mercer et al., 2011). Soon afterward,
Rackham et al. (2011) observed by RNA-seq on HeLa cells that
ncRNAs, excluding rRNAs and tRNAs, make up 15% of the
human mitochondrial transcriptome, and identified three
lncRNAs transcribed from the mtDNA. Follow-up studies have
FIGURE 2 | mtDNA map showing heavy (outside circle) and light (inside circle) strand and within them the control region with promoters (HSP1, HSP2, LSP), and
genes encoding for 13 mitochondrial proteins, 2 rRNAs, 22 tRNAs, and recently discovered mitochondria-encoded lncRNAs (mtlncRNAs) (highlighted with red star).
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also reported the presence of ncRNAs encoded by the nuclear
DNA, especially miRNAs and lncRNAs, within mitochondria
across various cell types and tissues, suggesting that these
ncRNAs may play important roles in the mitochondrial
homeostasis (Kim et al., 2017b; Jeandard et al., 2019). The
summary of the proposed nuclear-encoded ncRNAs is given in
Table 1.

Although detection of ncRNAs in mitochondria paved the
way to more extensive research in this field with several examples
of ncRNAs functionally described as directly impacting
mitochondrial biology, these transcripts are far from being well
characterized. It is important to mention that there are (still)
many controversies and debates ongoing about the sole existence
of ncRNA in mitochondria. The main obstacle presents the
technical challenge of truly separating isolated and
uncontaminated mitochondria from other membrane vesicles
(endoplasmic reticulum (ER), the Golgi apparatus, the
endosomes) they are tightly associated within the cell
(Vendramin et al., 2017). Therefore, to assess the purity of
mitochondria or mitoplasts, ER or other membrane vesicles
Frontiers in Genetics | www.frontiersin.org 5
should be used instead of cytosol or nucleus, which was not
always the case. Mitoplasts—rather than mitochondria—should
be subjected to RNase treatment before lysis in order to minimize
the risk of contamination. Unfortunately, these control steps
have not always been performed systematically, so the published
data is to date a complicated topic of many debates (Vendramin
et al., 2017). Moreover, implementation of high sensitive NGS
techniques such as deep sequencing is likely to detect small
amounts of contaminants, leading to data misinterpretation.
Finally, as this field is still very fresh, many studies miss
independent replicates and functional studies are published by
one research group.

Despite these controversies, an increasing body of evidence has
connected ncRNAs and their machinery with mitochondrial
biology. In this review, we focus on classes of ncRNAs described
to be functionally related with and/or localized in mitochondria:
the housekeeping ncRNAs, miRNAs, and lncRNAs. We also take
up the topic of mitochondrial micropeptides, recently discovered
to be encoded within regions initially annotated as non-coding.
Overall, we summarize knowledge on ncRNAs in mitochondrial
TABLE 1 | Nuclear-encoded ncRNAs discovered in mitochondria.

RNA Function in
cytosol/nucleus

Proposed function
in mitochondria

Evidence for mitochondrial
localization

Reference

tRNAs (tRNALeu
UAA,

tRNAGln
UUG, tRNA

Gln
CUG,

tRNALys
CUU)

Translation Translation? RNA-seq Rubio et al., 2008
RT-qPCR Mercer et al., 2011
Enrichment in mitoplasts compared to
crude mitochondria

Gowher et al., 2013

5S rRNA Component of the cytosolic
ribosome

Translation? RT-qPCR and Northern blot Yoshionari et al., 1994
Enrichment in mitoplasts compared to
crude mitochondria

Magalhaes et al., 1998

Import into isolated mitochondria Entelis et al., 2001
RNA-seq Mercer et al., 2011
Fluorescence microscopy Autour et al., 2018
FISH Zelenka et al., 2012

RMRP 5.8S rRNA processing RNA metabolism? Enrichment in mitoplasts compared to
crude mitochondria

Chang and Clayton, 1987a

RT-qPCR Wang et al., 2010
RNA-seq Mercer et al., 2011
Import into isolated mitochondria,
Electron microscopy

Noh et al., 2016

RNASE P Component of RNase P Pre-tRNA processing? RT-qPCR Bartkiewicz et al., 1989
Enrichment in mitoplasts in comparison
to crude mitochondria

Puranam and Attardi, 2001

Import into isolated mitochondria Wang et al., 2010
RNA-seq Mercer et al., 2011

hTERC Component of telomerase Processed and transported to
cytosol?

RT-qPCR Cheng et al., 2018

miRNAs and pre-miRNAs mRNA degradation/
repression of mRNA
translation

Repression or activation of
translation, repression of
transcription

RNA-seq
miRNA-microarray
Northern blot
Enrichment in mitoplasts in comparison
to crude mitochondria
FISH
Immunostaining

Summarized in Table 3

SAMMSON Facilitates p32 targeting to
the mitochondria in
melanoma cells

? RT-qPCR Leucci et al., 2016
FISH Vendramin et al., 2018

SRA Co-activates steroid hormone
receptors

? Computational screen Baughman et al., 2009

MALAT1 Transcriptional regulator Mitochondrial metabolism? FISH Zhao et al., 2019
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biology and discuss their discovery, biosynthesis, import, and
function in the context of both health and disease. Finally, we
touch their potential as prognosis markers and therapeutic targets.
HOUSEKEEPING NCRNAS LOCALIZED IN
MITOCHONDRIA

Several tRNAs, 5S rRNA, RMRP, and RNase P present
housekeeping ncRNAs whose mitochondrial localization,
transport, and function have been discussed for years. For
some of them, their interacting RNA-binding proteins (RBPs)
have been proposed and associated with mitochondrial import
and function (Figure 3, Table 1). However, the exact import
Frontiers in Genetics | www.frontiersin.org 6
mechanism across mitochondrial membranes and the function
of these ncRNAs remain unclear. It is important to note that
reports of these ncRNAs have been sparse and therefore
questionable, so more evidence is needed to confirm/deny their
presence and role in mitochondria.

Nuclear-encoded tRNAs have been observed in mitochondria
across many species, as most eukaryotes lack some of the essential
tRNAs in their mtDNA and must import them (Tarassov et al.,
2007; Schneider, 2011). Even though human mtDNA encodes all
the necessary tRNAs, published data indicate that they are able to
import some of the cytosolic tRNAs through conserved protein
machinery. In vitro experiments have shown that the synthetic
transcripts of yeast tRNAs could be internalized by the isolated
human mitochondria (Kolesnikova et al., 2000; Entelis et al.,
FIGURE 3 | Proposed import mechanisms of tRNAs (A), 5s rRNA (B), and RMRP (C) into human mitochondria. ncRNAs could be targeted by various nuclear-
encoded proteins localized in the nucleus and close or inside the organelle. The mechanism behind translocation across mitochondrial membranes is still unknown,
but RMRP and Rnase P seem to require the PNPase (D).OMM, outer mitochondrial membrane; IMS, intermembrane space; IMM, inner mitochondrial membrane.
February 2020 | Volume 11 | Article 95
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2001). Later, nuclear-encoded tRNAs have been detected in
mitochondria (Rubio et al., 2008; Mercer et al., 2011), namely
tRNALeu

UAA, tRNA
Gln

UUG, and tRNA
Gln

CUG. Gowher et al. (2013)
successfully targeted yeast tRNALys

CUU into human mitochondria
in vivo, suggesting similarities in the tRNA import between the
two species (Figure 3A). The current proposal by Gowher et al.
(2013) is that tRNAs are recruited from the cytosol to the
mitochondria with the precursor pre-KARS2 (mitochondrial
lysyl-tRNA synthetase), helped by ENO2 (glyolitic enlolase). It is
still unclear how the tRNA-pre-KARS2 complex then gets
internalized into the mitochondrial matrix (Gowher et al., 2013;
Kim et al., 2017b). Possible protein import pathway could consist
of the translocase of the outer (TOM) and inner (TIM)
mitochondrial membrane, as in yeast (Tarassov and Martin,
1996). Although the import of tRNA is yet to be fully understood,
it could present a novel concept for therapy for disorders caused by
defects in mtDNA-encoded tRNAs. Successful import of tRNA
compensating the mutated mtDNA could rescue defects in
mitochondrial translation. Rescue of mtDNA mutations by the
import of designed tRNAs to mitochondria has been reported in
vitro and in vivo (Salinas et al., 2008; Wang et al., 2012a), but more
recent reports are missing.

Several studies have suggested that 5S rRNA is imported to the
mammalianmitochondria (Yoshionari et al., 1994;Magalhaes et al.,
1998). Entelis et al. (2001) suggested that mitochondrial 5S rRNA
might substitute for its lost counterpart andbepart ofmitoribosome
large subunit. Smirnov et al. (2008) proposed a model of
mitochondrial 5S rRNA import (Figure 3B), starting with the
recognition and transport of 5S rRNA from the nucleus to the
cytoplasm by TFIIIA (Ciganda andWilliams, 2011). In the cytosol,
5S rRNAwas proposed to interact with pre-MRPL18 (precursor of
mitochondrial ribosomal protein L18). This interaction might
induce a conformational change in 5S rRNA that makes it
recognized and bound by the mitochondrial enzyme Rhodanese,
which helps it possibly translocate intomitochondria through a yet
unknown mechanism. In the matrix 5S rRNA was proposed to
associate with the mature MRPL18 and with mitoribosomes,
affecting mitochondrial translation efficiency (Smirnov et al.,
2010; Smirnov et al., 2011). However, as cryo-electron
microscopy did not detect 5S rRNA within the mammalian
mitoribosome 5S rRNA (Greber et al., 2015), its possible function
in mitochondria remains enigmatic.

