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Mps3 is a SUN (Sad1-UNC-84) domain-containing protein that is located in the inner
nuclear membrane (INM). Genetic screens with multiple Mps3 mutants have suggested
that distinct regions of Mps3 function in relative isolation and underscore the broad
involvement of Mps3 in multiple pathways including mitotic spindle formation, telomere
maintenance, and lipid metabolism. These pathways have largely been characterized in
isolation, without a holistic consideration for how key regulatory events within one pathway
might impinge on other aspects of biology at the nuclear membrane. Mps3 is uniquely
positioned to function in these multiple pathways as its N- terminus is in the nucleoplasm,
where it is important for telomere anchoring at the nuclear periphery, and its C-terminus is
in the lumen, where it has links with lipid metabolic processes. Emerging work suggests
that the role of Mps3 in nuclear organization and lipid homeostasis are not independent,
but more connected. For example, a failure in regulating Mps3 levels through the cell cycle
leads to nuclear morphological abnormalities and loss of viability, suggesting a link
between the N-terminal domain of Mps3 and nuclear envelope homeostasis. We will
highlight work suggesting that Mps3 is pivotal factor in communicating events between
the nucleus and the lipid bilayer.

Keywords: telomeres, lipid metabolism, transcription, nuclear envelope, SUN-domain proteins
The Wind and the Sun (Æsop Fables (Sixth century B.C.). The Harvard Classics. 1909–14.
THE WIND and the SUN were disputing which was the stronger. Suddenly they saw a traveller

coming down the road, and the Sun said: “I see a way to decide our dispute. Whichever of us can
cause that traveller to take off his cloak shall be regarded as the stronger. You begin.” So the Sun
retired behind a cloud, and the Wind began to blow as hard as it could upon the traveller. But the
harder he blew the more closely did the traveller wrap his cloak round him, till at last the Wind had
to give up in despair. Then the Sun came out and shone in all his glory upon the traveller, who soon
found it too hot to walk with his cloak on.

“KINDNESS EFFECTS MORE THAN SEVERITY.”
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FIGURE 1 | Schematic of Mps3 domains. Mps3 consists of an N-terminal
nucleoplasmic region (1–150 aa), a transmembrane domain (154–181 aa), a
P-loop (187–194 aa), two coiled-coil domains (242–260 and 366–390) and
a SUN domain (427–616). SUN domains typically associate with KASH
domain proteins in the outer nuclear membrane after trimerization of the
SUN-domain protein. Mps3 can be modified by acetylation, ubiquitination
or phosphorylation.
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MPS3 IS A STRUCTURAL COMPONENT
OF THE NUCLEAR ENVELOPE

The nucleus of a eukaryotic cell is demarcated by the nuclear
envelope (NE), a double lipid bilayer structure composed of an
inner nuclear membrane (INM) and an outer nuclear membrane
(ONM). While the ONM is continuous with the endoplasmic
reticulum (ER) and is very similar in protein and lipid
composition, the composition of the INM is quite distinct
(Schirmer and Gerace, 2005). The ONM and INM are joined
throughout the NE by nuclear pore complexes (NPCs), which
serve as gateways of transportation between the cytoplasm and
nucleoplasm. The contribution of the NPC to NE structure has
been reviewed extensively elsewhere and will not be discussed
here (Knockenhauer and Schwartz, 2016; Beck and Hurt, 2017;
Goldberg, 2017).

In higher eukaryotes, the structure of the nucleus is largely
maintained by the nuclear lamina, a network of lamin proteins
associated with the nucleoplasmic side of the INM (Shimi et al.,
2010; Romero-Bueno et al., 2019) and Sad1-UNC-84 (SUN)-
domain containing proteins first discovered from an ~150 amino-
acid region of homology between Sad1 in Schizosaccharomyces
pombe and UNC-84 in Caenorhabditis elegans (Hagan and
Yanagida, 1995; Malone et al., 1999). SUN-domain containing
proteins in higher eukaryotes interact with lamin and also
contribute to NE structure by their involvement in the linker of
nucleo-skeleton and cytoskeleton (LINC) complex. The LINC
complex includes a SUN domain protein in the INM and a KASH
(Klarsicht-Anc-1-Syne-1) domain protein in the ONM that
interact with one another in the lumen of the NE (Crisp et al.,
2006; Razafsky and Hodzic, 2009).

