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Being the center of the hypothalamus-pituitary-ovary (HPO) axis, the pituitary plays a key
role in the onset of puberty. Recent studies show that circular RNAs (circRNAs) can
perform as miRNA sponges to regulate development in animals. However, the function of
pituitary-derived circRNAs in first estrus remains unclear in pigs. In this study, we
performed a genome-wide identification and characterization of circRNAs using
pituitaries from Landrace × Yorkshire crossbred pigs at three stages: pre-, in-, and
post-puberty, to describe such pituitary-derived circRNAs in pigs. A total of 5148
circRNAs were found in the gilts' pituitaries, averaging 18 682 bp in genomic distance,
which consisted of approximately 91% exonic, 6% intergenic, and 3% intronic circRNAs.
Furthermore, 158 novel circRNAs were identified for the first time and classified as putative
pituitary-specific circRNAs. Their expression levels during the onset of puberty,
significantly exceeded those of the other circRNAs, and the parental genes of these
putative pituitary-specific circRNAs were enriched in “ssc04917: prolactin signaling
pathway,” “ssc04080: neuroactive ligand-receptor interaction,” and “ssc04728:
dopaminergic synapse” pathways, all of which were consistent with pituitary
functioning. Additionally, 17 differentially regulated circRNAs were found and
investigated for their potential interaction with miRNAs, along with genes, by
constructing a circRNA-targeted miRNA-gene network. Taken together, these results
provide new insight into the circRNA-mediated timing of puberty in gilts at the
pituitary level.
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INTRODUCTION

Puberty can usually be defined as the first estrus of gilts, and the
initiation of puberty implies the acquired capacity for sexual
reproduction in pigs (Nonneman et al., 2016). An early onset of
puberty can shorten the generation interval of livestock, and
further accelerate the genetic breeding process (Rosales Nieto
et al., 2014; Luo et al., 2017). Yet, surprisingly little is known
about the molecular regulation of puberty's timing in pigs.
Previous research has uncovered endocrinological differences
across pubertal onset mainly driven by the hypothalamus-
pituitary-ovary (HPO) axis (Angold et al., 1999; Blakemore
et al., 2010). As the center bridging the hypothalamus
and ovary in the HPO axis, the pituitary is an extremely
important mediator for controlling the synthesis of hormones.
During estrous cycling, an increase in the pulsatile release
of gonadotropin-releasing hormone (GnRH) from the
hypothalamus elicits an increased release of luteinizing
hormone (LH) and follicle-stimulating hormone (FSH) from
the pituitary (Root, 1980; Coe et al., 1981). Additionally,
gonadotropin hormones released from the pituitary have been
shown to be directly related to animals' reproductive associated
traits (Barb et al., 2012).

Circular RNAs (circRNAs) are a novel type of circular RNA
molecules lacking 5′–3′ polarities and polyadenylated tails (Chen
and Yang, 2015), making them more structurally stable than
linear RNAs (Qu et al., 2015). Most circRNAs consist of multiple
exons, as well as introns of protein-coding genes, and are
conserved among different animal species (Szabo and Salzman,
2016). With the advances made in next-generation sequencing
technology, much research on circRNAs has been carried out
using high-throughput RNA sequencing (RNA-seq). In pigs,
recent work has demonstrated circRNAs' involvement in
various organismal processes. For example, through a
comprehensive analysis of porcine cardiac and skeletal
muscles, Chen et al. (2018) showed that circRNAs contribute
to differences in aging. Moreover, circRNAs were defined as a
new biomarker in metabolism-related diseases based on a study
of circRNAs occurring in the subcutaneous adipose tissues of two
pig breeds (Li et al., 2018). For their role in estrus, Li et al. (2018)
investigated the expression of circRNAs in the sheep pituitary,
finding that circRNAs there participated in the regulation of
estrus. By contrast, no puberty- or even estrus-associated study
has yet been performed that has tried to identify circRNAs
in pigs.

