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Motivation: N4-methylcytosine (4mC) plays an important role in host defense

and transcriptional regulation. Accurate identification of 4mc sites provides a more

comprehensive understanding of its biological effects. At present, the traditional machine

learning algorithms are used in the research on 4mC sites prediction, but the complexity

of the algorithms is relatively high, which is not suitable for the processing of large data

sets, and the accuracy of prediction needs to be improved. Therefore, it is necessary to

develop a new and effective method to accurately identify 4mC sites.

Results: In this work, we found a large number of 4mC sites and non 4mC sites of

Caenorhabditis elegans (C. elegans) from the latest MethSMRT website, which greatly

expanded the dataset of C. elegans, and developed a hybrid deep neural network

framework named 4mcDeep-CBI, aiming to identify 4mC sites. In order to obtain the

high latitude information of the feature, we input the preliminary extracted features into the

Convolutional Neural Network (CNN) and Bidirectional Long Short TermMemory network

(BLSTM) to generate advanced features. Taking the advanced features as algorithm

input, we have proposed an integrated algorithm to improve feature representation.

Experimental results on large new dataset show that the proposed predictor is able

to achieve generally better performance in identifying 4mC sites as compared to the

state-of-art predictor. Notably, this is the first study of identifying 4mC sites using deep

neural network. Moreover, our model runs much faster than the state-of-art predictor.

Keywords: N4-methylcytosine, machine learning, deep neural network, CNN, BLSTM, integrated algorithm

1. INTRODUCTION

DNA methylation is a form of chemical modification of DNA, which alters genetic performance
without altering the DNA sequence. Numerous studies have shown that DNA methylation can
cause changes in chromatin structure, DNA conformation, DNA stability, and DNA-protein
interactions, thereby controlling gene expression (Wang and Qiu, 2012). In many species, the N-
methylation would inhibit Watson-Crick hydrogen bond formation with guanosine (Fazakerley
et al., 1987). The differential susceptibility of foreign DNA and self-DNA suggests that some
process, such as cytosine methylation, may be affording protection to nuclear DNA (Carpenter
et al., 2012). DNA methylation guided by specific methyltransferase enzymes occurs in both
prokaryotes and eukaryotes. These modifications can label genomic regions to control various
processes including base pairing, duplex stability, replication, repair, transcription, nucleosome
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localization, X chromosome inactivation, imprinting and
epigenetic memory (Iyer et al., 2011; Allis and Jenuwein,
2016; O’Brown and Greer, 2016). The most widespread DNA
methylation modifications are N6-methyladenine (6mA), 5-
methylcytosine (5mC) and N4-methylcytosine (4mC) that have
been detected in both prokaryotic and eukaryotic genomes (Fu
et al., 2015; Blow et al., 2016; Chen et al., 2017). These
modifications are catalyzed by specific DNA methyltransferases
(DNMTs) that transfer a methyl group to specific exocyclic
amino groups (He et al., 2018). In eukaryotes, 5mC is the
most common DNA modification, which is essential for gene
regulation, transposon suppression and gene imprinting (Suzuki
and Bird, 2008). While 6mA and 4mC are very small, they can
only be detected in eukaryotes by high sensitivity techniques.
In prokaryotes, 6mA and 4mC are the majority, mainly used to
distinguish host DNA from exogenous pathogenic DNA (Heyn
and Esteller, 2015), and 4mc controls DNA replication and
corrects DNA replication errors (Cheng et al., 1995; Wei et al.,
2018). Moreover, 4mC as part of a restriction-modification
(R-M) system prevents restriction enzymes from degrading host
DNA (Schweizer et al., 2008; Wei et al., 2018).

Although extensive studies have been conducted on
modifications of 5mC and 6ma, studies on 4mC are relatively
limited due to the lack of effective experimental methods and
large amounts of data. Single-molecule real-time sequencing
(SMRT) technology can detect 4mC, 5mc, and 6mA base
modifications (Ecker, 2010; Flusberg et al., 2010; Clark et al.,
2013; Davis et al., 2013). However, SMRT sequencing is costly
and is not conducive to the analysis of various species. Recently,
Yu et al. (2015) proposed a method for the determination of
methylcytosine in genomic DNA by 4 mC-Tet-assisted bisulfite
sequencing, which can accurately generate a genome-wide,
single-base resolution map of 4mC, and finally identify the
4mC motif associated with the bacterial R-M system. Biological
experiments are laborious and expensive when performing
genome-wide testing. Therefore, it is necessary to develop a
calculation method for identifying 4mC sites.

