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Although great progress has been made in treatment against hepatitis virus infection, the
prognosis of hepatocellular carcinoma (HCC) remains unsatisfied. Therefore, there is an
unmet need to explore biomarkers or prognostic models for monitoring non-viral
hepatocellular carcinoma. Accumulating evidence indicates that DNA methylation
participates in carcinogenesis of malignancies. In the present study, we analyzed 101
non-viral HCC patients from TCGA database to figure out methylation-driven genes
(MDGs) that might get involved in non-viral HCC pathogenesis using MethyMix algorithm.
Then we picked out 8 key genes out of 137 MDGs that could affect the overall survival (OS)
of both methylation and expression level. Using PCA, Uni-variate, Multi-variate, and
LASSO cox regression analyses, we confirmed the potential prognostic value of these
eight epigenetic genes. Ultimately, combined with immunohistochemistry (IHC), ROC, OS,
and GSEA analyses, fat storage-inducing transmembrane protein1 (FITM1) was identified
as a novel tumor suppressor gene in non-viral HCC and an applicable FITM1-methylation-
based signature was built in a training set and validated in a testing set. Briefly, our work
provides several potential biomarkers, especially FITM1, as well as a new method for
disease surveillance and treatment strategy development.

Keywords: methylation-driven genes, non-viral hepatocellular carcinoma, FITM1, signature, nomogram
INTRODUCTION

Hepatocellular carcinoma (HCC) is a highly malignant tumor with high mortality and brings a great
burden to social economy (Siegel et al., 2017). Chronic virus infection, commonly hepatitis B virus
(HBV) and hepatitis C virus (HCV), and long-term alcohol consumption are the major etiology of
HCC development (Braillon, 2012). Thanks for the development of vaccine and anti-virus
medication treatment, the morbidity of virus-related HCC shows a decreasing tendency.
Although viral hepatitis infection is strongly responsible for liver cancer progression, various
non-viral risk factors play important roles in promoting HCC development (Alzahrani et al., 2014).
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The epidemiological studies show that the incidence of HCC has
failed to decline over the past decades partly owing to the
increasing of HCC without virus infection. Thus, there is an
unmet need to understand the underlying molecular mechanism
of non-viral HCC. Due to the high heterogeneity and molecular
diversities (Bruix et al., 2014), the prognosis of non-viral HCC
patients is widely divergent. Therefore, an effective and accurate
model to predict the prognosis of non-viral HCC individually is
important and helpful to inform future clinical-decision making.

DNA methylation, one of the predominant forms of pre-
transcriptional modification, has been widely studied in
carcinogenesis (Noguchi et al., 1994; Chuang and Chiang,
2014). To date, great attention has been paid to investigate the
relationship between methylation-driven genes (MDGs) and
tumorigenesis (Pu et al., 2017). Recent studies have proved
that MDGs participates in various lethal diseases like lung
adenocarcinoma (Gao et al., 2018), pancreatic cancer (Gevaert
et al., 2015), renal carcinoma (Zhang et al. 2019; Wang et al.,
2020), and colon cancer (Chen et al., 2016). Meanwhile, many
studies revealed that numerous genes are abnormally
hypermethylated or hypomethylated in HCC (Hlady et al.,
2019). Therefore, whether MDGs take part in the initialization
and progression of non-viral HCC or not remains to be verified
and a comprehensive understanding of several potential targets
or biomarkers urges to be made.

Since long, methylation has been proved to negatively regulate
gene expression, and DNA methylation is accountable for multiple
cancers, including HCC (Revill et al., 2013; Hlady et al., 2019).
Recently, Sun et al. has revealed that a novel gene signature
(CTHRC1 expression, ZIC4 expression, and OTX1expression) may
be regulated by DNA hypermethylation and closely associated with
HCC throughweighted correlation network analysis (WGCNA) (Sun
et al., 2018). A 21-gene pairs signature was established to predict HCC
patients at their early stages through the C-index forward search
method (Liu et al., 2018). In addition, six MDGs, including SNHG6,
S100P, DCDC2, LIME1, FMO3, and GPR171, have been selected to
construct a predictive signature for HCC patients and the
contribution of virus infection has been highly emphasized in their
work (Li et al., 2019). Wang et al. also constructed a risk score system
consisting of BRCA1 expression, CAD expression, RBM8A
expression and CDC20 expression by using four GSE data (Wang
et al., 2019). However, a novel methylation prognostic signature for
non-viral HCC still remains undeveloped and a systematic
exploration of non-viral HCC signature is needed. To our
knowledge, the eight MDGs studied in present work has never
been recruited to be part of a score signature in HCC, indicating
that they might exert important effect on the tumorigenesis and
development of non-viral HCC specifically.