Generally, since gilts have an earlier age at first estrus, they
may have a longer productive life, thus farrowing multiple litters
and giving birth to more piglets (Patterson et al., 2010; Saito
et al., 2011). To reveal the relationships between circRNAs and
puberty in the pituitary, here we conducted RNA-seq analyses
using pituitaries from Landrace × Yorkshire crossbred pigs at
three stages: pre-, in-, and post-puberty, to identify circRNAs
and then assemble a circRNA-targeted miRNA-gene network.
To our best knowledge, this study is the first to investigate the
potential regulatory roles of circRNAs during the onset of
puberty in gilts, and so it should provide new insight into this
key developmental process at the molecular level.
Frontiers in Genetics | www.frontiersin.org 2
MATERIALS AND METHODS

Ethics Statement
Animal care and experiments were conducted following
the Regulations for the Administration of Affairs Concerning
Experimental Animals (Ministry of Science and Technology,
China; revised in June 2004) and were approved by the Animal
Care and Use Committee of the South China Agricultural
Un i v e r s i t y , Guangzhou , Ch ina (pe rm i t numbe r :
SCAU#2013-10).

Preparation of Animals and Samples
Three stages during the onset of puberty were used: pre-, in-, and
post-puberty. The onset of puberty was identified by the standing
reflex with the back-pressure test and boar contact (Patterson
et al., 2002). A total of nine Landrace × Yorkshire crossbred gilts
were used: three gilts of 160 days in age without any pubertal
signs were selected as pre-puberty gilts (weight = 81.38 ±
2.40 kg); three gilts exhibiting first pubertal signs served as the
in-pubertal gilts (weight = 110.00 ± 2.00 kg); three gilts 14 days
beyond the pubertal phase were designated as the post-pubertal
gilts (weight = 122.82 ± 9.11 kg). After euthanizing the gilts, their
brains were removed immediately and excess tissues were
removed. The anterior pituitaries were carefully dissected and
frozen immediately in liquid nitrogen, then stored at –80°C until
further use.

RNA Sequencing and Quality Control, and
the Transcriptome Assembly
Pre-, in-, and post-pubertal gilts' pituitaries were homogenized
separately in liquid nitrogen. The total RNAs were extracted
from porcine pituitaries with the Trizol agent (Invitrogen,
Carlsbad, CA, USA), followed by quality testing of the total
RNAs using the Agilent Bioanalyzer 2100 system (Agilent, Palo
Alto, CA, USA). Only those RNA samples with RNA Integrity
Number value > 7.0 were deemed eligible. Then, the rRNA from
the eligible total RNAs was removed using an Epicentre Ribo-
zero rRNA removal kit (Epicentre, Madison, WI, USA). The
rRNA-depleted RNAs were used to synthesize double-stranded
cDNA via the mRNA-Seq Sample Preparation Kit (Illumina,
SanDiego, CA, USA), for which a total of 5 mg cDNA per sample
was sequenced using a HiSeq 2500 Sequencer according to the
manufacturer's instructions, and 150 bp paired-end reads were
generated. These raw reads were processed by 3′ adaptor-
trimming and removal of low-quality reads—having > 10%
unknown bases or > 50% low-mass bases—using Cutadapt
software (Martin, 2011). The reads remaining after quality
control were defined as the clean reads for further analysis.
These acquired clean reads were then mapped onto pig reference
genome Sus scrofa11.1 , using BWA software (Li and
Durbin, 2010).