So far, there are only four methods for identifying the 4mC
sites, all of which adopt the SVM model, including iDNA4mC,
4mCPred, 4mcPred-SVM and 4mcPred-IFL. The four predictors
are designed to predict 4mC sites directly from sequences.
The first 4mC site predictor, called iDNA4mC (Chen et al.,
2017), encodes DNA sequences using nucleotide chemistry
properties and frequency and is tested across different species.
The experimental results show that iDNA4mC has achieved
initial results in identifying 4mC sites. However, the low
predictive power is the main drawback of iDNA4mC. The
second 4mC site predictor, called 4mCPred (He et al., 2018),
proposes a new feature coding algorithm by combining position-
specific trinucleotide propensity and electron-ion interaction
pseudopotentials, which improves the accuracy of prediction.
The third 4mC site predictor, called 4mcPred-SVM (Wei et al.,
2018), proposes more useful sequence features in the predictor
and improves the feature representation capability through a
two-step feature selection method. However, the performance
of the experiment did not improve much. Recently, Wei et al.

(2019) proposed the fourth 4mC site predictor, called 4mcPred-
IFL, which uses an iterative feature representation algorithm
to learn probabilistic features from different sequential models
and enhance feature representation in a supervised iterative
manner. However, the complexity of 4mcPred-IFL is very high.
When the data set is large, it takes a long time to obtain the
results. Meanwhile, the prediction accuracy in 4mcPred-IFL can
be improved further.

In this work, we developed a deep learning framework called
4mcDeep-CBI to identify the 4mC sites. Deep learning related
methods are widely used in hot spots prediction of protein-
protein interfaces (Pan et al., 2018; Wang et al., 2018; Deng et al.,
2019; Liu et al., 2019), but we have not found any work with deep
learning in 4mC sites prediction, and all previous studies have
used SVMmachine learning methods. This work is the first study
of 4mC sites using deep learning. Especially, we have greatly
expanded the dataset which is used to evaluated the prediction
models of the 4mC sites. Experimental results demonstrate that
4mcDeep-CBI has better performance than other models. The
contributions of our work can be summarized as follows.

(1) We have greatly expanded the dataset of C. elegans, and the
number of samples was increased from 3,108 to 17,808, which
is beneficial for subsequent research.

(2) we developed a deep learning framework to identify the 4mC
sites. 3-CNN and BLSTM are used to extract deep information
from the acquired features and to obtain advanced features.
Experimental results show that advanced features have
achieved better performance in identifying the 4mC sites.

(3) We finally take probability feature matrix obtained by the
machine learning methods into the deep learning model,
which further improve the prediction accuracy. In our
experiment, compared with the state-of-art predictor, the
proposed model has the accuracy increased from 87 to 93%.

2. MATERIALS AND METHODS

2.1. Datasets
We obtained samples genomes of Caenorhabditis elegans (C.
elegans) from the latest MethSMRT website, found a lot of
4mC sites and non 4mC sites with the sequence lengths all
of 41 bp. Each 4mC sequence sample has several indicators:
position, coverage, IPDRatio (inter-pulse duration ratio), frac,
fracLow, fracUp, identificationQv. In order to construct a reliable
quality dataset, we did the following two steps. Firstly, as stated
in the Methylome Analysis Technical Note, the Modification
QV (modQV) score indicates that the IPD ratio is significantly
different from the expected background. Since the modQV score
of 30 is the default threshold for calling a position as modified,
we removed the sample with the modQV score more than 30.
Secondly, as elaborated in previous study (Chou et al., 2015), if
training and testing are conducted through this biased dataset,
the experimental results may have overestimated accuracy. To
eliminate redundancy and minimize the bias, the CD-HIT
software (Fu et al., 2012) with the cut off threshold set at
80% was used to remove those sequences with high sequence
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similarity. After the above two steps, we obtained 15, 639 samples
in C. elegans.