RMRP is a part of the RNase MRP, a ribonucleoprotein
complex whose function has been discussed for decades. In the
nucleus, it is involved in the pre-rRNA processing (Schmitt and
Clayton, 1993; Chu et al., 1994; Goldfarb and Cech, 2017). In
mitochondria, it was postulated to cleave RNA complementary
to the light chain near the D-loop sites that mark the transition
from RNA to DNA synthesis (Chang and Clayton, 1987b; Lee
and Clayton, 1997). Three RNA-binding proteins (RBPs- HuR,
PNPase, and GRSF1) have been implicated in the RMRP
transport and role in mitochondria (Figure 3C). In the
nucleus, RMRP is bound to HuR, which promotes its export to
the cytosol in a CRM1-dependent manner (Noh et al., 2016). The
exported RMRP might be then targeted into the mitochondrial
Frontiers in Genetics | www.frontiersin.org 7
intermembrane space through yet unknown mechanisms where
PNPase was suggested to enable its import into the matrix
(Wang et al., 2012b), after which its abundance in the matrix
was reported to be increased through the interaction with GRSF1
(Noh et al., 2016). However, recent studies cast a shadow on the
role of RMRP complex in mitochondria. Agaronyan et al. (2015)
have shown that the RNA primer formation is a result of a
premature arrest of the mitochondrial RNA polymerase after a
G-quadruplex. Moreover, only the 3′ half (~130 nt) of RMRP
could be found in mitochondria, indicating a processing that
would result in a loss of catalytic activity (Esakova and
Krasilnikov, 2010). These reports indicate that RMRP unlikely
acts as an endonuclease in mitochondria. However, its
interaction with GRSF1, an important component of the RNA
granules (Antonicka et al., 2013; Jourdain et al., 2013), might still
make it involved in the RNA metabolism.

RNase P processes the 5′ leader of precursor tRNA, which is a
critical step of processing mitochondrial polycistronic transcripts
(Ojala et al., 1981; Rackham et al., 2016). Two types of RNase P
are known: ribonucleoproteins RNases P containing RNase P and
protein-only RNases P (PRORP) (Lechner et al., 2015; Klemm
et al., 2016). In the majority of species, including humans, it is
assumed that the ribonucleoprotein RNase P acts in the nucleus
and PRORP in mitochondria (Holzmann et al., 2008; Lechner
et al., 2015). Strengthening this assumption, studies have
reported that mammalian mitochondrial RNAse P does not
require the catalytic RNA component for catalysis (Rossmanith
et al., 1995; Holzmann et al., 2008). Nevertheless, RNase P was
partially purified from HeLa cells mitochondria. Detected
“mtRNase P”, together with the observed sensitivity of RNAse
P to the nuclease treatment, suggested that RNAse P acts as a
ribonucleoprotein also in mitochondria (Doersen et al., 1985). In
addition, several groups indicated that mtRNase P is imported
into the mitochondrial matrix through interaction with PNPase
(Wang et al., 2010; Mercer et al., 2011; Noh et al., 2016) (Figure
3D). However, as so far functional RNase P ribonucleoprotein
has not been reported in mitochondria, the existence ofmtRNase
P remains controversial (Jeandard et al., 2019).

hTERC is the RNA component of the human telomerase,
where it serves as a sequence template for the telomere
replication (Gall, 1990). As its sequence contains a region
similar to an RMRP and RNase P short stem-loop that was
proposed to enable their entry into mitochondria (Wang et al.,
2010), hTERC was also proposed to be mitochondria-localized
(Cheng et al., 2018). It was detected by the RT-PCR in purified
mitoplasts, but as as a shorter, 195 nt-long transcript, which was
termed TERC-53. Zheng et al. (2019) demonstrated that TERC-
53 is mostly localized in the cytosol, where it regulates cellular
senescence and is involved in cognition decline in mice
hippocampus without affecting telomerase activity or
mitochondrial functions. Having this in mind, the authors
hypothesized that TERC-53 is exported from the mitochondria
back to the cytosol (Cheng et al., 2018; Zheng et al., 2019).
However, this hypothesis indicates hTERC processing occurring
within the mitochondria, which has so far not been reported.
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MICRORNAS

Vertebrate genomes contain thousands of miRNAs: according to
MiRBase catalog, with the human genome containing 2,654 mature
sequences (Kozomara et al., 2019). The biogenesis and biological
functions of miRNAs have been widely studied in eukaryotic cells
(Bartel, 2009) (Figure 4). In short, miRNAs are transcribed from the
intergenic regions or in antisense orientation to coding regions as
the primary miRNA transcript (pri-miRNA). pri-miRNA is
processed in the nucleus by Drosha and/or DiGeorge syndrome
chromosomal region 8 (DGCR8). This results in premature miRNA
(pre-miRNA) which is then bound by exportin 5 (XPO5). XPO5,
along with RanGTP, enables the export of the pre-miRNA through
the nuclear pore into the cytosol. There RNase Dicer (DICER1 in
humans) cleaves it, producing mature double-stranded miRNA.
From two strands, the “passenger strand” undergoes RNA
degradation while the remaining “guide strand” associates with
argonaute 2 (AGO2) and becomes part of a multiprotein RNA-
induced silencing complex (RISC) (Han et al., 2006). The main
function of miRNA within RISC is post-transcriptional gene
regulation by promoting mRNA degradation or translational
repression by sequence-specific binding to the target mRNA.
mRNA degradation is achieved via AGO2 (Carthew and
Sontheimer, 2009; Chekulaeva and Filipowicz, 2009).
Translational control is mediated by GW182 (Czech and
Hannon, 2011; Iwakawa and Tomari, 2015). Moreover, miRNAs
Frontiers in Genetics | www.frontiersin.org 8
have also been implicated in some non-canonical functions, such as
direct transcription and chromatin state regulation in the nucleus,
and even translational promotion (Vasudevan, 2012; Yao et al.,
2019). Each miRNA can target multiple genes, enabling them to
regulate the expression of over 60% of the human genes and
therefore moderate any part of cellular biology (Bartel, 2009;
Friedman et al., 2009). Focusing on mitochondria, based on their
localization and genetic origin, three different classes of
mitochondria-related miRNAs can be distinguished
(1) cytoplasmic, nuclear-encoded miRNAs targeting
mitochondria-related transcripts; (2) mitochondrial, nuclear-
encoded miRNAs; and (3) mitochondrial, mtDNA-encoded
miRNAs (Bandiera et al., 2013) (Figure 4). The two latter classes,
termed mitomiRs, are yet to be functionally deciphered.

Cytoplasmic miRNAs With Impact on
Mitochondria
As about 1,500 nuclear-encoded proteins are imported into
mitochondria and involved in diverse mitochondrial functions,
many miRNAs have been described as directly targeting their
mRNAs in the cytoplasm. By downregulating transcripts
encoding for proteins involved in a variety of mitochondrial
processes, reported miRNAs can indirectly influence
mitochondrial biology and homeostasis. A summary of
miRNAs reported to target nuclear-encoded mitochondrial
transcripts is given in Table 2.
FIGURE 4 | miRNA biogenesis, function in the cytoplasm within RISC, and proposed transport/presence in mitochondria. RISC, RNA-induced silencing complex.
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TABLE 2 | miRNAs and their target genes across mitochondrial functions.

