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Some differentially expressed genes (DEGs) that encode key enzymes involved in
steroidogenic biosynthesis (CYP19A1) and key molecules related to gonadal functions
(DMRT1, SOX9, AMH, FOXL2, WNT4, RSPO2, and GDF9) have been identified in adult
gonadal RNA-seq studies of Reeves’ pond turtle (Mauremys reevesii) with temperature-
dependent sex determination (TSD). Gonadal functional maintenance and gametogenesis
comprises a highly regulated and coordinated biological process, and increasing evidence
indicates that microRNAs (miRNAs) may be involved in this dynamic program. However, it
is not clear how the regulatory network comprising miRNAs changes the expression levels
of these genes. In this study, miRNA sequencing of adult testis and ovary tissues fromM.
reevesii detected 25 known and 379 novel miRNAs, where 60 miRNAs were differentially
expressed in the testis and ovary. A total of 1,477 target genes based on the differentially
expressed miRNAs were predicted, where 221 target genes also exhibited differential
expression. To verify the accuracy of the sequencing data, 10 differentially expressed
miRNAs were validated by quantitative reverse transcription real-time PCR, and were
found to be consistent with the transcriptome sequencing results. Moreover, several
miRNA/target gene pairs, i.e., mre-let-7a-5p/mre-let-7e-5p and CYP19A1, mre-miR-
200a-3p and DMRT1, mre-miR-101-3p and SOX9, and mre-miR-138-5p and AMH were
identified. To explore the regulatory role of miRNAs, we conducted target gene
enrichment analysis of the miRNAs and 221 target genes in the regulatory network.
The signaling pathways related to gonadal functional maintenance and gametogenesis
based on the DEGs and target genes were then compared. Our findings provide crucial
information to facilitate further research into the regulatory mechanisms involving miRNAs
in turtle species with TSD.
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INTRODUCTION

Both adult testes and ovaries play central roles in the
reproductive system by secreting steroid hormones and
producing gametes (Hossain et al., 2012). Gonadal functional
maintenance and gametogenesis depend on the normal
development of both the gonadal somatic cells and germ cells.
A complex and coordinated molecular program orchestrates the
correct differentiation of reproductive cell types and the
maintenance of their functions in adulthood. In mammals with
significant sex chromosomal differentiation, the Y chromosome
gene SRY (sex-determining region Y) directs somatic cells to
Sertoli cells and germ cells toward spermatogenesis (Mäkelä
et al., 2018). However, species with temperature-dependent sex
determination (TSD) have almost identical genetic material in
males and females, and their gonads have functional sex reversal
potential, but adult TSD turtles do not undergo sex reversal
spontaneously, and the regulatory mechanism in maintaining the
phenotype is still unclear. Gonadal functional maintenance and
gametogenesis comprises a highly regulated and coordinated
biological process. Many sex-related genes that have been
identified in mammals and birds also exist in TSD turtles, and
previous studies have found significant differences in gene
expression in the adult gonads of the Reeves’ pond turtle
(Mauremys reevesii) (Xiong et al., 2019). Increasing evidence
indicates that microRNAs (miRNAs) may be involved in this
dynamic process (Dai and Ahmed, 2014; Wang et al., 2016).
However, it is not clear how the regulatory network comprising
miRNAs changes the expression levels of these genes.

Several studies have explored the critical roles of miRNAs in
testis development and spermatogenesis (Kotaja, 2014; Pratt and
Calcatera, 2016), such as let-7 miRNA, which can promote the
differentiation of germ cell fates in Caenorhabditis elegans
(Reinhart et al., 2000), as well as oocyte growth, maturation,
and development during the regulation of oogenesis (Juanchich
et al., 2013), e.g., miR-101 regulates ovary differentiation in
chicken gonads (Kang et al., 2013). In TSD turtles, the
regulatory function of miRNAs was first examined in the red-
eared slider turtle (Trachemys scripta) (Biggar and Storey, 2012).
At present, 405 miRNAs have been identified in miRBase 22.0
(http://www.mirbase.org/) for only one turtle species, Chrysemys
picta (Biggar and Storey, 2015), which suggests that more
miRNAs await characterization in turtles. Next generation
sequencing facilitates the profiling of both known and novel
miRNAs, especially those expressed in low abundance (Liu
et al., 2018).