The SUN-domain containing protein in Saccharomyces
cerevisiae is called Monopolar spindle 3 (Mps3). However, a
canonical LINC complex has not been detected in budding yeast
because a bona fide KASH domain-containing protein has not
yet been identified (Friederichs et al., 2012). Csm4 was proposed
to function as a ‘KASH’ partner during chromosome segregation
in meiosis because it binds Mps3 and localizes to the ONM
(Burri and Lithgow, 2004; Koszul and Kleckner, 2009; Morillo-
Huesca et al., 2019). More recently, a Csm4 paralogue called
Mps2 was identified as a KASH-like protein and shown to form a
non-canonical SUN-KASH complex with Mps3 (Chen
et al., 2019).

The structural organization of Mps3 is multifaceted
(Figure 1). SUN-domain proteins typically form trimers that
span the INM (Zhou et al., 2012; Nie et al., 2016). Consistently,
Mps3 has been shown to oligomerize in yeast (Li et al., 2017).
Each Mps3 monomer contains an N-terminal region (1–150 aa)
extending into the nucleoplasm, a transmembrane domain (154–
181 aa) spanning the INM, and many functional domains
oriented within the perinuclear space, including an ATP
binding P-loop (187–194 aa), coiled-coil domains (242–260 aa
and 366–390 aa) and a SUN domain (427–616 aa) (Jaspersen
et al., 2002; Jaspersen et al., 2006; Bupp et al., 2007). Based on
work with mammalian Sun2, the SUN domain of Mps3 folds
into a series of b-sheets (Sosa et al., 2012; Burke, 2018).
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Mutations in the SUN domain disrupt spindle pole body (SPB)
organization, which is a major function of Mps3 in mitosis
(Jaspersen et al., 2002; Nishikawa et al., 2003).

The cell cycle turnover of Mps3 is regulated by ubiquitination
and degradation by Cdh1, which acts in late mitosis and early G1
(Koch et al., 2019). The regulated turnover of Mps3 depends on
phosphorylation of S70, which is located between two anaphase-
promoting complex (APC) destruction motifs in the N-terminal
domain of Mps3, a KEN box (66–68 aa) and a D box (76–84 aa)
(Figure 1) (Glotzer et al., 1991; Pfleger and Kirschner, 2000;
Koch et al., 2019). The degradation of Mps3 in late mitosis likely
contributes to spindle pole body disassembly. Failure to degrade
Mps3 leads to its accumulation in the INM, aberrant nuclear
envelope expansion, and an impairment in cell cycle progression
(Friederichs et al., 2011; Li et al., 2017; Koch et al., 2019).
Similarly, mutations in conserved residues in the SUN domain,
likemps3-Y502H andmps3-F592S, show mitotic arrest as well as
synthetic sickness or lethality in combination with the deletion of
factors involved in lipid metabolism (Friederichs et al., 2012).
Thus, two distinct regions of Mps3, which function in separate
compartments, the N-terminal domain in the nucleoplasm and
the SUN domain in the lumen, are implicated in mitotic
progression and in NE proliferation. However, a genetic screen
predicted that the distinct domains of Mps3 function in relative
isolation, impacting pathways such as mitotic spindle formation,
NPC insertion, chromatin organization, and lipid homeostasis
(Friederichs et al., 2012). The role of Mps3 in SPB and NPC
insertion has been reviewed elsewhere (Jaspersen and Ghosh,
2012) and there are multiple comprehensive reviews on the
February 2020 | Volume 11 | Article 136
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LINC complex and SUN-KASH interactions; we direct readers to
these for details (Rothballer et al., 2013; Tapley and Starr, 2013;
Hieda, 2017; Hao and Starr, 2019). In this mini-review, we will
cover emerging evidence supporting a role for Mps3 in balancing
lipid metabolism and NE homeostasis and links with
telomere organization.
MPS3 AND LIPID METABOLISM