In current study, we utilized an integrative method, including
MethyMix tool, principal component analysis (PCA), nomogram
algorithm, and least absolute shrinkage and selection operator
(LASSO) regression analysis, to explore prognosis related to
MDGs in non-viral HCC and validate the efficacy of the built
methylation-related risk signature, providing a novel direction
for treatment and surveillance strategy and personalized follow-
up for non-viral HCC patients.
Frontiers in Genetics | www.frontiersin.org 2
METHODS AND MATERIALS

Data Processing and Analysis
The RNA-seq data, methylation data, and corresponding
clinicopathological information were retrieved for 101 non-viral
HCC patients from TCGA database. Clinicopathological features
for the TCGA datasets were described in Supplementary Table
S1. On the basis of the MethylMix algorithm (Gevaert, 2015;
Cedoz et al., 2018), we analyzed the correlation between gene
methylation and expression level in 121 non-viral HCC samples.
Due to the strict constraints of MethylMix algorithm, we set the
parameters as followed: Adjust P-value< 0.05; Log FC (Fold
Change) > 0 or Log FC< 0; Pearson correlation threshold< -0.3.
Then, we identified aberrant ly hypomethylated or
hypermethylated genes by constructing the b-mixed model.
Finally, according to the overall survival analysis results, we
filtered most MDGs and obtained several key genes for further
study. The mRNA expression and methylation data of non-viral
HCC provided by TCGA is open-access and the approval of a local
ethics committee is unneeded.

Gene Ontology (GO), Disease Ontology
(DO), and KEGG Pathway Enrichment
Analyses
In the present study, the clusterProfiler package (version 3.12.0)
was applied to conduct GO and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses (Yu et al.,
2012). The GO analysis includes cellular composition (CC),
molecular function (MF), and biological process (BP). Disease
ontology (DO) annotates genes based on human disease. DO is
vital annotation, translating obtained key genes to clinical
relevance. And DOSE, an R package, is capable of analyzing
semantic similarity computations of the DO terms and genes.
Therefore, DOSE enables us to figure out the closeness between
diseases and gene functions (Yu et al., 2015). To investigate the
underlying mechanism of these MDGs, 137 MDGs were
subjected to clusterProfiler and DOSE packages for GO,
KEGG, and DO analyses; and P-value < 0.05 was set as the cutoff.

Kaplan-Meier Curves of MDGs and
Methylated Sites
For the sake of studying the prognostic evaluation of MDGs, the
survival R package (version3.5.1) was used to calculate the
prognostic survival analysis of the gene expression, gene mean
methylation level and the methylated sites, performed by
integrating the clinical data and prognostic information of
non-viral HCC in TCGA. Meantime, we conducted a joint
survival analysis of gene methylation and expression levels to
further determine key genes associated with prognosis in non-
viral HCC patients.

PCA Analysis and Subgroup Analysis
To study the function of eight methylation-driven key genes in
non-viral hepatocellular carcinoma, we separated 101 non-viral
HCC patients into different subgroups by the approach of
“ConsensusClusterPlus”, an algorithm for determining clusters
February 2020 | Volume 11 | Article 99
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by the unsupervised analysis based on gene expression
(Wilkerson and Hayes, 2010). The consensus clustering tool
presents measurable and visible evidence to estimate the counts
of unsupervised classes in a dataset. The maximum evaluated k
(max K) is 9 and other parameters of ConsensusClusterPlus are
default. As a result, Subgroup 1 had 59 non-viral HCC patients
while Subgroup 2 had 41 patients. And when the data were
classified into three subgroups, there were 33, 36, and 31 patients
in Subgroup 1, 2, and 3, respectively. The R package (R v3.5.1) of
PCA analysis was adopted to explore the gene methylation
patterns in subgroups of non-viral HCC. Gene Sets
Enrichment Analysis (GSEA) was performed by GSEA 4.0.0
software to explore the specific KEGG pathways related to
distinct subgroups of non-viral HCC and the underlying
function of FITM1 (Subramanian et al., 2005). Regarding the
GSEA results, |NES|> 1 and P-value < 0.05 were considered
significant in our study.