The freshwater turtle M. reevesii, belongs to the family
Geoemydidae and is widely distributed in east Asia. It is a
classic TSD species, and there is a male bias at low
temperatures and a female bias at high temperatures (Ru et al.,
2017). In our previous transcriptomic analysis of adult gonads in
M. reevesii, we identified 1,594 differentially expressed genes
(DEGs) and demonstrated the differential expression of genes
involved in four signaling pathways related to hormone synthesis
and gametogenesis (Xiong et al., 2019). Given the large number
of DEGs that regulate these pathways, miRNAs may have roles as
Frontiers in Genetics | www.frontiersin.org 2
regulators of DEGs. Therefore, in this study, we identified
miRNAs in M. reevesii by deep sequencing to compare their
tissue-specific expression levels in the testis and ovary, as well as
predicting the putative target genes that mapped to these
differentially expressed miRNAs. Moreover, combined with
previous transcriptome studies, we compared the signaling
pathways related to gonadal functional maintenance and
gametogenesis for the DEGs, and conducted target gene
enrichment analysis based on the miRNAs and target gene
regulatory network. These findings expand the list of miRNAs
annotated for turtles and provide crucial genomic information to
facilitate further research into the regulatory mechanisms
involving miRNAs related to gonadal maintenance and
gametogenesis during sexual maturity in turtle species with TSD.
MATERIALS AND METHODS

Ethics Statement
Procedures involving animals and their care were approved by
the Animal Care and Use Committee of Anhui Normal
University (#20170612).

Tissue Collection, RNA Preparation, and
Generation of Small RNA Sequencing
Libraries
Six adult turtles (three males, three females) aged 6 years were
obtained from Wuhu (31°33′N, 118°370′E, southeast China) in
2017. Gonad samples (testicles and ovaries) were collected and
dissected (Figure S1). The gonad samples were flash frozen in
liquid nitrogen and stored at −80 °C until the RNA was extracted
(Yin et al., 2016).

RNA was extracted from each sample with TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions. Six small RNA libraries were constructed using an
Illumina TruSeqTM Small RNA Sample Preparation kit
(Illumina, San Diego, CA, USA). Sequencing was performed
using the Illumina Hiseq 2500 platform by Genergy Bio-
technology Co. Ltd (Shanghai, China). The raw data are
available in the NCBI Sequence Read Archive (GenBank
accession no. PRJNA542219).

Sequencing Data Processing
The raw small RNA reads were processed with FastQC v0.11.5
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
using the PHRED algorithm and the low-quality reads and
adaptor contamination were removed using cutadapt v2.4
(Martin, 2011), thereby resulting in fragments corresponding
to RNAs with lengths of 15–40 nucleotides (nt). Subsequently,
small RNA reads were aligned against expressed sequence tags
(ESTs) stored in NCBI (https://blast.ncbi.nlm.nih.gov), Rfam
11.0 (Burge et al., 2012), and RepBase (Jurka et al., 2005).
Filtering was performed by removing reads that mapped to
rRNA, tRNA, small nuclear RNA (snRNA), and small
nucleolus RNA using bowtie v1.2.1.1 (Langmead et al., 2009).
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miRNA Identification and Differential
Expression Analysis
We used miRDeep2 software v2.0.0.8 (Friedländer et al., 2008)
for miRNA identification based on the clean sRNA reads.
Putative novel miRNAs predicted by miRDeep2 were retained
for further analysis if they had a score ≥5, which corresponded to
an estimated false discovery rate of 6%. The Mfold program
based on free energy minimization (Zuker, 2003) was used to
predict their propensity to form hairpin loops as potential pre-
miRNAs. Sequences of mature miRNAs from all animal species
were downloaded from miRBase 22.0 and combined to obtain all
known animal miRNA sequences. The known miRNAs in M.
reevesii were identified by BLAST search against all known
animal miRNA sequences with no mismatch. A Venn diagram
based on M. reevesii and C. picta, Anolis carolinensis, and Mus
musculus mature miRNAs sequences was prepared. To quantify
miRNA expression, tags per million reads (TPM) was used to
normalize the miRNA expression levels. Differentially expressed
miRNAs were determined using the R package edgeR (Robinson
et al., 2010) where each tissue was analyzed individually. The
statistical P-values were adjusted using Benjamini and
Hochberg’s (1995) approach to control the false discovery rate.
The differentially expressed miRNAs were identified according to
the following criteria: (1) |log2(FC)| > 1; and (2) a corrected P-
value <0.05.