CircRNA identification
CIRI software (Gao et al., 2015) was applied to obtain the back-
spliced junction (BSJ) reads for circRNA prediction based on the
annotation file downloaded from the Ensembl genome browser
(ftp://ftp.ensembl.org/pub/release-94/gtf/sus_scrofa). Then the
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number of circRNAs' exons and the length of circRNAs were
detected by CIRI-AS module in CIRI software. The expression
levels of circRNAs were quantified as the number of reads
spanning the BSJ reads in terms of RPM (i.e., mapped BSJ
reads per million mapped reads), by using the EBSeq package
(Leng et al., 2013). The differential expression of circRNAs was
determined according to these criteria: false discovery rate (FDR)
< 0.05, log2|fold_change| ≥ 1, and circRNA junction reads ≥ 5.
Further graphical representations of results were performed in
the R platform (R Foundation for Statistical Computing, 2018).
Stage-specific circRNAs were defined here as those circRNAs
only expressed in one pubertal stage. Known circRNAs of pig
were downloaded from the circAtlas 2.0 datasets (Ji et al., 2019),
an integrated resource of circRNAs in vertebrates (http://
circatlas.biols.ac.cn/). In the circAtlas 2.0 database are tens of
thousands of known circRNAs identified from nine porcine
tissue types: brain, heart, kidney, liver, lung, skeletal muscle,
spleen, testis, and retina. The circRNAs identified in the current
study were matched with the database via both starting and
ending genomic positions of circRNAs, and the novel circRNAs
were regarded as the putative tissue-specific circRNAs.
Significant differences between any two pubertal pig groups
were tested with the Welch two-sample t-test.

Functional Enrichment Analysis
The circRNAs–miRNAs interactions were predicted with
miRanda software (John et al., 2004). These were filtered for
predictions with a maximum binding-free energy of less than –20
Frontiers in Genetics | www.frontiersin.org 3
kcal/mol and a miRanda match score ≥ 150. Next, targeted
mRNAs of each selected miRNA were predicted by Targetscan
software (Witkos et al., 2011). The competing endogenous RNAs
networks among the circRNAs, miRNAs, and mRNAs were built
and visualized with Cytoscape software (Su et al., 2014).
Functional enrichment analysis was performed using the
DAVID bioinformatics resource (Huang et al., 2007). Finally,
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway and Gene Ontology (GO) terms with Benjamini-
Hochberg method-adjusted P < 0.05 were identified.

qRT-PCR Analysis
Quantitative real-time reverse transcription-PCR (qRT-PCR)
was carried out using the PrimeScript RT Reagent Kit
(TaKaRa, Osaka, Japan) in a Mx3005P real-time PCR System
(Stratagene, La Jolla, CA, USA) with SYBR Green, according to
the manufacturer's protocol. Divergent primers of 5 circRNAs
were designed to further test the accuracy of the RNA-seq,
namely Circ 1:14408861|14457143, Circ 9:28120503|28122017,
Circ 2:88184110|88206327, Circ 9:75284452|75290025, and Circ
15:74631515|74643464. GAPDH served as an internal reference
to normalize the expression of circRNAs (Table S1). The PCR
conditions were 94 °C denaturation for 5 min, 40 cycles at 94 °C
for 10 s, 52 to 62 °C for 15 s, and 72 °C for 30 s. The 2-ΔΔCt

method was used to analyze the qRT-PCR results. The
Student's t test was used to assess differences in means of any
two pubertal pig groups, for which a P < 0.05 was considered
statistically significant.
FIGURE 1 | Identification of pituitary-derived circRNAs during the onset of puberty in pigs. (A) The Venn diagram of circRNAs detected in pre-, in-, and postpuberty;
(B) Distribution and genomic distance of the circRNAs; (C) Proportion of circRNAs that originated from the exon, intergenic, and intronic regions; (D) The exon
number of the circRNAs; (E) Distribution and transcript length of the circRNAs.
February 2020 | Volume 11 | Article 135

http://circatlas.biols.ac.cn/
http://circatlas.biols.ac.cn/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Chen et al. Pituitary-Derived circRNAs in Pigs
RESULTS