miRNA Target Reference

(A) TCA cycle
miR-148a CS Tibiche and Wang, 2008
miR-148b CS Tibiche and Wang, 2008
miR-299-5p CS Tibiche and Wang, 2008
miR-19a-3p CS Tibiche and Wang, 2008
miR-19b-3p CS Tibiche and Wang, 2008
miR-122a CS Tibiche and Wang, 2008
miR-421 CS Tibiche and Wang, 2008
miR-494 CS Tibiche and Wang, 2008
miR-183 IDH2 Vohwinkel et al., 2011
miR-743a MDH2 Shi and Gibson, 2011
miRNA-26a PDHX Chen et al., 2014
miR-210 SDHD Puissegur et al., 2011
miR-147b SDHD Zhang et al., 2019
miR-124 SUCLG2 Wang and Wang, 2006
(B) OXPHOS
miR-101-3p ATP5B Zheng et al., 2011
miR-127-5p ATP5B Willers et al., 2012
miR-338-5p ATP5G1 Aschrafi et al., 2012
mitomiR-378 ATP6 Jagannathan et al., 2015
miR-181c COX1 Das et al., 2014
miR-338 COX4 Aschrafi et al., 2008
miR-34a CYC Bukeirat et al., 2016
miR-210-5p ISCU, COX10 Chan et al., 2009; Chen

et al., 2010
miR-210 SDHD Puissegur et al., 2011
miR-147b SDHD Zhang et al., 2019
miR-663 UQCC2 Carden et al., 2017
(C) Fatty acid metabolism
miR-204-5p ACACB Civelek et al., 2013
miR-224-5p ACSL4 Peng et al., 2013
miR-122 Aldoa Esau et al., 2006
miR-212 CACT Soni et al., 2014
miR-132 CACT Soni et al., 2014
miR-370 CPT1A Iliopoulos et al., 2010
miR-33b CPT1A Rottiers and Naar, 2012
miR-378, miR-378* CRAT Carrer et al., 2012
miR-33a CROT Gerin et al., 2010
miR-107 PANK Wilfred et al., 2007
miR-103 PANK Wilfred et al., 2007
miR-29a-3p PPARd Kurtz et al., 2014
miR-199a-5b PPARd el Azzouzi et al., 2013
(D) Aminoacid metabolism
miR-29b DBT Mersey et al., 2005
miR-23a-3p GLS Gao et al., 2009
miR-23b-3p GLS Gao et al., 2009
miR-193b SHMT2 Leivonen et al., 2011
(E) Nucleotide metabolism
miR-502 DHODH Zhai et al., 2013
miR-940 MTHFD2 Xu et al., 2019
miR-149 MTHFR Wu C. et al., 2013
miR-125 MTHFR Stone et al., 2011
miR-22 MTHFR Stone et al., 2011
(F) Mitochondrial transport
miR-15b Arl2 Nishi et al., 2010
miR-16 Arl2 Nishi et al., 2010
miR-195 Arl2 Nishi et al., 2010
miR-424 Arl2 Nishi et al., 2010
miR-25 Mitochondrial

calcium uniporter
Marchi et al., 2013

miR-155 SLC25A19 Kim et al., 2015
miR-132 SLC25A20 Soni et al., 2014
miR-212 SLC25A20 Soni et al., 2014

(Continued)
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miRNA Target Reference

miR-184 Slc25a22 Morita et al., 2013
miR-141 Slc25a3 Baseler et al., 2012
(G) Mitochondrial dynamics
miR-30a-5p DRP1 Li et al., 2010
miR-483-5p Fis1 Fan et al., 2015
miR-484 Fis1 Wang K. et al., 2012
miR-499 Fnip1, Calcinurin van Rooij et al., 2009; Wang

et al., 2011; Liu L. et al., 2016
miR-9/9* GTPBP3, MTO1,

TRMU
Meseguer et al., 2015

miR-27 MFF Tak et al., 2014
miR-761 MFF Long et al., 2013
miR-593 MFF Fan et al., 2015
miR-200a-3p MFF Lee et al., 2017
miR-140 MFN1 Guan et al., 2016
miR-19b MFN1 Li X. et al., 2014; Joshi et al.,

2016
miR-382-5p MFN1, MFN2,

OPA, SIRT1,
PGC1-a

Dahlmans et al., 2019

miR-214 MFN2 Bucha et al., 2015
miR-106a MFN2 Zhang et al., 2016
miR-195 MFN2 Zhou et al., 2016
miR-30 family P53 Li et al., 2010
miR-149 PARP-2 Mohamed et al., 2014
miR-23a PGC1-a Russell et al., 2013
miR-696 PGC1-a Aoi et al., 2010
miR-27 PHB Kang et al., 2013
miR-494 TFAM Yamamoto et al., 2012
miR-23b-5p TFAM Jiang et al., 2013
miR-590-3p TFAM Wu et al., 2016
miR-155-5p TFAM Quinones-Lombrana and

Blanco, 2015
miR-200a TFAM Yao et al., 2014
miR-26 UCP1 Karbiener et al., 2014
miR-15a UCP2 Sun et al., 2011
miR-133a UCP2 Chen et al., 2009
miR-7 VDAC1 Chaudhuri et al., 2016
(H) Autophagy, mitophagy and ROS
miR-146a Bcl-2 Rippo et al., 2014
miR-181a Bcl-2 Rippo et al., 2014
miR-195 Bcl-2 Singh and Saini, 2012
miR-24-2 Bcl-2 Singh and Saini, 2012
miR-365-2 Bcl-2 Singh and Saini, 2012
miR-497 Bcl-2 Yadav et al., 2011
miR-146 Bcl-2 Zhang et al., 2017
miR-15a Bcl-2 and Mcl-1 Cimmino et al., 2005
miR-16 Bcl-2 and Mcl-1 Cimmino et al., 2005
miR-9 BCL2L11 Li Y. et al., 2014
miR-30a Becn-1 Zhu et al., 2009
miR-17-92 Bim Molitoris et al., 2011
miR-92a Bim Tsuchida et al., 2011
miR-145 BNIP3 Du et al., 2017
miR-101 Mcl-1 Frankel et al., 2011
miR-29 Mcl-1 Mott et al., 2007
miR-181 Mcl-1, Bcl-2 Ouyang et al., 2012
miR-137 NIX, FUNDC1 Li W. et al., 2014
miR-504 P53 Hu et al., 2010
miR-125b P53, Bak Le et al., 2009; Sun et al.,

2013
miR-21 PTEN Meng et al., 2007; Zhang

et al., 2010
miR-128 SIRT1 Adlakha et al., 2013

(Continued)
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TCA Cycle
The tricarboxylic acid (TCA) cycle is a central pathway in the
metabolismof sugars, lipids, andaminoacids. SeveralmiRNAshave
been described to directly target transcripts of enzymes involved in
its chemical reactions (Figure 5, Table 2A). For example,miR-26a
targets subunit X of pyruvate dehydrogenase (PDH). As PDH
catalyzes a crucial reaction before acetyl-coA enters the TCA
cycle, its repression is leading to the decreased levels of acetyl-coA
and the accumulation of pyruvate (Chen et al., 2014). In cancer
research,miRNAshavebeendiscovered tohave a role indeveloping
drug tolerance. Altered miR-147b initiates a reversible state of
tolerance to osimertinib in lung cancer cells by binding SDHD
(Zhang et al., 2019). Pretreatment with a miR-147b inhibitor
delayed osimertinib-associated drug tolerance, providing a
promising target for preventing tumor relapse (Zhang et al., 2019).

Oxidative Phosphorylation System (OXPHOS)
OXPHOS system is composed of five protein complexes in the
inner mitochondrial membrane that through oxidoreductase
reactions generate a proton gradient, ultimately driving ATP
Frontiers in Genetics | www.frontiersin.org 10
synthesis. Several miRNAs have been described as directly
targeting the OXPHOS subunits or assembly factors (Figure 6,
Table 2B). It was shown that miR-663 positively regulates
OXPHOS subunit and assembly factor protein levels by direct
stabilization of complex III assembly factor UQCC2 (Carden
et al., 2017). In breast cancer cell lines, mitochondrial
dysfunction downregulates miR-663 through hypermethylation
of its promoter, which leads to decreasing OXPHOS proteins
levels and enzymatic activity and stability of supercomplexes,
which promotes tumorigenesis (Carden et al., 2017).

Fatty Acid Metabolism
Fatty acidmetabolism includes catabolic and anabolic processes that
involve triglycerides, phospholipids, steroid hormones, and ketone
bodies. Several miRNAs have been described as regulators of these
processes (Table 2C). As fatty acid oxidation defects have been
linked to the obesity and the development of insulin resistance
(Kusunoki et al., 2006), these miRNAs could serve as potential
therapeutic targets. As an example, PPARGC1B encodes for PGC-
1b, a transcriptional coactivator that promotes mitochondrial
biogenesis. Interestingly, this locus can also encode for miR-378
and miR-378*, which counterbalance the effect of PGC1-b by
targeting carnitine-O-acetyltransferase (CRAT) (Carrer et al.,
2012). miR-378/378* knockout (KO) mice showed significantly
greater mitochondrial function and oxidative capacity.

Amino Acid Metabolism
The main steps of breakdown and synthesis of amino acids occur
in mitochondria. Several miRNAs have been connected to amino
TABLE 2 | Continued

miRNA Target Reference

miR-335 SOD2, TXNRD2 Bai et al., 2011;
miR-34a SOD2, TXNRD2,

Bcl-2, SIRT1
Yamakuchi et al., 2008; Bai
et al., 2011; Rippo et al.,
2014

miR-17* SOD2, TXNRD2,
GPX2

Xu et al., 2010
FIGURE 5 | miRNAs targeting transcripts encoding proteins involved in the TCA cycle. Red arrows present the repressing effect of miRNA on its target mRNA.
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acid metabolism (Table 2D). Most of the published work is
focused on the regulation of glutaminase (GLS), which catalyzes
the conversion of glutamine to glutamate. miR-23a and miR-23b
participate in targeting glutaminase and thereby contribute to the
mitochondrial amino acid metabolism (Gao et al., 2009).