miRNA Target Predictions and
Construction of miRNA Target Network
MiRanda tools (Enright et al., 2003) and Targetscan v3.1 (Lewis
et al., 2005) were used to predict the potential targets of the
differentially expressed miRNAs (Jiang et al., 2018). TargetScan
(Riffo-Campos et al., 2016) was used to detect whether the 3′-
untranslated region (3′UTR) of the mRNA in each pair matched
the seed region of miRNA. Only when the target was identified
by both programs, was it considered to be the potential target for
a given miRNA. Finally, the data predicted by miRanda and
TargetScan v3.1 were combined and the overlaps were
calculated. Then miRNA–mRNA interactions were calculated
according to miRNA expression profiles and transcriptome data,
negatively correlated miRNA–mRNA pairs were determined
using Pearson correlation analysis, and miRNA–gene networks
were produced and visualized using Cytoscape v3.7.1 software
(Shannon et al., 2003). The basic functional targets were
class ified using Gene Ontology (GO) (http://www.
geneontology.org/) annotations based on Blast2GO v2.5 with
an e-value of 1e−6 (Young et al., 2010) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
database (http://www.genome.jp/kegg/) based on KAAS with
an e-value of 1e−10 (Mao et al., 2005), where a P-value <0.05
was defined as statistically significant. These analyses were based
on human annotation using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) web server
(http://david.abcc.ncifcrf.gov/) with the EASE value set to 0.05
(Huang et al., 2007). Visualizations of the analyses, including GO
and KEGG enrichment results, were performed in the R (v3.4.2)
package with ggplot2.
Frontiers in Genetics | www.frontiersin.org 3
Quantitative Real-Time PCR (qRT-PCR)
Validation of Differentially Expressed
miRNAs in M. reevesii
To verify the relationships between mRNAs and miRNAs, we
selected genes with significant differences in expression in the
steroid hormone biosynthesis pathway based on KEGG pathway
analyses, where the differentially expressed miRNAs were
identified as candidate regulators of these genes. Finally, 10
miRNAs were selected to validate their expression profiles by
qRT-PCR. All of the reactions were performed using three
technical replicates and three biological replicates to validate
the reliability of the predicted miRNAs. The expression levels of
miRNAs were determined with the ABI StepOnePlus system
(Applied Biosystems, Foster, CA, USA) using qRT-PCR reagents
provided by Toyobo and Beacon Real-Time PCR Universal
Reagent (Cat#GMRS-001, GenePharma, Shanghai). The
specific RT-PCR primers and stem-loop primers used for
miRNA quantification are shown in Table S1. U6 snRNA was
used as an internal control. The thermal cycling program
comprised denaturation at 95°C for 3 min, followed by 40
cycles of amplification with denaturation at 95°C for 12 s,
annealing at 62°C for 30 s, and extension at 72°C for 30 s.
Melting curve analysis was conducted from 60 to 95°C. The
expression of each miRNA relative to U6 was calculated using
the 2−DDCT method, as described previously (Livak and
Schmittgen, 2001). Statistical analyses of the qRT-PCR results
were carried out in GraphPad Prism software v6.0 (San, Diego,
CA, USA). Statistical significance of the data was tested by
performing paired t-tests. The results are presented as means ±
SEM of three replicates, and the statistical significance is
represented by P-value <0.05.
RESULTS