Although no KASH proteins have been confirmed in S.
cerevisiae, several tail-anchored proteins known to localize to
the ER have been shown to physically interact with Mps3 and
could equally be considered KASH-like partners (Burri and
Lithgow, 2004; Bommi et al., 2019). One of these ONM
proteins is Scs2, which has been linked to telomere silencing
(Craven and Petes, 2001; Cuperus and Shore, 2002). Scs2 is a
type II integral membrane protein, member of the VAP (VAMP/
synaptobrevin-associated protein) family that localizes to the
nuclear membrane, where it regulates phospholipid biosynthesis
and lipid traffic (Loewen et al., 2003). Scs2 interacts with proteins
containing FFAT motifs (two phenylalanines (FF) in an Acidic
Tract). Among these is the transcriptional corepressor of
phospholipid biosynthetic gene Opi1 (Loewen et al., 2003).
The interaction between Scs2 and Opi1 favors binding of the
transcriptional regulator to phosphatidic acid (PA) at the nuclear
membrane and expression of lipid biosynthetic genes.
Conditions that result in PA consumption favor the release of
Opi1 from the ONM, allowing its translocation to the nucleus
and subsequent repression of its target genes (Kliewe et al., 2017).
Investigating a link between Scs2 and Mps3 could connect lipid
homeostasis at the ONM with telomere silencing at the INM
through known functions of Mps3, Scs2 or both.

Considering the potential for Mps3 to affect lipid homeostasis
through Scs2, it is interesting to note that several Mps3 mutants
have been shown to affect lipid levels (Friederichs et al., 2011;
Ohsaki et al., 2016). In order to understand the effect of these
mutants on nuclear structure, one must have a concept of the
lipid metabolic pathway. In brief, PA is the precursor for all
glycerolipids, and represents a branching point between
membrane synthesis and energy storage pathways. In yeast,
conversion of PA to CDP-diacylglycerol (CDP-DAG) channels
metabolism towards phospholipid biosynthesis (Figure 2A).
Conversion of PA to DAG by the PA phosphatase Pah1 diverts
the metabolic pathway towards the synthesis of the storage lipid
triacylglycerol (TAG), based on the cellular demand for energy
storage during cessation of growth [Figure 2A; reviewed in
(Siniossoglou, 2013)]. Synthesis of TAG leads to the emergence
of lipid droplets (LDs), which are micellar organelles that store
and metabolize neutral lipids (Walther et al., 2017). LDs serve as
energy reservoirs that are consumed during resumption
of growth.

It has been postulated that maintaining a balance between
DAG and PA levels is important for the maintenance of NE
structure (Barbosa et al., 2015). This has been shown in cells that
Frontiers in Genetics | www.frontiersin.org 3
undergo mitotic arrest or accumulate PA, which develop an
extension of the NE known as a “nuclear flare” (Campbell et al.,
2006; Witkin et al., 2012; Barbosa et al., 2015). Therefore, lipid
levels are important for the maintenance of nuclear shape.
Importantly, LDs were recently discovered to be synthesized in
the nucleoplasm and may contribute to NE maintenance by
regulating DAG levels (Layerenza et al., 2013; Uzbekov and
Roingeard, 2013; Cartwright et al., 2015; Grippa et al., 2015;
Wolinski et al., 2015; Ohsaki et al., 2016; Romanauska and
Köhler, 2018).