Identification of Pituitary-Derived
circRNAs During the Onset of Puberty
A total of 5148 circRNAs were detected in all three pubertal
stages: 2779, 4062, and 3167 circRNAs respectively in the pre-,
in-, and post-puberty stages of pigs (Figure 1A). The average
expression level of circRNAs were dynamically changing during
the onset of puberty (Figure 1B). Sus scrofa chromosome (SSC) 1
harbored the most circRNAs, while the SSC10 had the highest
density of circRNAs (Figure 1C). The average genomic distance
of all circRNAs found was 18 682 bp, with 92% of the circRNAs
shorter than 50 000 bp, and the number of circRNAs decreased as
their size lengthened (Figure 1C). The most circRNAs were made
up of two exons, and the length of most circRNAs was about 200
to 300 bp (Figure 1D). After annotation with the pig genome, the
found circRNAs consisted of approximately 91% exonic, 6%
intergenic, and 3% intronic circRNAs, respectively (Figure 1E).

Putative Stage-Specific circRNAs in Gilts
During the Onset of Puberty
A total of 389, 1165, and 545 circRNAs were identified as
putative stage-specific circRNAs from the pre-, in-, and post-
puberty groups, respectively (Figure 1A), and their pair-wise
comparisons did not reveal any significant difference in bp length
(t-test, P > 0.05). Further, the expression levels of pre-puberty
specific circRNAs significantly exceeded those of post-puberty
specific circRNAs (t-test, P < 2.20E−16), with the latter being
significantly higher than the expression levels of in-puberty
Frontiers in Genetics | www.frontiersin.org 4
specific circRNAs (t-test, P < 2.20E−16) (Figure 2A). The
KEGG pathways enriched using the parental genes of stage-
specific circRNAs are listed in Table S2, of which the top five are
shown in Figure 2B–D.

Putative Tissue-Specific circRNAs in Gilts'
Pituitary
To explore the specific circRNAs in pituitary tissue, 4990
circRNAs were identified as known circRNAs that overlapped
with those in circAtlas 2.0, while another 158 circRNAs were
identified as being specifically expressed in pituitary tissue.
Furthermore, the latter, hereon the “putative pituitary-specific
circRNAs,” were significantly shorter than the known circRNAs
(t-test, P = 7.86E-06) (Figure 3A) and these novel circRNAs had
significantly higher expression levels than did the known
circRNAs during the onset of puberty (t-test, P < 2.20E−16)
(Figure 3B). The KEGG enrichment analysis of parental genes of
these putative pituitary-specific circRNAs were enriched in
“ssc04917: Prolactin signaling pathway,” “ssc04080:
Neuroactive ligand-receptor interaction,” and “ssc04728:
Dopaminergic synapse” pathways (Figure 3C).

Analysis of Differentially Expressed
circRNAs
A total of 14 differentially upregulated circRNAs and three
differentially downregulated circRNAs were identified (Table
1). Some of them were derived from different transcripts of the
same genes, such as ESR1 and RALGPS1. All differentially
regulated circRNAs in the pre- vs. in-puberty groups were
FIGURE 2 | Analysis of potential stage-specific circRNAs in pigs. (A) Boxplots of pre-, in-, and post-puberty stage-specific circRNAs' expression levels; the top 5
KEGG pathways enriched using parental genes of pre- (B), in-, (C) and post-puberty (D) stage-specific circRNAs. *** P < 0.001.
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both derived from ESR1 (Table 1). Interestingly, one of them,
circRNA “Circ 1:14408861|14457143,” was identified here for the
first time. Furthermore, the circRNA “Circ 7:121001608|
121012600” was downregulated in the in- vs. post-puberty
groups yet upregulated in the pre- vs. post-puberty groups.

Validation of circRNAs by qRT-PCR
To validate the accuracy of RNA-seq data, a total of five
circRNAs, including four differentially expressed circRNAs—
Circ 1:14408861|14457143 (Figure 4A), Circ 9:28120503|
28122017 (Figure 4B), Circ 2:88184110|88206327 (Figure 4C),
Circ 9:75284452|75290025 (Figure 4D)—and one randomly
selected circRNA: Circ 15:74631515|74643464 (Figure 4E)
were chosen and validated via qRT-PCR.