We combine the new samples with the C. elegans benchmark
dataset (Ye et al., 2017) that was used in the previous works
to form a new data set with 18, 747 samples. Some of the new
samples we extracted may be similar to the previous benchmark
dataset. Therefore, we use the CD-HIT software to remove
those samples with high sequence similarity. Finally, we get
the new C. elegans dataset with 17, 808 samples which contains
111, 73 positive samples and 663, 5 negative samples. The positive
samples are the sequences centroided with functional 4mC sites
detected by the SMRT sequencing technology, while the negative
samples are the sequences with the cytosines in the center but
not detected as 4mC (Wei et al., 2019). The new dataset can be
downloaded from our github, and the download link is given
in section 3.

2.2. Model of 4mcDeep-CBI
2.2.1. Preliminary Feature Extraction
We use the eight features mentioned in Chen et al. (2017),
He et al. (2018), Wei et al. (2018), and Wei et al. (2019) as
preliminary features. These features are obtained by encoding
the different sequence information by the feature representation
algorithm of the sequence. These features are BKF (Binary
and k-mer frequency), DBPF (Dinucleotide binary profile
and frequency), KNN (K-Nearest Neighbor), PCP (Physical-
Chemical Properties), MMI (Multivariate Mutual Information),
PseDNC (Pseudo dinucleotide composition), PseEIIP (Electron-
ion interaction pseudopotentials of trinucleotide) and RFHCP
(Ring-function-hydrogen-chemical properties). The related
feature extraction methods can be found in Wei et al. (2019).

2.2.2. 4mcDeep-CBI Network
As shown in Figure 1, 4mcDeep-CBI consists of 3-CNN layer,
BLSTM layer, fully connected layer, and a sigmoid classifier. The
input of 4mcDeep-CBI is one of eight preliminary features. First
of all, the preliminary feature is used as the input to 3-CNN layer,
which contains convolution layer, ReLU activation function and
max pooling operation. Next, the output of 3-CNN layer will be
imported to BLSTM layer to obtain an advanced feature.With the
eight features as the inputs, we can get eight advanced features,
respectively. Then, each advanced feature (matrix) will be further
converted to one-dimensional feature (vector) using the flatten
function, which will be finally connected to the fully connected
layer. The last layer is the sigmoid layer, which is used to obtain
advanced probability features and the prediction result of the first
step. At last, we get an eight-dimensional feature, which will be
the input of the integrated algorithm.

2.2.2.1. Convolutional neural network (CNN)
CNN has a powerful ability to extract abstract features, which
is not only suitable for image processing, but also for natural
language processing tasks. It consists of convolution, activation,
and max-pool layers.

In the model design, since we have verified in experiment
that the model with 3 CNN layers has the best performance, we
employ 3-CNN as an advanced feature extractor, and the input is

the preliminary feature extracted from DNA sequences. We first
put the preliminary features into the 3-CNN layer, respectively,
and set the weighting parameters of the convolution filter. Then,
the convolution layer outputs the matrix inner product between
the input preliminary feature and filters. After convolution, a
rectified linear unit (ReLU) is applied to sparsify the output of
the convolution layer. The Rectified Linear Unit (ReLU) (Nair
et al., 2010) takes the output of a convolution layer and clamps
all the negative values to zero to introduce non-linearity that
can not only reduce the computational cost, but also avoid the
phenomenon of vanishing gradient and over-fitting. Finally, a
max pooling operation is used to reduce the dimensionality and
over-fitting by taking the maximum value in a fixed-size sliding
window. The output of the convolution module is represented by
the following expression:

Oc = Pool
(

ReLU
(

Conv(S)
)

)

,

where Oc is the output tensor, S is the input preliminary feature
of the sequence. For BKF as an example, the dimension of S is
1 × 500 × 1 (input_shape). The nb_filter of 3-CNN are 16, 32,
64, respectively, and the filter_length of 3-CNN are all 8. The
parameters of max pool is 2. Therefore, the dimension of Oc is
1×223×64.