In mammalian hepatocyte lines, knockdown of SUN proteins
increased nuclear lipid droplet formation, suggesting SUN
proteins can influence membrane lipid composition and the
DAG : PA balance (Ohsaki et al., 2016). In S. cerevisiae, MPS3
can be completely deleted if the nuclear pore complex biogenesis
factor POM152 is also deleted (Rout et al., 2000; Fernandez-
Martinez and Rout, 2009; Witkin et al., 2010). In this genetic
background, deletion of MPS3 showed an increase in DAG and
ergosterol levels compared to the pom152D mutant alone
(Friederichs et al., 2011), which is consistent with the increase
in neutral lipids seen in mammalian hepatocytes. This same
synthetic viable double pom152D mps3D mutant showed a more
than two-fold increase in both TAG and phospholipid levels
(Friederichs et al., 2011). Additionally, there is evidence that
Mps3 promotes membrane rigidity. Overexpression of Mps3 at
cold temperatures was found to be lethal and multiple mps3
point mutations showed sensitivity to membrane fluidizing
agents (Friederichs et al., 2011). Based on these observations,
Mps3 mutants are likely to affect nuclear LD formation through
changes in DAG and TAG levels. This would be an interesting
avenue for future investigations.

A screen for point mutations in the ATP-binding P-loop of
Mps3 created the lethal mutant Mps3-G186K (Friederichs et al.,
2011). Galactose-induced expression of this mutant, integrated
in the genome and in an otherwise wild type background, led to
nuclear membrane expansion. Cells exhibited up to eight
additional bilayers when the mutant was expressed, but not
when the wild type was induced (Friederichs et al., 2011). The
G186K mutation also exhibited a halt in mitotic progression
suggestive of SPB duplication failure, which has been shown to
cause nuclear flare formation elsewhere (Friederichs et al., 2011;
Witkin et al., 2012). Interestingly, deletion of the acyl-coA
synthetase, FAA3, rescued the Mps3-G186K phenotype
(Friederichs et al., 2011). Faa3 prefers C16:0-C18:0 long-chain
fatty acids, which are the most abundant saturated acyl tails
found in yeast glycerophospholipids (Knoll et al., 1994; Grillitsch
et al., 2011). Faa3 has also been identified as part of the yeast LD
proteome (Grillitsch et al., 2011) and collaborates with the DAG
acyltransferase Dga1 in the synthesis of TAG (Kamisaka et al.,
2007). Interestingly, Dga1 was immuno‐affinity purified using
antibodies directed towards Mps3‐FLAG protein (Bommi et al.,
2019). Taken together, a model emerges whereby lipid metabolic
enzymes and structural membrane proteins like Mps3 cooperate
in lipid and NE homeostasis. Future work should aim to explore
how the P-loop of Mps3 relates to membrane proliferation.
February 2020 | Volume 11 | Article 136
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MPS3 LINKS LIPID METABOLISM AND
TELOMERE ORGANIZATION AT THE
NUCLEAR PERIPHERY