Construction of MDGs Signature
Caret R package (Classification and Regression Training;
Version:6.0-84) can provide a wide variety of predictive models
by integrating more than 25 other relative packages and has
various unique features such as data splitting, characterizing
performance, pre-processing, parallel processing, and variable
importance (Kuhn, 2008). Due to the lack of other datasets with
integrative data of non-viral HCC patients (epigenomics,
transcriptomics, and clinical pathologic data), we stochastically
divided the 101 non-viral HCC patients into 2 sets, training set
(52 patients), and testing set (49 patients). The classification was
based on the caret R package. To confirm the prognostic value of
8 MDGs, the Uni-variate cox regression, LASSO cox regression,
and Multi-variate cox regression algorithms were performed in
the training set and a potential risk signature of non-viral HCC
was developed (Bøvelstad et al., 2007; Qiu et al., 2017; Wang
et al., 2019). The risk score for the signature (Lossos et al., 2004)
was computed using the formula:

risk   score =  o​
n

i = 1
Coefi*Xi

As the formula shown above, “X” represents the methylation
level of each methylation-driven gene in the samples; The “Coef”
means corresponding Multi-variate cox regression coefficient of
each factor in the prognostic model. The value of “n” in our study
is smaller than 8. On the other hand, a nomogram of non-viral
HCC patients was constructed based upon the results of the
LASSO cox regression analysis using rms package (version
3.5.1). The prognostic risk value of each patient was calculated
using the formula, and the median of the score value was cut off.
The non-viral HCC patients were classified into high and low risk
groups. Then, we conducted ROC curve and Kaplan-Meier
survival curve analyses to validate the signature in both the
training set and testing set. Log-rank test was applied to figure
out the difference of overall survival rate between the high-risk and
low-risk groups. “P < 0.05” was considered statistically significant.
Frontiers in Genetics | www.frontiersin.org 3
RESULTS

Identification and Functional Analyses
of MDGs in Non-Viral Hepatocellular
Carcinoma
The flow diagram for present study was exhibited in Figure 1.
After downloading the comprehensive data of 101 non-viral
hepatocellular carcinoma patients, the MethylMix algorithm
mentioned above was adopted to figure out 137 MDGs in non-
viral HCC (Figure 2A and Table S2). To elucidate the potential
function of these genes, GO, KEGG, and DO analyses were
carried out. As shown in Figure 2B, the GO top significant terms
were various, and some of them were as followed: “lipid
localization”, “cholesterol homeostasis”, “lipid homeostasis”,
“sterol homeostasis”, “lipid storage regulation of lipoprotein”,
“lipoprotein particle”, and “protein-lipid complex”, which
indicated that the aberrant methylation level of 137 MDGs
may cause abnormal lipid metabolism, one of the most pivotal
function of normal liver. In addition, KEGG analysis revealed
that these 137 MDGs were significantly enriched in pathways in
“Glutathione metabolism”, “Aldosterone-regulated sodium
reabsorption”, “Fat digestion and absorption”, and “Cholesterol
metabolism”, consistent with the result of GO analysis. “p53
signaling pathway”, “HIF-1 signaling pathway”, and “EGFR
tyrosine kinase inhibitor resistance” were also enriched,
suggesting the potential regulating signaling pathway of non-
viral HCC by MDGs (Figure 2C). In addition, for the sake of
investigating the relationship between137 MDGs and human
diseases. DO analysis was applied. As shown in Figure 2D, these
genes might be involved in the following DO terms:
“lipodystrophy”, “fatty liver disease”, “liver cirrhosis”,
“obesity”, and so on. Complete data of the enrichment analyses
above were displayed in Tables S3, S4, S5. Taken together, these
results indicate that 137 MDGs might participate in the
carcinogenesis of non-viral HCC through the regulation of
liver lipid metabolism and chronic liver injury.