Nucleotide Metabolism
Parts of the nucleotide and one-carbon metabolism are occurring
in mitochondria. Various miRNAs can influence these processes
(Desler et al., 2010) (Table 2E). For example, miR-149, miR-125,
and miR-22 have been found to target MTHFR (Stone et al.,
2011; Wu C. et al., 2013).

Mitochondrial Transport
Many mitochondrial transporter and carrier proteins enable the
import and export of molecules across the mitochondrial
membranes. By targeting the transcripts encoding for these
proteins, miRNAs are able to influence mitochondrial biology
(Table 2F). It has been shown that the miR-15/16 cluster,
composed of miR-15b, miR-16, miR-195, and miR-424, target
Arl2 (Nishi et al., 2010).

Mitochondrial Dynamics
Mitochondria are constantly changing their size, shape, and
number to maximize the capacity for OXPHOS and answer
the cell needs. This is achieved through the coordinated
processes of biogenesis, fission, and fusion (Tilokani et al.,
2018). Several miRNAs have been shown to be involved in the
regulation of mitochondrial dynamics by directly or indirectly
targeting these key factors (Figure 7, Table 2G). miR-149
indirectly promotes mitochondrial biogenesis by inhibiting
Frontiers in Genetics | www.frontiersin.org 11
PARP-2, which increases the NAD+ levels and SIRT-1 activity,
finally leading to the increased activity of PGC-1a, the master
regulator of mitochondrial biogenesis. Skeletal muscles from a
high fat diet-fed obese mice have low levels of miR-149 and
present with mitochondrial dysfunction, which might be due to
miR-149-induced SIRT-1/PGC-1a pathway dysregulation.
Noteworthy, miRNAs have been implicated in the
mitochondria-mediated transition of skeletal muscle fiber
types. miR-499 directly targets Fnip1, a negative regulator of
AMPK, a known activator of PGC-1 a, and thereby triggers a
muscle mitochondrial oxidative metabolism program (Liu L.
et al., 2016). The miR-30 family, highly expressed in heart, was
reported to regulate mitochondria fission and apoptosis by
directly targeting p53, a transcriptional activator of Drp1 (Li
et al., 2010). In addition, Drp1 is indirectly regulated bymiR-499,
which targets Drp1 activator dephosphatase calcinurin (van
Rooij et al., 2009; Wang et al., 2011). Finally, miR-499
transcription is regulated by p53 on the transcript level (Wang
et al., 2011).

MELAS syndrome is caused by mutations in mtDNA
affecting tRNALeu

UUR. One of the phenotypes of MELAS
patients is the increased oxidative stress. In addition, mutant
tRNAsLeuUUR have reduced levels of the taurine-containing
chemical modification at the wobble uridine (U34). Meseguer
et al. (2015) reported that elevated oxidative stress in mutant cells
leads to induction of miRNA-9/9*, which then act as post-
transcriptional repressors of the tRNA-modification enzymes
GTPBP3, MTO1, and TRMU. Downregulation of these
enzymes disrupts the chemical modification at U34 of non-
mutant tRNAs and contributes to mitochondrial dysfunction
(Meseguer et al., 2015).
FIGURE 6 | miRNAs targeting transcripts encoding proteins involved in the OXPHOS. Red arrows present the repressing effect of miRNA on its target mRNA.
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Autophagy, Mitophagy, and Reactive Oxygen
Species (ROS) Production
Autophagy is a catabolic process which prevents cell damage and
promotes the cell survival by degrading and/or recycling
dysfunctional components during cellular stress (Dikic and
Elazar, 2018). Mitophagy is a form of autophagy that removes
faulty or superfluous mitochondria, regulating their number to
match the cellular needs (Pickles et al., 2018). miRNAs are also
involved in the mitochondria-mediated apoptosis (Figure 7,
Table 2H). Moreover, they are frequently dysregulated in
human cancers, where they may function as potent oncogenes
or tumor suppressors (Peng and Croce, 2016). Since
mitochondrial dysfunction is one of the hallmarks of cancer
(Wallace, 2012), miRNAs targeting apoptosis-related transcripts
could be important in the development of cancer therapies. miR-
101 (Frankel et al., 2011), miR-30a (Zhu et al., 2009), miR-15a,
and miR-16 (Cimmino et al., 2005) have been reported to target
oncogenic Bcl-2 and Mcl-1, and are frequently deleted or
decreased in chronic lymphocytic leukemia. miR-21 levels have
been shown to be significantly increased, leading to reduced
expression of PTEN in human lung and hepatocellular
carcinomas (Meng et al., 2007; Zhang et al., 2010).

mitomiRs
MitomiRs are defined as miRNAs with mitochondrial localization
(Bandiera et al., 2011). Themajority ofmitomiRs were suggested to
Frontiers in Genetics | www.frontiersin.org 12
originate from the nuclear genome, but also there were reports of
mtDNA-encoded miRNAs. Different experimental approaches
across mammalian tissues and cell lines indicated the
mitochondrial presence of miRNAs, but also proteins involved in
miRNAs biogenesis and function, suggesting miRNAs import,
transcription, and/or processing and function within
mitochondria themselves. Intriguingly, mitomiRs have some
unique features which distinguish them from conventional
cytosolic miRNAs (Bandiera et al., 2011; Barrey et al., 2011). Most
of the nuclear-encoded mitomiRs loci are located within
mitochondrial gene clusters or close to mitochondrial genes, and
their transcriptions are often coregulated (Baskerville and Bartel,
2005; Bandiera et al., 2011). Their size slightly differs (between 17
and 25 nt instead of the average 22 nt), and they contain short 3′
overhangs, stem-loop secondary structures, and unique
thermodynamic features (Vendramin et al., 2017). They lack 5′
cap and most were predicted in silico to target multiple mtDNA
sites. It has thus been speculated that at least some of these features
could present a signal for entry into mitochondria (Bandiera et al.,
2011; Barrey et al., 2011).

mitomiRs have been found via different approaches (from
miRNA microarray and RT-qPCR to deep sRNA-sequencing)
and across various tissues and organisms. To begin with,
sequence analysis of cDNA libraries from mice mitochondrial
RNA identified clones mapping to four nuclear-encoded
miRNAs and three regions within the D-loop (Lung et al.,
FIGURE 7 | miRNA targeting transcripts encoding proteins involved in the mitochondrial dynamics, autophagy, mitophagy and ROS production. Red arrows present
inhibitory effect of miRNA on its target mRNA or repressive effect of protein on its interaction partners, and green arrows present the activating effect of protein on its
interaction partner.
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2006). Other reports on miRNAs localized in mammalian
mitochondria have expanded in the past decade (Kren et al.,
2009; Bandiera et al., 2011; Barrey et al., 2011; Mercer et al., 2011;
Sripada et al., 2012; Jagannathan et al., 2015), as summarized in
Table 3. For example, Kren et al. (2009) reported by miRNA
microarray 15 nuclear-encoded miRNAs from highly purified rat
liver mitochondria and further strengthened their findings with
Northern blot and stem-loop RT-qPCR analyses. Barrey et al.
(2011) in silico predicted 33 pre-miRNAs and 25 miRNAs
targeting mtDNA and experimentally confirmed localization of
pre-mir302a, let-7b, and mir-365 to isolated mitochondria from
the human myotubes. Mercer et al. (2011) detected 31
mitochondria-encoded small RNAs in human 143B mitoplasts
by sRNA-seq, the majority (84%) derived from mt-tRNA genes.

The presence of miRNA-associated proteins in the
mitochondria was only recently recognized (summarized in
Table 4). Wang et al. (2015a) and Vargas et al. (2016) reported
Dicer in the rat brain, but it was reported as absent in the
mitochondria isolated from the heart (Chen et al., 2010; Das
et al., 2012; Jagannathan et al., 2015). So far, only one
colocalization of pre-miR-338 and Dicer in rat brain
mitochondria has been published (Vargas et al., 2016). If
indeed true, the presence of Dicer could indicate that mature
Frontiers in Genetics | www.frontiersin.org 13
miRNA are formed from the precursors in mitochondria, from
where they could directly affect the mitochondrial transcripts or
even be exported to act in the cytosol (Bienertova-Vasku et al.,
2013). However, mitochondrial localization of Dicer, Drosha,
and DGCR8 has not yet been validated by other groups. Several
studies have documented the presence of RNA-interference
components, most notably AGO2, in the mitochondria,
implying the functional importance of mitomiRs. As an
example, Ago2 immunoprecipitated with miRNA from
mitochondria in rat cardiac myocytes (Das et al., 2012). In
addition, FXR1, a postulated RISC subunit, has been found
together with Ago2 in the mitochondrial matrix of mouse
cardiomyocytes (Jagannathan et al., 2015). However, an
important factor for miRNA-mediated translational repression-
GW182 has not been detected in any studies (Ro et al., 2013;
Zhang et al., 2014). Finally, the presence of Dicer and AGO2 in
mitochondria need not necessarily imply processing and
function of mitomiRs, as these enzymes are involved also in
other, miRNA-independent, processes (Janowski et al., 2006;
Song and Rossi, 2017).