Yeast telomeres are spatially organized within the nucleus: 32
telomeres in haploid cells cluster in 3 to 8 foci at the NE
(Palladino et al., 1993). The nucleoplasmic N-terminal domain
of Mps3 contains an acidic motif (75–150) that is important for
tethering of telomeres in S-phase (Bupp et al., 2007).
Consistently, ectopic expression of the N-terminal fragment
(1–153) of Msp3, Mps3-N’, out-competes the N-terminus of
endogenously expressed full-length Mps3 for binding to
telomeres (Schober et al., 2009). The N-terminus of Mps3
physically interacts with the PAD domain of the silent
information regulator protein Sir4 and this interaction is
required for telomere tethering (Bupp et al., 2007). The Sir4
protein is essential for telomere clustering and anchoring across
the cell cycle. In addition, Sir4 is important for the initiation of
sub-telomeric transcriptional silencing by its direct interaction
with double-stranded DNA binding protein Rap1 at telomeres
and subsequent recruitment of additional SIR factors (Sir2 and
Sir3) (reviewed in Grunstein and Gasser, 2013). The SIR complex
nucleates along sub-telomeres leading to deacetylation of lysine
residues on the tails of histone H3 and H4, repressing
transcription (Hardy et al., 1992; Moretti et al., 1994; Wotton
and Shore, 1997). The dispersion of SIR proteins from telomeres
has been shown to induce transcriptional changes in the
FIGURE 2 | Mps3 is at the crossroads of lipid metabolism and telomere organization
and Est1. These interactions facilitate maintenance of telomere length, telomere clust
makes it a potential sensor to communicate changes in membrane composition to th
partners of Mps3 like Scs2 (red), Sec20, and Csm4/Mps2 are indicated, as well as e
PA, phosphatidic acid; PI, phosphatidylinositol; PS, phosphatidylserine; PLs, phosph
mps3 mutants and genes involved in lipid biosynthesis regulation.
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euchromatin (Taddei et al., 2009). Although telomere tethering
per se is not required for transcriptional repression at telomeres
(Mondoux et al., 2007), the pool of SIR factors concentrated at
clustered telomeres, partly through Mps3, promotes telomere
silencing (Figure 2A). Interestingly, and in line with the
importance of Mps3-linked telomere tethering, mps3D75 to
150 shows telomere silencing defects (Bupp et al., 2007). In a
second, Sir4-independent pathway, Mps3 interacts with
telomere-bound yKu70/80 through Est1 (ever shorter
telomeres) (Antoniacci et al., 2007), a non-catalytic subunit of
telomerase. In this pathway, yKu80 interacts with Tlc1, the RNA
template subunit of telomerase, and therefore, physically
connects telomere regulation to Mps3 at the nuclear periphery
(Figure 2A) (Schober et al., 2009). Importantly, Ikeda et al.
showed that inhibition of sphingolipid synthesis by treatment
with aureobasidin A or by disrupting LCB1, the enzyme which
regulates the first committed step in sphingolipid synthesis,
decreased telomere clustering. Using microarray analysis, the
authors also showed that reducing sphingolipid synthesis by
inhibiting inositol incorporation reduced expression of genes
involved in telomere homeostasis, including Est1, Est2 and Est3
(Antoniacci et al., 2007; Ikeda et al., 2015). It is tempting to
speculate that Mps3 is the intermediary between changes in
sphingolipid levels and changes in telomere clustering.

Furthermore, and consistent with the S phase tethering
function of Mps3, tethering of telomeres was decreased in the
mps3-K-R mutant (Ghosh et al., 2012). This mutant has three
. (A) Mps3 participates in tethering of telomeres through interactions with Sir4
ering, and telomere silencing. The position of Mps3 in the nuclear membrane
e nucleus, potentially affecting telomere regulation. Potential KASH-like binding
nzymes related to lipid metabolism mentioned in the text. DAG, diacylglycerol;
olipids; TAG, triacylglycerol. (B) Summary of the genetic interactions between
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lysine residues (K147, K148, and K150) mutated to arginine in
the acid region of Mps3 (Figure 1), which are acetylated by the
sister chromatid cohesion regulator Eco1 (Ghosh et al., 2012).
The mps3-K-R mutant did not alter SPB duplication or Mps3
integration in the INM, but did disrupt nuclear morphology and
the interaction of Mps3 with telomeres (Bupp et al., 2007; Ghosh
et al., 2012). Consistently, deletion of the acidic motif of Mps3
had no effect on cell viability and showed no impact on spindle
pole body (SPB) structure or organization (Bupp et al., 2007).

Acetylation of Mps3 by Eco1 may represent a point of
regulation with lipid metabolic pathways, as lipid biosynthesis
and degradation have been shown to alter nuclear acetyl-CoA
pools impacting the epigenome (Berger and Sassone-Corsi, 2016;
Etchegaray and Mostoslavsky, 2016; McDonnell et al., 2016; Su
et al., 2016; van der Knaap and Verrijzer, 2016; Sivanand et al.,
2018). Decreased fatty acid synthesis in yeast acetyl-CoA
carboxylase mutants coincides with increased global histone
acetylation levels (Galdieri and Vancura, 2012; Papsdorf and
Brunet, 2019). The increase in histone H3 and H4 acetylation
contributed to increased expression of genes known to be
regulated by histone deacetylases (Galdieri and Vancura, 2012).
Additionally, in cell cultures, acetyl-CoA derived from fatty acid
breakdown was shown to account for 90% of the carbon source
used in histone acetylation, directly upregulating genes involved
in fatty acid metabolic processes (McDonnell et al., 2016). This
strongly suggests a conserved mechanism of communication
between the nucleus and lipid metabolism, which may be
mediated by SUN proteins like Mps3.