2.2.2.2. Long short term memory networks (LSTM)
LSTM is a recurrent neural network (RNN) architecture (an
artificial neural network) published in 1997 (Hochreiter and
Schmidhuber, 1997). Compered with traditional RNNs, LSTM
network is well-suited to learn from experience to classify,
process and predict time series, and it has advantages in dealing
with long term dependency. Especially, Bidirectional LSTM can
capture the bidirectional dependence of features and the outputs
of individual directions are concatenated, which can well mine
the deeper information in the features:

Or = BiLSTM(Oc ),

where Or is the output of BLSTM layer and is also advanced
feature of the sequence, Oc is the feature matrix of a sequence
obtained by the 3-CNN layer. A LSTM contains a forget gate
layer, an input gate layer and an output gate layer. When the
LSTM traverses each element of the input, it first determines what
information the forget gate layer is about to discard based on
the previous input. The input gate layer then determines what
information should be stored for the next layer and updates the
current state value. Finally, the output gate layer will only output
the part of our output that we determined (Pan and Shen, 2018).

2.3. Integrated Algorithm Model
In the integrated algorithmmodel, there are six machine learning
algorithms involved, which are K-nearest neighbor algorithm,
Logistic regression algorithm, Support vectormachine algorithm,
Naive Bayesian algorithm, Decision tree algorithm, and Random
forest algorithm, respectively. With the 8-D advanced feature of
the sequence as the input, we run these six different machine
learning algorithms to predict the labels, and get the best
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FIGURE 1 | A graphical illustration of the 4mcDeep-CBI model.

result. Then, the obtained probability value is combined with
the previous 8-D advanced feature vector to form a new 9-
D feature vector. Next, the 9-D feature are imported into the
integrated algorithm model for the new iteration. This process
will be repeated until performance reaches convergence. In each
iteration, the multi-dimensional input features are trained, and
the optimal algorithm is selected each time to obtain an one-
dimensional probability feature, and then the input and output
features are merged into a new feature vector which has onemore
dimension than the input and will be the new input for next
iteration. For example, it is supposed that the vectors f1, f2, . . . ,
f8 are the advanced features obtained by previous processing, and
with (f1, f2, . . . , f8) as the algorithm input, we can get the result
vector f9. Then, (f1, f2, . . . , f8, f9) will be the algorithm input of
the next iteration. If there are 5 iterations, we will get the result
(f1, f2, . . . , f8, f9, f10, f11, f12, f13) which will be the feature matrix
for the following processing. In the experiment, after less than
10 iterations, the algorithm can reach the state of convergence,
which can be shown in section 3.

2.4. Deep Learning Model
For the last part of 4mcDeep-CBI, a general neural network
model is used to get the optimal solution. The neural network has

2–4 intermediate layers, each with a different activation function.
In our experiment, we used two layers of intermediate layers, each
using the ReLU function as the activation function, and finally
used the sigmoid function as the output layer. We found that
inputting the advanced feature matrix obtained by the integrated
algorithm into the neural network model can further improve
the accuracy.

2.5. Performance Evaluation
For performance evaluation, we used the following five generally-
used metrics: Sensitivity (SN), Specificity (SP), Accuracy (ACC),
Mathew’s Correlation Coefficient (MCC) (Wei et al., 2019) and
Area Under the ROC Curve (AUC). The definition of each
evaluation metric is as follows:

SN =
TP

TP + FN
,

SP =
TN

TN + FP
,

ACC =
TP + TN

TP + TN + FN + FP
,

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

,
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FIGURE 2 | Evaluate the performance of preliminary feature and advanced feature on the same data set.

where TP indicates that the actual result is a positive sample, and
the predicted result is also a positive sample; TN indicates that the
actual result is a negative sample, and the predicted result is also
a negative sample; FP indicates that the actual result is a negative
sample, and the predicted result is a positive sample (indicating
that the negative sample is predicted incorrectly); FN indicates
that the actual result is a positive sample, and the prediction
result is a negative sample (indicating that the positive sample
is predicted incorrectly).

The area under the ROC curve (AUC) is a comprehensive
used metric. The abscissa of the ROC curve is the false positive
rate and the ordinate is the positive rate. The AUC value is the
enclosed area value of the ROC curve and the coordinate axis,
and the value is between 0 and 1. The maximum value of AUC
is 1, which means that the performance of the model is perfect,
and all prediction results are correct. AUC value of 0 means that
the model performance is very poor, and all prediction results
are wrong.