When compared with the RNA-seq data, similar expression
trends for the qRT-PCR results of all selected circRNAs were
discovered, thus showing that the obtained qRT-PCR results of
these above circRNAs were consistent with the RNA-seq data
(Figure S1).

CircRNA-Targeted miRNA-Gene Network
Prediction
To further explore the putative functions of differentially
expressed circRNAs, these circRNAs were conducted to predict
the binging sites with miRNA targets (Figure 5). The top five
Frontiers in Genetics | www.frontiersin.org 5
plausible miRNA targets were chosen according to their
respective miRanda match score and are listed in Table 1.
According to this study, we found that many of differentially
expressed circRNAs interact with miRNAs that potentially
regulate estrus of pigs. These predicted circRNA-targeted
miRNA-gene networks will be the focus of further research.
DISCUSSION

As a key physiological process of sexual maturation, the timing of
puberty's onset provides a great opportunity for improving the
efficiency of gilts' reproduction. In this study, we identified the
genome-wide landscape of circRNAs in three important pubertal
stages: pre-, in-, and post-puberty. The results showed that the
number of circRNAs were dramatically altered among these three
stages; the most circRNAs detected from in-puberty pigs, followed
by those at post-puberty, with the least number occurring in the
stage of pre-puberty. Many genome-wide analyses of circRNAs in
mammals have been widely conducted using RNA-seq; these
collectively indicate the number of circRNAs can differ between
species, as well among different tissues or ontogeny stages. Of the
5148 circRNAs identified in our study, 158 circRNAs were
distinguishable as putative pituitary-specific circRNAs that are
involved in the prolactin signaling pathway, the neuroactive
FIGURE 3 | Analysis of potential tissue-specific circRNAs in pigs. (A) Boxplots of potential pituitary-specific and known circRNAs' length; (B) Boxplots of potential
pituitary-specific and known circRNAs' expression level; (C) The KEGG pathways enriched using parental genes of potential pituitary-specific circRNAs. *** P < 0.001.
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ligand-receptor interaction, and the dopaminergic synapse.
Prolactin secreted by the pituitary was related to the regulation
of reproductive function, the immune system, osmotic balance,
and angiogenesis (Freeman et al., 2000). The secretion of prolactin
is regulated by endocrine neurons between the hypothalamus and
pituitary, and its regulation mainly depends on the secretion of
dopamine (Bole-Feysot et al., 1998). For the distribution of
circRNAs in the genomic regions, previous studies have shown
extremely differences between different species and tissues. In pigs,
Liang et al. (2017) found that 21.93% of circRNAs in intergenic
regions and 68.40% in exon regions through carrying out nine
organs. Yan et al. (2018) demonstrated that the found circRNAs
consisted of approximately 74.31% exonic, 20.36% intergenic, and
5.33% intronic circRNAs in spleen, and Huang et al. (2018)
demonstrated that more than 86% of circRNAs consisted of
exons while nearly 10% originated from intronic and intergenic
regions in liver. In rats, Yang et al. (2019) found that the circRNAs
consisted of approximately 80.18% exonic, 0.15% intergenic, and
19.67% intronic circRNAs in pulmonary. These observations
strongly support the view that circRNAs' expression occurs in a
specie-specific, tissue-specific, and developmental stage-
specific manner.