Although protein transport across mitochondrial membranes
is well described, the translocases for RNA transport across
mitochondrial membranes remain speculative. Several
TABLE 3 | miRNAs detected in mitochondria, mitomiRs.

mitomiR Tissue Method of detection Reference

Mt-1; Mt-2; Mt-3; Mt-4; let7f-;, let-7g; 122a; 101b Mouse liver and kidney cDNA library Lung et al., 2006
130a; 130b; 140; 290; 320; 494; 671; 202; 705; 709; 721; 761; 763; 198;
765

Rat liver miRNA microarray, Northern
blot, RT-qPCR

Kren et al., 2009

690; 122; 451; 720; let-7f; let-7b; let-7g; 29a; 26a; 192; 101; 22; 805; 29c;
7a; 98; 26b; 30b; 7c; 709

Mouse liver miRNA microarray, RT-qPCR Bian et al., 2010

1973; 1275; 494; 513a-5p; 1246; 328; 1908; 1972; 1974;638;
1977;1978;1201

HeLa cells miRNA microarray, RT-qPCR Bandiera et al., 2011

pre-mir302a; pre-let-7b; 365; 720; 133b; 1974; 24; 133a; 125a-5p; 1979;
103; 125b; 103; 221; 23a; let-7b; 423-3p; 106a; 23b; 92a; 193b; 93; 532-
3p; 20a; 149; 181a; 503; 210; 107; 574-3p; 34a; let-7g; miRPlus-D1033;
19b; 197; 324-3p; 127-3p; 324-5p; 484; 151-5p; 486-5p; 542-5p; 199a-
5p; 501-3p; 675*; 134; 490-3p; 598

Human myotubes FISH, RT-qPCR Barrey et al., 2011

103-3p; 146a-5p; 16-5p 143B cells sRNA-seq Mercer et al., 2011
181c-5p Rat cardiac myocytes miRNA microarray,

immunostaining, RT-qPCR
Das et al., 2012

107; 181a-5p; 221-5p; 320a; let-7b; let-7g HEK293 and HeLa cells sRNA-seq, RT-qPCR Sripada et al., 2012
1 C2C12 cells CLIP-seq, miRACE, RT-

qPCR
Zhang et al., 2014

143-3p; 378a-3p; 146a-5p; 181c-5p; 501-3 143B and 206 r° cells sRNA-seq, RT-qPCR Dasgupta et al., 2015
let-7d-5p; let-7b-5p; let-7c-5p; let-7f-5p; mghv-M1-7-3p; 1187; 1224-5p;
125a-3p; 125b-5p; 126-3p; 130a-5p; 133a-3p; 133a-5p; 133b; 135a-1-
3p; 139-3p; 1-3p;144-3p; 149-3p; 149-5p; 188-5p; 1894-3p; 1895; 1897-
5p; 1904; 1934-3p; 1982-5p; 211-3p; 2137; 21a-5p; 22-3p; 23a-3p; 23b-
3p; 24-3p; 26a-5p; 27a-3p; 27b-3p; 2861; 29a-3p; 29b-3p; 29c-3p;
3072-3p; 3081-5p; 3082-5p; 3085-3p; 3092-3p; 3095-3p; 3098-5p; 30a-
5p; 30c-1-3p; 30d-5p; 30e-5p; 3102-5p; 3102-5p.2-5p; 3470a; 378a-5p;
451a; 466b-3p; 466i-5p; 483-5p; 486b; 494-3p; 497-5p; 574-5p; 652-5p;
671-5p; 680; 705; 709; 712-5p; 721; 877-3p; 99a-5p

Mouse heart, HL-1 cells Microarray, RT-qPCR, CLIP-
seq, sRNA-seq

Jagannathan et al., 2015

142-5p; 142-3p; 146; 150a Rat hippocampus, rat
astrocytes

RT-qPCR Wang et al., 2015a

Has-mit-miR-1; Has-mit-miR-2; Has-mit-miR-3; Has-mit-miR-4; Has-mit-
miR-5; Has-mit-miR-6

Human skeletal muscle
myoblasts

Northern blot, RT-qPCR Shinde and Bhadra, 2015

pre-miR-338 Rat SCG neurons qRT-PCR, co-localisation Vargas et al., 2016
371a-5p; 1246; 664b-3p; 513b; 4271; 2392; 4462; 1290; 4449; 3934-
5p1268a

TSCCs miRNA microarray, RT-qPCR Fan et al., 2019
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mechanisms of miRNAs transport into the mitochondria have
been proposed. As shown in Figure 8, the potential players are
AGO2, processing bodies (P-bodies), polynucleotide
phosphorylase (PNPase) and voltage-gated ion channels
(VDAC). AGO2 has been proposed as an important factor in
the subcellular localization of miRNAs. Zhang et al. (2014) have
shown an association of miR-1 with Ago2 in mitochondria and
proposed their mechanism of action. At the baseline, miR-1 is
found in the cytoplasm within RISC with 3′UTR of HDAC4.
However, during myogenesis, GW182 detaches and HDAC4
loses 5′cap and poly(A) tail, suggesting that loss of GW182
alone or in combination with changes in HDAC4 facilitates the
transport of Ago2:miR-1 into mitochondria (Figure 8A). Still, it
remains unclear if AGO2 and miRNA translocate together as a
complex (Figure 8B) or separately (Figure 8C) into the
mitochondria and by which mechanism. Another hypothesis
involves P-bodies, as they interact with mitochondria and can
regulate mRNA decay, mRNA storage, and possibly miRNA
import into different cellular compartments (Huang et al., 2011;
Bandiera et al., 2013; Luo et al., 2018). Activation of several
pathways and phosphorylation at the Ago2 Ser387 site has been
shown to separate the Ago2/miRNA complex from the RISC and
activate its intake into the P-body (Huang et al., 2011; McKenzie
et al., 2016) (Figure 8D). As GW182 is also a P-body subunit
(Liu et al., 2005), it might still have significance for the Ago2-
miRNA import. PNPase is another candidate, as it has already
been postulated to recognize specific structures of the
housekeeping ncRNAs and help RNA fold properly to migrate
through the mitochondrial membranes and return to its original
conformation when they arrive in the mitochondrial matrix
Frontiers in Genetics | www.frontiersin.org 14
(Wang et al., 2010; Wang et al., 2012a) (Figure 8E). Several
pre-miRNAs share the specific stem-loop structure that PNPase
could recognize and enable import (Wang et al., 2010; Barrey
et al., 2011; Lin et al., 2012). PNPase levels were reported to affect
mitomiR-378 mitochondr i a l l o ca l i z a t i on and co-
immunoprecipitation showed Ago2 association with PNPase,
suggesting that PNPase can bind to the miRNA within the
complex with Ago2 (Shepherd et al., 2017). Transport across
mitochondrial membranes could occur via TOM/TIM
complexes (Figure 8F). Still, additional studies are needed to
prove whether and how Ago2 can go through such small pores,
even if facilitated by PNPase. Finally, it has been demonstrated
that VDAC, the most abundant outer mitochondrial membrane
protein in plants, could help transport of tRNAs across the outer
mitochondrial membrane in plant cells (Salinas et al., 2006)
(Figure 8G). This mechanism is yet to be tested in the
animal systems.

Although many have been detected, very few mitomiRs were
functionally described to impact mitochondria (Baradan et al.,
2017). Das et al. (2012) found miR-181c, Ago2, and COX1 in
mitochondrial co-immunoprecipitate, suggesting that mature
miR-181c could translocate to mitochondria and together with
Ago2 repress the translation of this mitochondrial transcript.
Overexpression of miR-181c seems to lead to a loss of COX1 and
an increase COX2 and COX3, resulting in complex IV
remodeling. miR-378 has been proposed to bind ATP6 in
mitochondria in the presence of Ago2 and FXR1, leading to a
decrease of ATP6 in mouse type 1 diabetic heart (Jagannathan
et al., 2015). miR-1, specifically induced during myogenesis, is
able to promote translation of COX1 and ND1 within Ago2-
miRNA complex in mitochondria, while, on the contrary,
suppressing its target transcripts in the cytosol (Zhang et al.,
2014). However, the binding of miR-1 to mitochondrial
transcripts has been suggested only by Ago2 CLIP
experiments, and to date, miR‐1 is the only example of this
non-canonical mitomiR function. Nevertheless, as many
mitochondrial diseases are caused by defects in mitochondrial
translation (Pearce et al., 2013), the upregulation of
mitochondrial translation via miRNAs may be a new
therapeutic route for these diseases which currently have no
cure and few treatment options. Finally, a recent report reveals
the role of mitomiRs in mitochondrial transcriptional regulation.
mitomiR-2392, together with Ago2, was reported to recognize
target sequences in the H-strand and partially inhibit
polycistronic mtDNA transcription in a tongue squamous
cell carcinoma (TSCC) cells, leading to downregulation of
oxidative phosphorylation and upregulation of glycolysis (Fan
et al., 2019).