Profiling of Sequencing Data
To identify the miRNAs in M. reevesii, six small RNA libraries
were constructed and sequenced using Illumina HiSeq 2500. In
total, 11,965,294; 19,268,984; 8,852,158; 10,989,442; 12,196,601,
and 17,646,067 raw reads were obtained, respectively, in the
small RNA libraries. These reads were first adjusted to remove
any sequencing artifacts, including reads without a 3′ adaptor,
reads measuring <15 nt and >40 nt, and junk reads. After data
processing, 10,143,882; 15,910,350; 7,812,047; 9,657,812;
11,058,767; 16,836,764 clean reads were obtained from the
total reads in the six small RNA libraries (Table S2).

Prediction of Potential miRNAs
Clean reads were mapped to Rfam, RepBase, EST database, and
miRBase (v22). The size distribution of the clean reads is shown
in Figure S2. The majority of the clean reads measured 20–24 nt
in length. In total, 3,369 unique reads were mapped to the C.
picta bellii genome using miRDeep2 (v2.0.0.8) and miRBase v22.
The unique reads from the six small RNA libraries were aligned
with all known animal miRNA sequences using BLASTN search.
We identified some putative novel miRNAs using reads that did
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not map to known miRNAs. In total, 404 miRNAs were
identified comprising 25 known (Table S3) and 379 novel
miRNAs (Table S4), which were classified into 23 miRNA
families. Based on comparisons with the C. picta, A.
carolinensis, and M. musculus databases in miRBase v22, five
miRNAs were found to be co-expressed in the four species, seven
miRNAs were found in C. picta and A. carolinensis, six miRNAs
were found in C. picta andM. musculus, and seven miRNAs were
found in M. musculus and A. carolinensis according to Venn
diagrams (Figure 1).

miRNA Differential Expression Profiles
We then compared the transcription levels of the differentially
expressed miRNAs in the ovary and testis. After strict filtration
(corrected P-value <0.05, |log2(FC)| > 1), 43 miRNAs were
significantly upregulated in the testis, such as mre-let-7e-5p,
mre-let-7a-5p, mre-miR-133c-3p, and mre-miR-16a-5p, whereas
17 miRNAs were significantly upregulated in the ovaries, such as
mre-miR-138-5p, mre-miR-101-3p, mre-miR-30c-5p, mre-miR-
128-3p, mre-miR-200a-3p, mre-miR-1b-3p, mre-miR-2188-5p,
mre-miR-200a-5p, and mre-miR-34a-5p (Table S5). Among
these differentially expressed miRNAs, mre-novel34-5p and
mre-novel199-3p were only found in the ovaries and 19
miRNAs were only found in the testis, such as mre-novel238-3p.