Screening and Verifying Survival-Related
Key Genes Among 137 MDGs
Figuring out some oncogenes, which act importantly on
hepatocarcinogenesis as well as the progression of non-viral
HCC, is of great significance. Therefore, we performed not
only the overall survival analysis of gene expression but also
the joint survival analysis, which analyzes the OS combining the
level of expression and corresponding methylation together,
across 137 genes in 101 non-viral HCC patients. Thereafter,
discarding those results without significant difference (P-value >
0.05) from both expression OS and joint OS, eight key genes were
selected for further study: FITM1, FES, ABCG5, GPX7, FURIN,
BSCL2, B3GALNT1, and GPAM. As shown in Figure 3A, low
expression of FITM1, ABCG5, BSCL2, and GPAM in non-viral
HCC tumor specimens generally predicted worse survival status.
However, the high expression of FES, GPX7, FURIN, and
B3GALNT1 leaded to shorter survival time. On the other
hand, as presented in Figure 3B, the hypomethylation and
high expression of FES, GPX7, FURIN, and B3GALNT1 were
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related to poorer overall survival while the adverse results could
be obtained from the survival curves of FITM1, ABCG5, BSCL2,
and GPAM. In all, these results reveal that the methylation and
expression level of these epigenetic genes could affect the
prognosis of non-viral HCC patients.

Abnormal DNA Methylation of Eight Key
Genes in Tumor Tissues Negatively
Regulated Gene Expression
To obtain a deeper understanding of DNA methylation and
mRNA expression of eight key driver genes, correlation analyses
between methylation level and gene expression were employed.
According to Figure 4A, along with the increase of the
methylation degree, the key gene expression showed a
downward trend, suggesting the negative correlation between
DNA methylation and gene expression. Notably, we found that
the aberrant methylation degree was much higher in tumor
rather than normal tissues. Significantly, only 1 methylation
curve of FITM1 or GPAM was gathered, indicating that the
hypermethylated status of FITM1 and GPAM were centralized
and common in tumor samples (Figure 4B). And FES, ABCG5,
GPX7, FURIN, BSCL2, and B3GALNT1 had 2 methylation
curves and the comparison of methylation level in tumors and
normal tissues was ambiguous, driving us to elucidate the gene
Frontiers in Genetics | www.frontiersin.org 4
methylation and expression level between malignant samples
and normal samples in non-viral HCC patients.

FITM1 Was Significantly Down-Regulated
in Non-Viral HCC and Was a Potential
Tumor Suppressor Gene
To illustrate the clear distribution and different expression of eight
key genes in the normal and tumor samples of non-viral HCC, a
thermal map was performed based on the gene methylation and
corresponding expression. As vividly shown in Figure 5A, we
found that FITM1, BSCL2, B3GALNT1, and GPX7 also had
significantly different expression in comparison tumors with
normal specimens. However, only FITM1 expression was
significantly down-regulated in tumor specimens (Log FC =
-1.74, P-value = 8.75E-09) while other three were over-
expressed. Moreover, the FITM1 methylation was highly up-
regulated in tumor specimens (Log FC = 0.49, P-value = 2.00E-
09). This significantly negative correlation between methylation
and expression in tumor as well as normal tissues triggered us to
further explore the specific function of FITM1. For the sake of
identifying the most worthwhile MDGs related to prognosis of
non-viral HCC, we explored the characteristics of CpGmethylated
sites of FITM1. The methylation degree of cg20306574 methylated
sites was negatively correlative with FITM1 expression level
FIGURE 1 | The flowchart of this study.
February 2020 | Volume 11 | Article 99