To summarize, the identification of a miRNA inside
mitochondria has, without a doubt, raised the interest in
studying mitomiRs. However, mitomiRs are far from being
well recognized. It is initially crucial to prevent any
contamination during mitochondrial/mitoplast isolation to
certain their mitochondrial localization. Furthermore, the
mechanisms of their import, including interaction factors and
TABLE 4 | miRNA biogenesis and RISC proteins detected in mitochondria.

Protein Tissue Method of detection Reference

DICER Rat hippocampus Western blot,
immunoprecipitation

Wang et al.,
2015a

Rat total brain, SCG
neurons

Western blot,
immunostaining

Vargas et al.,
2016

AGO2 Mouse liver Western blot Bian et al., 2010
HeLa cells Western blot,

immunostaining,
immunoprecipitation

Bandiera et al.,
2011

Rat cardiac myocytes Immunoprecipitation Das et al., 2012
HeLa cells Immunostaining Sripada et al.,

2012
C2C12 cells Western blot,

immunoprecipitation
Zhang et al.,
2014

143B and 206 r° cells Western blot Dasgupta et al.,
2015

Mouse cardiomyocytes,
HL-1 cells

Western blot,
immunoprecipitation

Jagannathan
et al., 2015

Rat hippocampus Western blot,
immunoprecipitation

Wang et al.,
2015a

TSCC Western blot Fan et al., 2019
AGO3 HEK293 cells Immunostaining Sripada et al.,

2012
FXR1 Mouse cardiomyocytes Western blot,

immunoprecipitation
Jagannathan
et al., 2015
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important sequence features, and functions in mitochondria are
yet to be elucidated. One should be aware that mitomiRs
reported across various cell types and species show a very poor
overlap. This could reflect species and cell type-specific
expression of mitomiRs (Geiger and Dalgaard, 2017). On the
other hand, such low reproducibility raises urgent questions
regarding the techniques used in the published studies
(Vendramin et al., 2017). Although several hypotheses
concerning miRNA import into mitochondria have been
proposed, it remains without convincing experimental
validation. Finally, mitomiRs mode of action in mitochondria
is largely enigmatic. On the one hand, only AGO2 from RISC has
Frontiers in Genetics | www.frontiersin.org 15
been proposed to reside in the mitochondria and on the other
hand, mitochondrial mRNAs contain no or very small 3′ UTRs,
questioning if they can function as canonical miRNAs.
LONG NON-CODING RNAS

The number of lncRNA genes in mammals varies broadly between
different sources, from less than 20,000 to more than 100,000 in
humans (Zhao et al., 2016; Kopp andMendell, 2018). According to
noncode.org, they are encompassing ∼144 000 loci in humans
(Zhao et al., 2016). Intriguingly, although nucleus-enriched,
FIGURE 8 | Proposed import mechanisms of miRNAs to mammalian mitochondria. A detachment of AGO2 and miRNA from RISC or just GW182 due to AGO2
phosphorylation or some other signal activation (A) could promote their translocation together (B) or separately (C) into the mitochondria. This process could be
stimulated by P-bodies (D). Translocation across mitochondrial membranes is unknown but suggested to be promoted by PNPase (E) and occur within TOM/TIM
complexes (F). Alternatively, miRNAs could rely on VDAC (G) at the OMM, as proposed for tRNAs in plants. OMM, outer mitochondrial membrane; IMS,
intermembrane space; IMM, inner mitochondrial membrane; TOM/TIM, translocases of OMM/IMM; VDAC, voltage-gated ion channels.
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lncRNAs have been observed in different cell compartments,
including mitochondria (Dong et al., 2017). Their biological
activities are highly influenced by their localization in the cell
(Mercer and Mattick, 2013; Fatica and Bozzoni, 2014). lncRNAs
have been suggested to regulate cellular biology via transcriptional
regulation, organization of nuclear domains, and bindings to
proteins or other RNAs (Ulitsky and Bartel, 2013; Kopp and
Mendell, 2018). It is therefore not surprising that their disruption
has been associated with different diseases (Briggs et al., 2015;
Huarte, 2015; Uchida and Dimmeler, 2015).

lncRNAs can be functionally classified into those that act in
cis, and those that act in trans (Kopp and Mendell, 2018). In cis,
the lncRNA locus can regulate chromatin or gene expression of
nearbye genes in at least three potential mechanisms: (1) DNA
elements within the lncRNA promoter or locus carry the
regulatory function, which is not related to the lncRNA or its
production; (2) the act of transcription and/or splicing of the
lncRNA affects nearby genes, irrespective of the transcribed
lncRNA sequence; and (3) the lncRNA transcript alone affects
the nearby genes, most commonly leading to the establishment
of repressive or activating chromatin states. Some lncRNAs
function in trans throughout the cell in, again, at least three
potential mechanisms: (1) lncRNAs affect chromatin states and
gene expression of distant genetic regions, (2) lncRNAs take part
in the nuclear structure and organization (for example, as parts
of speckles and paraspeckles), and (3) lncRNAs interact with
proteins and/or other RNA molecules and modulate their
expression and function (Lee, 2012; Rinn and Chang, 2012).
Moreover, some transcripts initially annotated as lncRNAs are
not non-coding, but actually encoding for biologically active
micropeptides (Anderson et al., 2015; Matsumoto et al., 2017;
Kopp and Mendell, 2018).

Over twenty lncRNAs have been described so far to affect the
mitochondrial biology directly or indirectly. Some act in the
cytosol, by regulating mitochondria-associated genes, often in
interaction with miRNA, thus creating a complex mRNA-
ncRNA regulation network. Other nuclear-encoded lncRNAs
have been described to localize and act in mitochondria. As their
transport mechanism into mitochondria is unknown their
presence remains questionable. Finally, several lncRNAs have
been discovered to be transcribed from mtDNA. These two latter
mitochondria-localized, but origin-different lncRNAs could be
refered to as nuclear-transported mitochondria-associated
lncRNAs (ntmtlncRNAs) and mitochondria-encoded lncRNAs
(mtlncRNAs) (Zhao et al., 2018).
Cytoplasmic lncRNAs With Impact on
Mitochondria
Several lncRNAs, some previously well described in the non-
mitochondrial function, have been associated with mitochondrial
metabolism. As in the case of miRNAs, these lncRNAs were
proposed to impact a variety of mitochondrial functions by
directly targeting or indirectly influencing mitochondrial-related
genes/transcripts/proteins. It should be noted that most of these
studies report an indirect effect of lncRNAs perturbations on
mitochondria function. Besides, most of these lncRNAs were
Frontiers in Genetics | www.frontiersin.org 16
reported in the context of complex systems such as cancer.
Nevertheless, they could present possible treatment strategies (De
Paepe et al., 2018). A summary of these findings is given inTable 5,
with several examples given below.

Cerox1 (cytoplasmic endogenous regulator of oxidative
phosphorylation 1) has been described as the first direct lncRNA
modulator of OXPHOS. It has been reported to positively regulate
the levels of at least 12 complex I transcripts in miRNA-dependent
fashion, by binding miR-488-3p and blocking its post-
transcriptional repression of these transcripts and enabling
translation. Cerox1 knockdown was shown to decrease the
enzymatic activities of complex I and IV. Accordingly, its
overexpression was shown to increase their enzymatic activities
and halve the cellular oxidative stress (Sirey et al., 2019).

Long et al. (2016) havedescribedTug1 as a regulator ofPGC-1a
transcription in diabetic nephropathy (DN). Tug1-binding site was
identified upstream of the Ppargc1a promoter region. Tug1
interaction with this region recruited PGC-1a to promote its own
gene transcription. Tug1 expression was significantly repressed in
the podocytes of diabetic mice and its overexpression lead to
improved mitochondrial bioenergetics (Long et al., 2016).

Li et al. (2017) proposed the pro-oncogenic role of lncRNA
UCA1 in bladder tumors. UCA1 is supposed to regulate
mitochondrial function through upregulating ARL2, a direct
target of miR-195. In this way, it inhibits the miR-195 signaling
pathway, leading to a tumor growth (Li et al., 2017).

Nuclear-Transported Mitochondria-
Associated lncRNAs (ntmtlncRNAs)
Several nuclear-encoded lncRNAs have been reported in
mitochondria and proposed to regulate their biology
TABLE 5 | Nuclear-encoded lncRNAs affecting mitochondria-related genes.

lncRNA Target Reference

AK055347 Cyp450, ATP synthase,
MSS51

Chen G. Y. et al., 2016

ANRIL PARP, Bcl-2 Zhu et al., 2015; Liu B.
et al., 2016

CARL PHB2 Wang et al., 2014
BATE1 hnRNPU Alvarez-Dominguez et al.,

2015
CCAT2 GLS Redis et al., 2016
Cerox miR-488-3p Sirey et al., 2019
ENSMUST00000136025 BIM Chen X. et al., 2016
FAL1 DRP1 Liu et al., 2019
GAS5 BAX, BAK Gao et al., 2015
HOTAIR MICU1, UQCRB Kong et al., 2015; Zheng

et al., 2015
H19 VDAC1 Li et al., 2016
HOTTIP GLS Ge et al., 2015
MEG3 Bcl-2 Wang et al., 2015b; Liu B.

et al., 2016
MPRL miR-483-5p Tian et al., 2019
Pvt1 c-Myc, Lipe, Cpt1a Alessio et al., 2019
Tug1 PGC1-a Long et al., 2016
UCA1 ARL2, miR-16, GLS Li et al., 2015; Li et al.,

2017
UIHTC PGC1-a Zhang et al., 2018
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(Vendramin et al., 2017; Zhao et al., 2018). However, due to a
very limited number of publications and unresolved import
mechanism, the presence and role of these lncRNAs are yet to
be confirmed.