Based on these connections, changes in NE composition
could have downstream effects on gene expression regulation,
particularly of non-essential genes silenced at sub-telomeres that
are expressed upon environmental changes (Grunstein, 1997;
Brown et al., 2010; Kueng et al., 2013). One function of Mps3
might involve organizing the genome, via telomere anchoring,
such that the nucleus is poised for a transcriptional response
through the cell cycle and under stress. Consistently, it was
postulated that the repression of ribosomal protein genes in
response to secretory stress is mediated by Mps3 (Mizuta and
Warner, 1994; Mizuta et al., 1998; Yabuki et al., 2017).
GENETIC INTERACTIONS OF MPS3

Based on the role of Mps3 in maintaining NE integrity and its
role in telomere organization, we speculate that Mps3 serves to
link NE membrane status to genome organization. Notably,
telomere organization and telomere binding factors have
genetic and physical interactions with factors regulating lipid
homeostasis. For example, Est1 physically interacts with Lro1, a
TAG synthesis enzyme (Lin et al., 2015). Lro1 was recently
shown to localize to the INM under normal growth conditions
and relocate in PA biosynthesis mutants, suggesting a
physiological role for Lro1 in LD formation and in
preservation of NE integrity through maintenance of DAG
Frontiers in Genetics | www.frontiersin.org 5
levels (Barbosa et al., 2019). Cells without EST1 have short
telomeres and positive genetic interactions with pah1D and
negative interactions with loss of OPI1 (Chang et al., 2011;
Kyriakou et al., 2016). Conversely, cells lacking RAP1 have
longer telomeres and have negative genetic interactions with
the loss of LRO1 (Costanzo et al., 2016). The interactions
between Est1 and PA metabolizing proteins warrant nuclear
envelope studies in cells lacking EST1.

Lastly, to emphasize the functional interplay between
telomere organization and lipid homeostasis, many of the
proteins involved in lipid metabolism that have genetic
interactions with Mps3 also show genetic interactions with
factors at telomeres (Figure 2B). The Mps3–Y502H SUN
domain mutant is synthetic sick with loss of DEP1 and NEM1,
two proteins involved in phospholipid biosynthesis. Loss of
DEP1 results in shorter telomeres and has negative interactions
with the loss of YKu80 (Costanzo et al., 2016), whereas loss of
NEM1 rescues end-protection defects in cdc13-1, a ts mutant for
telomere specific single stranded binding factor that regulates
telomerase (Addinall et al., 2008). The mps3-F592S mutation in
the SUN domain is synthetic lethal with the loss of SAC1. Sac1 is
a PI4P phosphatase that physically interacts with Scs2 (Manford
et al., 2012). Moreover, it negatively interacts with telomere
binding factors involved in silencing including yKu70
(Schuldiner et al., 2005; Addinall et al., 2011). The mps3-F592S
variant is also synthetic lethal with loss of APQ12, an ER/NE
integral membrane protein involved in lipid homeostasis and
nuclear morphology, which itself has negative genetic
interactions with loss of SIR2 and YKU70 (Friederichs et al.,
2012). Finally, mps3-F592S also displayed synthetic growth
defects with the deletion of PSD1. The Psd1 enzyme converts
phosphatidylserine to phosphatidylethanolamine and its loss
also displayed synthetic growth defects and lethality with
deletions in SAC1 and EST1 respectively (Costanzo et al., 2010;
Chang et al., 2011; Hoppins et al., 2011; Kuroda et al., 2011).
Further characterization of these mutants will provide
mechanistic insight into how Mps3’s “SUNny way” integrates
lipid metabolic cues with nuclear envelope architecture and
telomere association.
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