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Signature Predicts Prognosis of Non-Viral HCC
(Figure 5B). Besides, high cg20306574 methylation predicted
poorer prognosis in 101 non-viral HCC patients (Figure 5C).
To investigate the anti-tumor mechanism of FITM1, the GSEA
analysis was applied to analyze the methylation data and the
Frontiers in Genetics | www.frontiersin.org 5
mRNA expression data of 101 non-viral HCC patients in TCGA.
As displayed in Figure 5D, we figured out that low FITM1
expression could activate cancer-related pathway. In addition,
several metabolism-related signaling pathways might be able to
FIGURE 2 | Functional exploration of MDGs. (A) Heatmap of 137 aberrant MDGs in non-viral hepatocellular carcinoma. The green color stands for hypomethylation
while the red shows hypermethylation. (B) Gene Ontology (GO) analysis of 137 MDGs. Only top 10 terms of BP, CC, and MF were shown and the complete data
were in Table S3. (C) KEGG pathway analysis of 137 MDGs. The color of curves represents different KEGG terms; The left semi-circle color means different gene
expression and the corresponding genes are labeled. The P-value of all terms is < 0.05. (D) Disease Ontology (DO) analysis of 137 MDGs. The inner circle is
composed of different genes and their expression (LogFC) while the outer circle consists of different DO terms. The P-value of shown DO terms is < 0.05. Only liver-
related terms were exhibited and the whole results were in Table S5.
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account for the anti-tumors effect of FITM1, indicating the
underlying function of FITM1 in non-viral HCC (Table S6).
Regarding the gene methylation level of FITM1, one of the
enriched results pointed toward the NOTCH signaling pathway.
Moreover, several lipid-related metabolism pathways were also
enclosed (Table S7), partly consistent with the GO results of 137
MDGs in Figure 2B. As for the immunohistochemistry results
(IHC) of FITM1 obtained from the Human Protein Atlas database
(https://www.proteinatlas.org) (Uhlen et al., 2015), Figure 5F
vividly shows that FITM1 expression was much higher in
normal liver tissues rather than HCC tissues. Briefly, these
aforementioned results indicate that FITM1 is closely related to
non-viral HCC.
Frontiers in Genetics | www.frontiersin.org 6
ConcensusCluster Analysis Revealed That
Cluster 1 Might Regulate the NOTCH and
TGF-Beta Signaling Pathways
Considering that the eight survival-related MDGs might exert its
regulatory effect on non-viral HCC synergistically, we performed
the correlation and subgroup analysis among the methylation
level of eight key genes. As shown in Figure 6A, the methylation
degrees of eight key genes were positively relative to each other,
especially FITM1, BSCL2, and FES, which were significantly
correlated with other seven key genes respectively. Furthermore,
ConcensusCluster analysis was utilized to classify the tumor
samples based upon the methylation level similarity of the
eight MDGs. As revealed in Figure 6B and Figure S1A, k = 2
FIGURE 3 | Survival analysis of 137 genes and selection of 8 methylation-driven key genes. (A) 137 genes were analyzed by survival analysis in 101 non-viral HCC
specimens and only eight key genes were obtained according to the specific cut-off (P-value < 0.05). (B) Joint survival analysis of 137 oncogenes. we performed
survival curve analysis based on the combination of methylation level and expression level and the prognosis-related gene were selected (P-value < 0.05).
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was selected as a reasonable choice with cluster stability rising
from k = 2 to 10 in the non-viral HCC dataset. However, the
CDF curve revealed that k = 3 was also preferable (Figure 6C).
Therefore, we used PCA analysis to investigate the characteristic
of methylation profile based on the classification of both k = 2
and k = 3 in 101 non-viral HCC patients. The results exhibited an
evident difference between 101 non-viral HCC patients in both
the 2D and 3D plotting of PCA results according to the two-
Frontiers in Genetics | www.frontiersin.org 7
subgroup classification (Figures 6D, E). And the two-subgroup
classification could also well distinct tumor samples from normal
samples (Figures S1D, E). Meantime, as illustrated in Figures
S1B, C, 3-subgroup classification of 101 non-viral HCC patients
was also capable of classifying non-viral HCC patients while the
overlaid part was more than two-subgroup classification
(Figures S1B, C). In all, the classification built on the
methylation level of eight key genes might be more
FIGURE 4 | The relationship between eight genes expression and methylation level in non-viral HCC patients. (A) The correlation between gene expression and
methylation. (B) MethylMix model of eight DNA methylation-driven key genes. The abscissa is the methylation degree and the ordinate is the number of sample. The
histogram exhibits the distribution of methylation in 101 non-viral HCC samples and the short black bar above the histogram is the methylation distribution of 20
normal tissues. The classification of different methylation degree of the malignancies relative to the normal tissues can be distinctly observed from the figures.
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distinguishable when the non-viral HCC patients were divided
into two subgroups. In addition, the GSEA analysis was further
conducted to explore the hallmark of two-subgroup classification.
As presented in Figure 6F, we found that Cluster 1 was closely
related to NOTCH and TGF-beta signaling pathways, both playing
vital roles in malignancies. In all, we demonstrate that the
carcinogenesis of patients in Cluster 1, rather than Cluster 2,
might be involved in NOTCH and TGF-beta signaling pathways.
Frontiers in Genetics | www.frontiersin.org 8
A Risk Signature Was Established in
Training Set Using Three Selected Key
Genes Related to DNA Methylation
and Prognosis
In order to establish and validate a risk signature for non-viral