SAMMSON is predominantly expressed in aggressive
melanomas, where it was described as a promoter of cell
growth (Leucci et al., 2016; Vendramin et al., 2018). It has
been proposed to bind to CARF and promote its binding to
p32 in the cytosol (Vendramin et al., 2018). p32 is a
mitochondrial and cytosolic protein that is required for the
maturation of mitochondrial rRNAs (Wu H. et al., 2013), but
also described as an important player in tumor metabolism
(Fogal et al., 2010). Its interaction with CARF via SAMMSON
promotes its mitochondrial targeting, where it increases protein
synthesis, leading to an increased tumor cell growth (Vendramin
et al., 2018). Knockdown of SAMMSON was shown to impair the
p32 targeting to the mitochondria, resulting in mitochondrial
protein synthesis defects and increased apoptosis, which could be
of therapeutical potential (Leucci et al., 2016). As a fraction of
SAMMSON was found to co-localize and co-purify with
mitochondria, Leucci et al. (2016) proposed that it is
accompanying p32 to the mitochondria.

The steroid receptor RNA activator (SRA) is an important
coactivator of nuclear hormone receptors and a target for several
RBPs, namely SHARP and SLIRP (Colley et al., 2008). By
interaction with SRA, SHARP represses SRA-augmented
estrogen-induced transactivation (Shi et al., 2001). SLIRP binds
to the complex of SRA and SHARP and interferes with the
repressing activity of SHARP. However, SLIRP is predominantly
localized to the mitochondria (Colley et al., 2008; Pagliarini et al.,
2008), where it regulates the expression, processing, and stability
of mRNAs (Baughman et al., 2009; Dong et al., 2017). SRA and
SLIRP were found in mitochondria, but their import and roles
are yet to be explained (Dong et al., 2017).

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is one of the most-studied lncRNAs, mostly
associated with cancer and metastasis (Wu et al., 2015; Sun
and Li, 2019). Recently, Zhao et al. (2019) discovered that
MALAT1, although normally enriched in the nucleus, to be
also enriched in the mitochondria collected from HepG2 cells.
MALAT1-deficient HepG2 cells produced less ATP and had
impaired cell invasion, suggesting a role of this lncRNA in the
mitochondrial metabolism (Zhao et al., 2019).

Mitochondria-Encoded lncRNAs
(mtlncRNAs)
Sets of lncRNAs have been reported to be transcribed from the
mtDNA (Figure 2). Surprisingly, it has been noted that some of
these lncRNAs seem to operate in the nucleus. However, their
trafficking raises questions far beyond the current knowledge
(Dietrich et al., 2015; Vendramin et al., 2017). Up to this date, the
existence and functional relevance of these lncRNAs are still
debatable. Mitochondria-encoded lncRNAs are divided into
three categories:

1. Simple antisense mitochondrial DNA-encoded lncRNAs
Frontiers in Genetics | www.frontiersin.org 17
Antisense transcripts arising from the ND4 and ND6 loci
were initially detected in cDNA libraries of mice mitochondria,
but Northern blot failed to confirm their presence (Lung et al.,
2006). Later, strand-specific RNA-seq of purifiedmitochondria
identified lncND5, lncND6, and lncCytb as antisense transcripts
(Mercer et al., 2011). Rackham et al. (2011) confirmed existence
of these transcripts by RNA-seq and RT-qPCR, additionally
revealing that they are 58%, 34% and 14% as abundant as their
mRNA counterparts, respectively. These antisense RNAs create
RNA-RNA duplexes with their complementary mRNAs,
suggesting their role in mRNAs expression and stability
(Rackham et al., 2011). Interestingly, Zhao et al. (2019)
discovered that lncCytB is aberrantly transported to the
nucleus in hepatoma HepG2 cells as compared with normal
hepaticHL7702 cells, suggesting a new function of this lncRNA
as a mitochondria-nuclear communicator in cancer.
Furthermore, Gao et al. (2018) discovered within the PacBio
full-length transcriptome dataset the lncRNA MDL1, which
covers the tRNAPro antisense gene and the entireD-loop region,
and its antisense transcriptMDL1AS.

2. Chimeric mitochondrial DNA-encoded lncRNAs
The first member of this class was discovered in mouse

cells, comprised of the 16S rRNA linked to a 121 nucleotide
5′-leader sequence deriving from its complementary strand
(Villegas et al., 2000). Afterward, similar transcript, called
sense mitochondrial ncRNA (SncmtRNA), was identified in
humans, and in this case, the mitochondrial 16S rRNA is
linked to an 815 nucleotide 5′-leader sequence from its
complementary strand (Villegas et al., 2007). SncmtRNA
forms an 820 bp, double-stranded structure with a 40
nucleotide loop (Dietrich et al., 2015). Interestingly,
SncmtRNA was only detected in the proliferating tumor but
not in resting cells, suggesting that it might serve as a marker
of cell proliferation (Villegas et al., 2007). Later, two antisense
lncRNAs, called ASncmtRNA-1 and ASncmtRNA-2 were
discovered. Here, the antisense mitochondrial 16S rRNA is
linked to a 310 or 545 nucleotide 5′-leader sequence deriving
from the complementary sense strand (Burzio et al., 2009).
These two transcripts also form distinct double-stranded
structures with a nucleotide loop. In contrast to SncmtRNA,
they were detected mainly in normal cells and were much less
expressed in proliferating tumor cells, suggesting their role as
tumor suppressors (Burzio et al., 2009). Later, they were
reported to be present in the nucleus associated with
heterochromatin (Landerer et al., 2011). However, more
data is needed to support this claim. It has been postulated
that ASncmtRNA-2 gets transported into the nucleus, where
it presents a precursor of two miRNAs (hsamiR-4485 and
hsa-miR-1973), which could potentially regulate survivin, an
inhibitor of apoptosis (Vidaurre et al., 2014; Bianchessi et al.,
2015). Indeed, knockdown of ASncmtRNAs promoted
apoptotic cell death due to the survivin downregulation at
the translational level (Vidaurre et al., 2014).

3. Putative mitochondrial DNA-encoded lncRNAs
These lncRNAs have been identified in the heart disease

studies (Kumarswamy et al., 2014; Yang et al., 2014; Dietrich
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et al., 2015). RNA-seq revealed a high relative abundance
(over 70%) of these transcripts in the total lncRNA
population from patients with a severe heart failure (Yang
et al., 2014). The most significant lncRNA has been named
long intergenic noncoding RNA predicting CARdiac
remodeling (LIPCAR). Aligning the LIPCAR sequence to
the human mtDNA revealed that the 5′ half aligns to the
lncCytb, while the 3′ half aligns to the antisense region of
COX2 (Dorn, 2014). As its circulating levels were increased in
the late stages of left ventricular remodeling and patients with
chronic heart failure, LIPCAR could be used as a prognostic
biomarker (Kumarswamy et al., 2014; Dietrich et al., 2015).

To conclude, lncRNAs are slowly but surely drawing
attention with their complex mechanisms behind gene
regulation. However, the physiological relevance of lncRNAs in
mitochondria is still enigmatic. The crucial issue is the
investigation of transport of the nuclear- or mtDNA-encoded
lncRNAs to mitochondria and even to the nucleus.
Unfortunately, there is no published data on the topic so far.
Finally, the questions of specific lncRNAs mechanisms of gene
regulation remain to be solved.

LNCRNA-ENCODED MICROPEPTIDES

Micropeptides are a class of small peptides encoded by a sORFs,
without N-terminal signaling sequence and as such are released
into cytoplasm immediately after translation. Due to their sORF
that escapes automatic gene annotation, they tend to be
overlooked and therefore misannotated as non-coding. Indeed,
lncRNAs and TUFs (transcripts of unknown function) represent
the greatest source for sORFs (Yeasmin et al., 2018). Although
numerous ribosome profiling studies have reported substantial
ribosome occupancy of the lncRNA transcripts, the MS and the
proteogenomic approaches have confirmed only a small portion
of them, numbers ranging from less than 100 to up to 1600 (van
Heesch et al., 2019). With a lack of consensus in the datasets, the
true coding potential of lncRNAs currently remains open to
speculation. Several in-depth investigations have characterized
lncRNA-derived micropeptides with important roles in the ion
channel modulation (Anderson et al., 2015), cell signaling
(Matsumoto et al., 2017) and RNA regulation (D’Lima et al.,
2017). It is important to state that the mammalian mitochondrial
proteome is surprisingly enriched in micropeptides, accounting
for 5% of its proteins (Calvo et al., 2016). In recent years, several
micropeptides within lncRNA were discovered and characterized
with a role in mitochondria, some even encoded by the mtDNA
(Kim et al., 2017a). Termed mitochondrial-derived peptides
(MDPs) (Kim et al., 2017a), these mtDNA-encoded peptides-
humanin, MOTS-c, and SHLPs were described as potential
mitochondrial bioenergetics and metabolism regulators.