Prediction of Target Genes and
Enrichment Analysis
In total, 1,477 target genes were predicted for the 60 differentially
expressed miRNAs using miRanda and Targetscan. These
predictions suggested that a single miRNA might target more
than one mRNA, such as mre-miR-30c-5p, which was predicted
to target 181 genes (Table S6). Similarly, one gene could be
controlled by one or more miRNAs, e.g., hypermethylated in
cancer 2 (HIC2) had three miRNA target sites (mre-miR-30c-5p,
mre-let-7a-5p, and mre-miR-200a-3p) (Table S6). In our recent
study, we identified 1,594 DEGs in the adult testis and ovary
using RNA-seq (Xiong et al., 2019), where 221 DEGs were also
Frontiers in Genetics | www.frontiersin.org 4
target genes predicted for the differentially expressed miRNAs,
with 82 DEGs upregulated in the testis and 139 DEGs
upregulated in the ovary. In these 221 DEGs, several miRNA/
target mRNA pairs were identified, i.e., membrane palmitoylated
protein 5 (MPP5) and mre-miR-34a-5p, actin beta (ACTB) and
mre-novel107-3p, mitogen-activated protein kinase 9 (MAPK9)
and mre-novel238-3p, dachsous cadherin-related 1 (DCHS1)
and mre-miR-124-3p, and mitogen-activated protein kinase 8
(MAPK8) and mre-let-7a-5p. Although most of the predicted
miRNA–target relationships need to be further validated
experimentally, these results strongly suggest that miRNAs
could play critical roles in regulating the functions of the ovary
and testis (Figure 2).

The genes potentially regulated by miRNAs according to the
present study were annotated using GO annotations (Table S7)
and KEGG pathway analyses (Table S8). The GO annotations
were classified as cellular component, biological process, and
molecular function (P < 0.05) (Figure 3). We found that many of
the miRNAs detected in this study are involved in catabolic
processes. Based on the GO terms, we found two GO annotations
related to gonadal function: female pronucleus assembly and
DNA demethylation of male pronucleus. KEGG pathway
analysis demonstrated that the target genes were related to
significantly expressed miRNAs. According to the KEGG
pathway analysis results (P < 0.05), 12 pathways were
significantly enriched, including the Hippo signaling pathway,
Wnt signaling pathway, TGF-beta signaling pathway, Hedgehog
signaling pathway, Steroid hormone biosynthesis, and Oocyte
meiosis (Figure 4).
qRT-PCR Validation of miRNA Expression
Ten representative differentially expressed miRNAs were
assessed by qRT-PCR in this study, comprising two novel
miRNAs (mre-novel258-5p, mre-novel199-3p) and eight other
miRNAs (mre-miR-101-3p, mre-let-7a-5p, mre-miR-133c-3p,
mre-miR-16a-5p, mre-miR-148-3p, mre-miR-200a-3p, and
mre-miR-30c-5p) with roles in the regulation of sex-related
gene expression in the gonadal functional maintenance and
gametogenesis signaling pathways. The expression patterns of
the miRNAs measured using qRT-PCR corresponded to those
obtained by high-throughput sequencing, thereby confirming the
accuracy and reliability of the sequencing results used in the
functional analyses (Figure 5).
DISCUSSION

miRNAs Identified in M. reevesii During
the Sexual Maturity Period
We identified 25 conserved and 379 novel miRNA sequences,
which were classified into 23 known miRNA families in M.
reevesii. The novel miRNA sequences were mainly 21 nt (19.5%)
or 22 nt (41.7%) in length, with a similar proportion compared to
the conserved miRNAs. We also observed a 5′ uridine nucleotide
bias in 51.5% of the novel miRNA sequences.
FIGURE 1 | M. reevesii miRNAs compared with Chrysemys picta, Anolis
carolinensis, and Mus musculus in miRBase v22. The intersection shows the
number of conserved miRNAs.
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The most abundant miRNAs were mre-let-7a-5p, mre-let-7e-
5p, mre-miR-101-3p, mre-miR-148a-3p, mre-miR-16a-5p, mre-
miR-128-3p, mre-miR-1b-3p, mre-miR-200b-3p, mre-miR-30c-
5p, and mre-miR-200a-3p, where each had several thousand
reads. In addition, 44 novel miRNAs were identified with
differential expression in the testis and ovary.