HCC patients, Caret R package (Version:6.0-84) were conducted
to randomly allocate 101 non-viral HCC patients into two sets:
training set and testing set. As a result, 52 non-viral HCC
FIGURE 5 | Function and mechanism of FITM1 in non-viral HCC. (A) The thermal map of eight gene expression levels and eight gene methylation levels. The
differential analysis between 20 normal samples and 101 tumor samples were conducted by Limma R package (version: 3.42.0). “*”, “**”, and “***” stands for “P-
value < 0.05”, “P-value < 0.01”, and “P-value < 0.001”, respectively. The thermal map was drawn with the pheatmap R package (version: 1.0.12) and the row scale
(Z-score) was chosen to better visualize the related data. (B) The correlation of FITM1-related CpG methylated site and its gene expression. (C) The survival analysis
of FITM1-related CpG methylation. (D) The GSEA result based on FITM1 expression level in 101 non-viral HCC patients. (E) The GSEA result based on FITM1
methylation level in 101 non-viral HCC patients. (F) The IHC of FITM1 retrieved from the Human Protein Atlas database (https://www.proteinatlas.org). Scale
bars:100um.
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patients were included in the training set while 49 patients in the
testing set. To better predict the clinical outcomes of non-viral
HCC with the eight MDGs, we used the Uni-variate, LASSO, and
Multi-variate cox regression algorithm to build the risk signature
according to the minimum criteria. As shown in Figure 7A, four
out of eight key genes were chosen as risk factors using Uni-
variate analysis (P-value< 0.05). In order to further confirm the
Frontiers in Genetics | www.frontiersin.org 9
result of Uni-variate analysis, these 4 genes were imported into
the LASSO algorithm. Figures 7B, C show that both 4 or 3 key
genes were reliable to construct a risk signature. Finally, Multi-
variate analysis was used to construct the risk signature and only
three risk factors were significantly chosen (Figure 7D). The
coefficients of risk factors were retrieved from the Multi-variate
analysis and the formula was as followed: risk score = 4.37 *
FIGURE 6 | Subgroup analysis developed on the methylation level of eight key MDGs. (A) The methylation relationship among eight key genes. The bigger the circle
size, the more correlative two genes are. (B) Consensus matrix of two subgroups (k = 2). The k = 3 to 10 of the consensus matrix were shown in Figure S1. This
study distinctly separated the whole methylation data into two subgroups: cluster 1 and cluster 2. (C) Classification of consensus clusters by 8 key MDGs.
Consensus clustering cumulative distribution function (CDF) was set from k = 2 to 10. (D) Principal component analysis (PCA) of the total methylation level in 101
non-viral HCC patients based upon the consensus clustering. Non-viral HCC patients in different clusters are noted with different colors. (E) The 3D PCA of two
subgroups according to 101 non-viral HCC patients. The 3D PCA of three subgroups were displayed in Figure S1. (F) The significant GSEA analysis results of
cluster 1. The full GSEA data of clusters were included in Table S8.
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methylation of ABCG5- 9.31 * methylation of FES + 9.61 *
methylation of FITM1 (Figure 7E). Notably, we found that
FITM1 was also recruited in the risk signature (Figure 7E),
indicating the pivotal role of FITM1 in non-viral HCC. To
further explore a driver genes model that could serve as an
independent prognosticator for non-viral HCC patients, a
visualized and applicable nomogram was built based on three
key genes selected by cox regression analyses applied above
(Figure 7F).
Frontiers in Genetics | www.frontiersin.org 10
Prognostic Risk Scores Exhibited Strong
Predictive Power in the Prognosis of Non-
Viral HCC Patients in Both Training Set
and Testing Set
Tobetterunderstand the functionof this risk signature,Figures 8A,
D were plotted and it could show the explicit relationship between
the risk score, survival status, and methylation level in training set
and testing set. Not only did the high-risk group in training set have
significantly worse OS than the low risk group, the high-risk group
FIGURE 7 | The construction of the score model in training set. (A) Uni-variate analysis of eight key MDGs in the training set of non-viral HCC patients. The genes in
red (P-value < 0.05) were selected and imported into the LASSO algorithm to conduct risk score model for non-viral HCC patients. (B, C) LASSO analysis of four
selected genes in training set. (D) Multi-variate analysis of four selected genes in training set and only 3 out of 4 were significantly imported into the score model. (E)
Our risk score formula obtained from discovery cohort was as followed: risk score = 4.37 * methylation of ABCG5- 9.31 * methylation of FES + 9.61 * methylation of
FITM1. (F) Prediction of OS in non-viral HCC based upon nomogram. Three factors were included in this nomogram. The methylation level of these four genes could
be used to create points according to the scale plotted upward. And the total points could point to the corresponding probability of 1-year, 2-year, 3-year, and 5-
year OS rate drawn on the three lines below.
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in testing set presented the similar phenomenon according to the
survival curve inFigures 8B, E. In order tofindoutwhether the risk
signature was an effective prognostic indicator, receiver operating
characteristic curve (ROC) was plotted. The ROC curves showed
that the risk scoremodelwas able to predict 5-year survival rates for
non-viral HCC patients both in training set (AUC = 78.2%) and in
testing set (AUC = 93.0%). The predictive power of this model was
better than other clinicopathological features included (Figures 8C,
F).These results suggest that the risk scoredeveloped fromthreekey
genes could independently predict prognosis in non-viral HCC.
Frontiers in Genetics | www.frontiersin.org 11
DISCUSSION