Importantly, we identified 17 circRNAs that were differentially
expressed in the gilts, for which we speculated that some parental
genes of differentially regulated circRNAs could influence the
fertility and production traits of female mammals, such as ESR1
(Handa and Weiser, 2014), DENND1A (McAllister et al., 2014),
RALGPS1 (Cochran et al., 2013), andMAML2 (Whittington et al.,
2018). In addition, after identifying the miRNA targets of each
differentially regulated circRNA, we found that some candidate
miRNAs targeted by several circRNAs are linked to mammalian
development of sex differentiation and maturation. For example,
miR-145-5p was found likewise up-regulated after sexual maturity
in pigs (Li et al., 2016) and miR-214-3p was shown to be involved
in the onset of mouse primordial germ and somatic cell sex
differentiation (Fernández-Pérez et al., 2018). Those findings
coupled to our results suggest that circRNAs probably regulate
the onset of puberty.

Interestingly, one of the differentially regulated circRNAs,
circRNA “Circ 1:14408861|14457143,” was reported here in pig
for the first time, and the top five miRNA targets of this particular
circRNA had a predicted interaction with ESR1. ESR1 encodes an
estrogen receptor alpha, a nuclear receptor activated by the sex
hormone estrogen (Green et al., 1986). Previous studies confirmed
that lacking an active ESR1 caused the disruption of normal
pituitary tissue development and function. For instance, female
mice lacking the estrogen receptor alpha in the pituitary
gonadotroph have elevated levels of serum LH and LH beta-
subunit gene expression, indicating that lacking estrogen has a
negative feedback effect on the gonadotroph, with LH values and
estrous cyclicity also found absent in these mice (Singh et al., 2009).
Most circRNAs detected in our study are in the circAtlas 2.0
database, whose circRNAs were identified by at least two tools
(CIRI2, DCC, find_circ, or CIRCexplorer2) to avoid false positives.
Hence, the predictions made in the present study should be reliable.

Our dataset provides fresh insight into the existence of
pituitary-derived circRNAs in pigs, yet this study did have a
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few limitations. Although the rRNA-depleted total RNA-seq
analyses have been used to enrich for circRNAs in previous
studies (e.g., Memczak et al., 2013; Tan et al., 2017; Sekar et al.,
2018), there is no doubt that these sequencing analyses may not
have comprehensively captured all occurring circRNAs.
Furthermore, these enrichment steps may produce a few false
BSJ reads that originated from linear RNAs, which could possibly
Frontiers in Genetics | www.frontiersin.org 7
lead to false detections of circRNAs. To guard against this, we
used CIRI algorithms to identify circRNAs in this study, as they
are reportedly effective for preventing the false detections of
circRNAs that are caused by false BSJ reads (Gao and Zhao,
2018). Finally, the underlying mechanism of these circRNAs
during pigs' pubertal onset still requires carefully elucidation
and verification.
FIGURE 4 | Validation of circRNAs using qRT-PCR. The qRT-PCR results of (A) Circ 1:14408861|14457143, (B) Circ 9:28120503|28122017, (C) Circ 2:88184110|
88206327, (D) Circ 9:75284452|75290025, and (E) Circ 15:74631515|74643464 are shown. The green, red, and blue columns represent the pre-, in-, and post-
puberty pig groups, respectively. * P < 0.05.
FIGURE 5 | The circRNA-targeted miRNA-gene network prediction results of differentially regulated circRNAs. The network prediction results of differentially
regulated circRNAs in (A) the pre- vs. in-puberty group, (B) the in- vs. post-puberty group, and (C) the pre- vs. post-puberty group.
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CONCLUSIONS

This investigation identified and described the circRNAs during
the onset of puberty in gilts' pituitaries. In all, 5148 circRNAs
were found, of which 158 were putative pituitary-specific
expressed circRNAs. Because their expression levels were
significantly higher than those of the remaining circRNAs
during the onset of puberty, this suggested they are involved in
regulating the key function of pituitary tissue. Upon further
examination, 17 differentially regulated circRNAs were identified
and these circRNAs were chosen to construct the posited
circRNA-targeted miRNA-gene network. These results suggest
circRNAs likely play a critical role in puberty's timing in gilts and
thus provide useful information for future investigations of
circRNA-mediated puberty at the pituitary level.
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