Common Signaling Pathways for DEGs
Determined by RNA-seq and Target Genes
of Differentially Expressed miRNAs
In our previous study, we showed that the Hippo, Wnt, TGF-
beta, and Hedgehog signaling pathways are involved in
gonadal maintenance and hormonal regulation in the adult
gonad (Xiong et al., 2019). In the present study, we compared
the common signaling pathways for the DEGs determined by
RNA-seq and the target genes of differentially expressed
miRNAs (Figure 6). In addition to the four signaling
Frontiers in Genetics | www.frontiersin.org 5
pathways, the Oocyte meiosis and Steroid hormone
biosynthesis pathways were enriched in this study. The
Oocyte meiosis signaling pathway has critical roles in
controlling cell proliferation, self-renewal, differentiation,
and apoptosis in most tissues and organs in diverse species
(O’Hayre et al., 2014), and it could regulate the proliferation
and differentiation of ovaries (Schmitt and Nebreda, 2002).
The steroid hormone biosynthesis pathway is controlled by
the activity of aromatase (CYP19A1) and interference with
steroid biosynthesis might lead to impaired reproduction and
alterations in sexual differentiation, growth, and development
(Sanderson, 2006). Moreover, MAPK9 is a key molecule in
this signaling pathway and it appears to be evolutionarily
conserved for the control of oocyte growth and meiotic
maturation across species (Arur, 2017). Together, these
results revealed that the above six pathways play critical
roles in turtle gonadal functional maintenance.
FIGURE 2 | Network analysis based on the interactions among differentially expressed miRNAs and 221 potential target genes with negatively correlated expression
(corrected P-value < 0.05). Green boxed nodes represent upregulated miRNAs in male gonads and orange boxed nodes represent upregulated miRNAs in female
gonads. Pink ellipses represent downregulated genes in male gonads and blue ellipses represent downregulated genes in female gonads.
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Identification of miRNAs Involved in Testis
and Ovary Functional Maintenance During
the Sexual Maturity Period
In addition to producing steroid hormones, the main functions
of the testes and ovaries are to produce mature gametes
(Mäkelä et al., 2018). Spermatogenesis depends on testicular
Frontiers in Genetics | www.frontiersin.org 6
somatic cells (Sertoli cells and Leydig cells). Sertoli cells guide
germ cells toward their spermatogenic destiny and Leydig cells
produce androgens, and both of them are related to the
development of spermatogenic cells during spermatogenesis
(Itman et al., 2006). Luteinizing hormone increases the
proliferation of Sertoli cells (Mäkelä et al., 2018). In our
FIGURE 3 | GO enrichment analysis for target genes of differentially expressed miRNAs. Blue represents the top 10 GO terms of biological process, orange
represents the top 10 GO terms of molecular function, and yellow represents the top 10 GO terms of cellular component.
FIGURE 4 | The top 12 KEGG enrichment analysis terms for target genes of differentially expressed miRNAs.
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previous study based on RNA-seq, we showed that the
antagonistic regulation of steroid hormones will maintain an
appropriate balance between males and females in M. reevesii.
The expression of key genes is involved in steroid hormone
biosynthesis, such as CYP19A1, which is a gene encoding an
enzyme that catalyzes conversion from androgens to estrogens
(Matsumoto et al., 2013). Two miRNAs (mre-let-7a-5p and
mre-let-7e-5p) were predicted to regulate the expression of
CYP19A1, and the expression levels of two miRNAs were
downregulated in females by more than four times. Some
important sex-related genes are expressed in testis, such as
doublesex and mab-3 related transcription factor 1 (DMRT1),
anti-Müllerian hormone (AMH), SRY-box transcription factor
9 (SOX9), bone morphogenetic protein 7 (BMP7), bone
morphogenetic protein 8a (BMP8a), and SMAD family
member 2 (SMAD2), which are necessary to maintain
Frontiers in Genetics | www.frontiersin.org 7