Virus infection is considered as one major cause of
hepatocarcinogenesis (Lee et al., 2019). With the rapid
development of anti-viral therapies, the virus-related HCC,
especially HBV and HCV, is reducing all over the world.
However, the incidence of hepatocellular carcinoma remains
high and the recurrence rate still render it one of the most
lethal malignancies. Other factors like diabetes, non-alcoholic
steatohepatitis, non-viral hepatitis, tobacco smoking, obesity,
FIGURE 8 | The validation of the score model in training set and testing set. (A, D) Risk score distribution of non-viral HCC patients, survival curve and methylation
heatmap of the three factors of the score model corresponding to each patient in training set (52 patients) and testing set (49 patients). The risk score was all
calculated by the score model built on training set. Red color stands for high risk and hypermethylation; blue color means low risk and hypomethylation. (B, E)
Kaplan-Meier survival analysis of the low and high-risk group. (C, F) ROC curves for a risk score model and several complete clinicopathological information of non-
viral HCC patients retrieved from TCGA.
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and dietary exposures are accountable for the etiology and
progression of non-viral HCC (Dhanasekaran et al., 2016;
Ogunwobi et al., 2019). And other potential gene-related
causes of non-viral HCC, including TNFa, IL6, mTOR,
MAPK, and NF-kB, are garnering close attention (Alzahrani
et al., 2014). However, the specific mechanism of non-viral HCC
is still unclear. It is of importance to figure out potential
biomarkers, score signatures, and even the underlying specific
targets to identify, monitor and treat non-viral HCC patients.