Mitoregulin (MOXI, MPM) has been discovered by four
different groups recently as a muscle- and heart-enriched 56-
amino acids inner mitochondrial membrane micropeptide
encoded within LINC00116. It has a role in mitochondrial
respiratory chain supercomplexes support, fatty acids
Frontiers in Genetics | www.frontiersin.org 18
oxidation, and Ca2+ dynamics (Makarewich et al., 2018; Stein
et al., 2018; Chugunova et al., 2019; Lin et al., 2019). Lin et al.
(2019) highlighted its importance in the muscle tissue, finding it
upregulated during myogenic differentiation and knockout mice
exhibiting smaller skeletal muscle fibers, worse muscle
performance, and slower regeneration.

Humanin is a 24-amino acids micropeptide whose sORF is
embeded within the 16S rRNA of mtDNA (Yen et al., 2013). It
was initially discovered in the surviving cells of Alzheimer’s
disease brain (Hashimoto et al., 2001), suggesting its
neuroprotective and cytoprotective role that has later been
investigated and acknowledged across various diseases
(Hashimoto et al., 2001; Muzumdar et al., 2009; Bachar et al.,
2010; Oh et al., 2011; Gong et al., 2014; Kim et al., 2018). It was
shown to block apoptosis, improve insulin sensitivity, decrease
inflammation, and reduce oxidative stress during aging (Guo
et al., 2003; Muzumdar et al., 2009; Zhao et al., 2013; Sreekumar
et al., 2016). Its effects are yet to be assessed for therapeutic
purposes, especially in the treatments of diabetes and
neurodegenerative disorders.

MOTS-c (mitochondrial open reading frame of the 12S rRNA
type-c) is a 16-amino acids micropeptide with an sORF within
the 12S rRNA mtDNA and reported to act in the cytoplasm (Lee
et al., 2015). The micropeptide was found to target the
methionine-folate cycle and de novo purine biosynthesis
pathway, increase AICAR levels, and activate AMPK, by which
it increases glucose utilization, fatty acid oxidation, and changes
nucleotide metabolism. MOTS-c has been proposed as a
biomarker for metabolic function, as it correlates with markers
of insulin resistance and obesity (Du et al., 2018). In high fat diet-
induced obese mice, it prevented obesity, fat accumulation, and
hyperinsulinemia, making it a possible therapeutic target (Lee
et al., 2015).

SHLPs (small humanin-like peptides) are a group of 6
peptides discovered by an in silico approach to be encoded in
the 16S rRNA region of mtDNA in mice (Cobb et al., 2016). Each
peptide is 20-38 amino acids long, and their names were given
due to similar biological effects as Humanin. Each SHLP showed
a unique expression pattern across different tissues. Incubation
of each synthetic SHLP with cells affected cell viability,
proliferation, and apoptosis differentially, suggesting a specific
role of each. Moreover, SHLP2 and SHLP3 induced oxygen
consumption rate (OCR) and increased cellular ATP levels,
which indicated them as mitochondrial modulators (Cobb
et al., 2016). Indeed, the administration of SHLP2 to a cellular
model of macular degeneration rescued its defects in the
OXPHOS and the mtDNA copy number, and induced anti-
apoptotic effects, indicating its therapeutic potential (Nashine
et al., 2018). In addition, an intracerebral infusion of SHLP2
increased glucose uptake and suppressed hepatic glucose
production (Cobb et al., 2016). Further supporting their role as
insulin sensitizers, both SHLPs promoted pre-adipocyte
differentiation (Cobb et al., 2016). Similarly to humanin, the
circulating levels of MOTS-c and SHLP2 declined with age,
indicating that they are potential regulators of aging (Lee et al.,
Lee et al., 2015; Cobb et al., 2016).
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CONCLUDING REMARKS

Development of high-throughput OMICS techniques, especially
the next-generation sequencing, has shed new light on the non-
coding fraction of the genome. Transcription of the majority of
the eukaryotic genome generates not only mRNAs but a much
bigger fraction of different ncRNA species that show complex
structure, patterns of expression and regulation. It is now
becoming apparent that RNAs are not important for cell only
in the context of mRNAs as intermediates between DNA and
protein, but also as powerful players themselves by affecting
basically any stage of gene expression. The now expanding RNA
field highlights the importance of bioinformatics analysis in
order to predict and examine existence, evolution, structure,
and function of non-coding regions and transcripts. Focusing on
mitochondria, dozens of ncRNAs acting in the cytosol have been
described to indirectly influence mitochondrial biology, usually
by targeting mitochondria-related, nuclear-encoded transcripts.
More surprisingly, recent research indicated that the
mitochondrial transcriptome could represent a mixture of the
intrinsic transcriptome and complemented by some extrinsic
RNA, implying RNA import (Figure 1). Although dozens of
papers reported ncRNAs in mitochondria, their existence is still
under a question mark. Further research will need to identify
their interacting partners and elucidate the molecular
mechanisms behind their synthesis, transport, and function.
Housekeeping ncRNAs have been proposed to have a
mitochondrial localization even for decades, however, recent
deeper insights into the mitochondrial biology have cast a
shadow on their hypothesized role. It is clear that the re-
evaluation of their presence and especially function in
mitochondria is needed. Focusing on miRNA, they are well-
described fine-modulators of gene regulation in the cytosol. It is
not surprising that they can impact mitochondria by targeting its
transcripts in the cytosol. Additionally, recent discoveries of
mitomiRs suggest an attractive, even closer interplay of
miRNAs and mitochondria occurring in mitochondria
themselves. Yet, these findings are still a topic of many debates
and therefore should be handled with caution. On the one side,
the discovery of mitomiRs across different tissues and cell types
by different techniques promises they are more than a false-
positive finding. However, on the other side is the poor overlap
between datasets that raises doubts concerning methods used.
Focusing on lncRNAs, although they are among the least well-
understood of these transcript species, they are slowly but surely
emerging as important components of gene regulatory networks.
Although the field of lncRNAs has just started to expand,
published reports indicate that they influence mitochondria in
different ways. Moreover, mtDNA seems to encode some lncRNAs
itself. However, this field is still very fresh and further confirmation
is needed, especially in the case of mitochondria-imported lncRNAs.
Of clinical relevance, ncRNAs dysregulation has been noted in
various mitochondria-related diseases, mostly cancer. Their
association with tumorigenesis has been increasingly demonstrated.
Frontiers in Genetics | www.frontiersin.org 19
As ncRNAs often exhibit cancer-type-specific expression patterns
(Iyer et al., 2015), targeting them could prove as a very selective and
specific approach. Notably, they can be targeted by the antagomiRs or
antisense oligonucleotides (ASOs) (reviewed by Matsui and Corey,
2017). Indeed, several pre-clinical studies have already demonstrated
the therapeutic benefits of ncRNA inhibition. For example, inhibition
of SAMMSON inmelanoma xenografts suppressed the tumor growth
(Leucci et al., 2016). ASOs targeting ASncmtRNA reduced the
progression of renal adenocarcinoma and melanoma metastases in
mice (Lobos-Gonzalez et al., 2016; Borgna et al., 2017). Finally,
ncRNA-derived micropeptides, although biologically active as
peptides, are especially interesting in terms of their discovery. As
many ribosomal-profiling studies report significant ribosomal
occupancy of non-coding transcripts, it is evident that further
confirmation of these findings by mass spectrometry is needed in
order to recognize the importance of these reported translational
activities. Discoveries of mitochondrial-derived peptides and
enrichment of the mammalian mitochondrial proteome in
micropeptides suggest the organelle as an evolutionary playground
for small proteins, either due to still unknown localization signals or
import system or simply driven by the size or amino acid (positive
charge) composition (vanHeesch et al., 2019). This also promises that
there could be many micropeptides hidden in the non-coding region,
awaiting discovery and characterization. Of clinical interest,
discovered mitochondria-derived micropeptides have exhibited a
variety of cyto- and neuroprotective effects, and promising results
of both in vitro and in vivo studies further strengthen their therapeutic
potential. Overall, ncRNAs in mitochondria present a thought-
provoking, but unfortunately still neglected field of study. It raises
many interesting, but also challenging questions whose answers
might be of clinical importance. It may reveal some enigmatic
biological mechanisms (such as the RNA import in mitochondria)
and eventually lead to the development of new therapeutic strategies
for mitochondria-related diseases. However, before the field of
ncRNA truly expands, there are still a lot of experimental
approaches to be optimized and biological mechanisms to be
deciphered to conclude their importance for mitochondria.
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