spermatogenesis (Mäkelä et al., 2018). DMRT1 is a candidate
master male sex-determining gene in TSD turtles such as T.
scripta (Ge et al., 2017). Although Dmrt1 is not required for
male sex determination in the mouse, it is essential for
maintaining the Sertoli cel l phenotype in postnatal
mammalian testes (Matson et al., 2011). DMRT1 was
predicted to be the target of mre-miR-200a-3p and the
expression of mre-miR-200a-3p was downregulated in males.
SOX9 is essential for testicular organogenesis (Mäkelä et al.,
2018). Mre-miR-101-3p was predicted to target SOX9 and the
expression of mre-miR-101-3p was downregulated in males
(Yan et al., 2018). In mammals, AMH is not expressed in the
adult testes (Xu et al., 2019), but in the adult ovary, and it is
necessary for granulosa cell differentiation (Gruijters et al.,
2003). But in the TSD turtle, AMH was upregulated in testes
and downregulated in ovaries. Mre-miR-138-5p was predicted
to target AMH and the expression of mre-miR-138-5p was
upregulated in females. Mre-miR-30c-5p was predicted to
target SMAD2 and mre-miR-148a-3p was predicted to target
BMP8a. In the adult ovary, oocytes are surrounded by somatic
cell-derived granulosa cells and cumulus cells, which control
oocyte maturation (Fan et al., 2009). Ovulation is initiated by a
surge in luteinizing hormone, and forkhead box L2 (FOXL2),
Wnt family member 4 (WNT4), R-spondin 2 (RSPO2),
amphiregulin (AREG), epiregulin (EREG), betacellulin (BTC),
and mitogen-activated protein kinase 9 (MAPK9) induce a gene
activation network in the mural granulosa and cumulus cells to
co-ordinate processes including oocyte maturation and
ovulation (Park et al. , 2004), which require oocyte
participation through the actions of oocyte-secreted factor 15
(BMP15) and growth differentiation factor 9 (GDF9) (Otsuka
et al., 2011). Thus, GDF9 and BMP15 may act in synergy to
promote oocyte maturation (Richani and Gilchrist, 2017). In
this regulatory network, mre-miR-133c-3p targeted both
WNT4 and FOXL2, whereas mre-miR-16a-5p targeted both
GDF9 and RSPO2, and mre-novel238-3p targeted MAPK9.
mre-miR-200b-3p was strongly expressed in the adult ovary,
where it suppressed the expression of the transcriptional
FIGURE 5 | Validation of expressed miRNAs using qRT-PCR.
FIGURE 6 | Venn diagram based on the significantly enriched pathways for the differentially expressed genes determined by RNA-seq and target genes of the
differentially expressed miRNAs (P <0.05).
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repressor zinc finger E-box binding homeobox 1 (ZEB1)
(Hasuwa et al., 2013) to maintain normal ovulation in the
turtle (Figure 7).

Male and female TSD turtles have the same genetic
background, and their gonads have functional sex reversal
potential. However, adult TSD turtles do not undergo sex
reversal spontaneously. Our results showed that miRNAs were
involved in the antagonistic regulation of steroid hormones
which would maintain an appropriate balance between males
and females.
CONCLUSIONS

The present study is the first to examine the miRNA
expression profiles in the testis and ovary of M. reevesii
during the sexual maturity period. We identified 60 miRNAs
with differential expression in the testis and ovary. The 221
predicted target genes of these differentially expressed
miRNAs also exhibited sex-biased expression in the adult
gonads of M. reevesii according to transcriptomic analysis.
We identified several miRNA/target gene pairs, i.e., mre-let-
7a-5p/mre-let-7e-5p and CYP19A1, mre-miR-200a-3p and
DMRT1, mre-miR-101-3p and SOX9, and mre-miR-138-5p
and AMH, which include genes that encode key enzymes and
molecules related to sexual functional maintenance and
steroidogenic pathways. These results suggest the existence
of a complex regulatory network after sex differentiation in
the turtle and the potential importance of miRNAs for
regulating the functional maintenance of the testis and
ovary during the sexual maturity period.
Frontiers in Genetics | www.frontiersin.org 8
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