In our work, we downloaded methylation and corresponding
expressiondata inTCGAdatabase to explore and retrieve about 137
MDGs by MethyMix analysis. Enrichment analyses of the 137
MDGs indicated they participated in principal biological processes
of liver, including lipid metabolism, cholesterol metabolic process,
and lipid homeostasis. Given that disorder lipid metabolism is
closely associated with non-alcoholic fatty liver disease (NAFLD)
and has been growingly considered a hallmark of cancer cells
(Cingolani and Czaja, 2016; Tian et al., 2019), It is reasonable that
MDGs exerted great impact on non-viral HCC through regulation
of lipid metabolism and homeostasis. In addition, KEGG analysis
suggested that EGFR and P53 pathways were also significantly
enriched, which were involved in the pathogenesis and
tumorigenesis of HCC (Xie et al., 2018; Huang et al., 2019).

Based on gene expression overall survival and joint overall
survival analysis, we figured out eight key genes. B3GALNT1 is
involved in the tumorigenesis of lung adenocarcinoma (Aubry
et al., 2015); BSCL2 is over-expressed in the better progression-
free and overall survival group of high-grade serous ovarian
cancer (Cuello et al., 2017) and may take part in regulating lipid
storage in adipocytes and inhibiting ectopic lipid droplet
formation in cancer cells (Salo et al., 2016); ABCG5, which
could regulate the transport of hydrophobic mixtures, especially
lipids, across cellular membranes, is hypermethylated in prostate
cancer (Kerr et al., 2011; Devaney et al., 2015); FES
hypermethylation and low protein expression were correlated
with the PFS (progression-free survival) and OS in HCC (Zhang
et al., 2019). As for FITM1, previous study showed that knocking
out the FITM1, the lipid droplet accumulation reduces,
suggesting that the expression of FITM1 has a connection with
lipid droplet, which has a great impact on inflammation,
metabolic disorders, and cell injury in liver (Goh and Silver,
2013). Moreover, FITM1 is a member of evolutionarily conserved
gene family found in 2008, which plays an important role in fat
storage (Kadereit et al., 2008). It closely relates to PPARa in an
organ specific way and commonly express at a low level in liver
compared with other organs like heart and skeletal muscle in
mammals (Rodriguez and Kersten, 2017). Given that FITM1
belongs to a protein family with unique structure and involves in
the key progress of lipid metabolism, the aberrant methylation state
of FITM1 might result in disorder lipid homeostasis and NAFLD
(Gross et al., 2011; Goh and Silver, 2013), triggering the
carcinogenesis and progression of the non-viral HCC.

In our study, we revealed that FITM1 expressionwasmuch lower
in tumor tissues compared with other seven key genes or
corresponding normal samples. We also suggested that
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hypermethylation of FITM1 might account for the downregulation
of FITM1 expression partly through modulating NOTCH signaling
pathway. More interestingly, as displayed in Figure S2A, we found
that FITM1 was also down-regulated in the whole HCC patients in
TCGA with or without viral infection according to the GEPIA
database (http://gepia.cancer-pku.cn) (Tang et al., 2017). And the
expression of FITM1 was negatively correlated with the TNM stage
(Figure S2B). Moreover, low expression of FITM1 predicted worse
prognosis in HCC patients (Figures S2C, D). However, the specific
molecular function of these key genes in HCC, principally FITM1, is
still ambiguous. Though the exploration of FITM1 in silico strongly
indicated that FITM1 hypermethylation participated in the
progression of non-viral HCC by silencing FITM1 expression and
it couldact as a tumor suppressor gene, related experimentsofFITM1
expression, andFITM1methylation innon-viralHCCstill need to be
conducted in vitro and in vivo in the continued study.

While the efficacy of any single biomarker is inadequate, a
multiple-risk signature might exert much greater prognostic
value for non-viral HCC patients. Therefore, a FITM1-related
signature was established in training set through Uni-variate,
LASSO, and Multi-variate cox regression analyses and the
validation was performed by survival curve and ROC curve
analyses in training set and testing set. To make it suitable for
the clinical context, we then constructed a nomogram to judge
the prognosis of non-viral HCC patients directly and visually.
The risk signature and nomogram could enable doctors to
identify high and low risk non-viral HCC patients, delivering
helpful evidences to make better individualized treatment.
CONCLUSION

In present research, we characterize FITM1 as both a methylation-
driven gene and tumor suppressor gene. Based on the investigation
of 101 non-viral HCC patients in TCGA, we demonstrate that the
hypermethylated FITM1 down-regulates the corresponding FITM1
expression, thereby promoting the progression of non-viral HCC
via cancer-related pathways. On the other hand, the results also
suggest that the signature composed of three methylation-driven
genes can function as the prognostic indicator for non-viral HCC
patients. In all, not only are potential targets and epigenetic
biomarkers discovered and illustrated in our work, a FITM1-
related risk signature for non-viral HCC patients is built.
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