3. RESULT AND DISCUSSION

We have done extensive experiments on the new dataset
using the proposed predictor (4mcDeep-CBI) and the state-
of-art predictor (4mcPred-IFL), respectively, then we make
a performance comparison between two models. The dataset
and code used in the experiment have been uploaded to our
GitHub (https://github.com/mat310/4mcDeep), which is shared
with other researchers. Due to limited space, part of experimental
results are listed in Supplementary Material.

3.1. Performance of Different Features
Used in Prediction
We put 8 preliminary features into the 3-CNN and BLSTM
models to obtain advanced features. Then the advanced feature
are sequentially passed through sigmoid classifier to obtain the
prediction result of the first step. We performed different types

FIGURE 3 | Acc-loss curve of AD_BKF based on 3-CNN and BLSTM models.

Where AD_BKF is a advanced feature of BKF.

of features for predictive performance analysis and compared
the experimental results of 4mcPred-IFL with 4mcDeep-CBI.
From Figure 2, we find that the predicted performance of the
four features BKF, DBPF, KNN, and RFHCP ranks in the top
four in the experimental results of both modes. In addition,
the performance metrics of the eight characteristic experimental
results have been improved in our model (The experimental
results can be found in Tables S1, S2). Figure 2 shows that
our proposed model performs better than 4mcPred-IFL in the
preliminary experimental results.

The experiment used a three-fold cross-validation. As shown
in Figure 3, this is the acc-loss curve of AD_BKF during
the preliminary experiment (acc-loss curves of other advanced
feature can be found in Figure S1). Epoch refers to the number
of times when all data were sent into the network to complete
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FIGURE 4 | Experimental result graph after using integrated algorithm.

FIGURE 5 | Performance evaluation of our predictor and the state-of-the-art

predictor on the same dataset.

one forward calculation and back propagation. As can be seen
from the figure, with the increase of epoch value, the accuracy
of the training set and verification set increased continuously,
and finally converged at epoch = 5. The loss function values of
the training set and verification set decreased continuously, and
finally converged when epoch = 5. Therefore, we can set epoch
= 5 to get the best experimental results. Figure 3 illustrates that
the prediction performance is continuously improved and there
is no over-fitting during the experiment.

3.2. Performance of the Integrated
Algorithm
In the previous section, we compared the experimental results
of different advanced features. Here, we combine the advanced
probability features obtained from the sigmoid classifier to

FIGURE 6 | ROC curves of our predictor and the state-of-the-art predictor on

the same dataset.

form a matrix with 8-D probabilistic feature. This matrix is
input into the integrated algorithm model and we get the
experimental results. To visually analyze the results, we plot
the ACC change with the increment of the feature size, which
is shown in Figure 4. In the figure, the X-axis represents the
number of iterations and the Y-axis represents the performance
in terms of accuracy. Before performing the iterative operation,
we have a matrix with 8-D probabilistic feature. As the number
of iterations increases, performance increases rapidly from the
beginning, reaching a maximum after 5 iterations when the
feature size of the matrix is 13 and ACC is 0.9274, then gradually
converge to a steady state. This suggests that the integrated
algorithm model can improve feature representation and surely
improve performance. 4mcPred-IFL adopted an iterative feature
representation algorithm, which reached the maximumwhen the
number of iterations was 30 and ACC was 0.9001, and then
gradually converges to a stable state. The details can be found
in Figure S2.

3.3. 4mcDeep-CBI vs. State-of-Art
Predictor on Performance
Our 4mcDeep-CBImodel shows the best predictive performance,
and we achieve ACC = 0.9294, MCC = 0.8498, SN = 0.9486, SP
= 0.8938, AUC = 0.9242. To further evaluate the performance
of our predictor 4mcDeep-CBI, we compared our predictor with
the state-of-art predictor: 4mcPred-IFL. The performances of
4mcDeep-CBI and 4mcPred-IFL are depicted in Figures 5, 6,
respectively. Figure 5 illustrates the performances in terms of
ACC, MCC, SN, SP, and AUC, while Figure 6 shows the ROC
curves of 4mcDeep-CBI and 4mcPred-IFL. The details of their
performances can be found in Table S3. It can be clearly seen
that 4mcDeep-CBI achieved better performance than 4mcPred-
IFL in all five metrics. Our predictor improves ACC by 3.26%.
It is worth noting that our predictor increased the MCC by
7.88%. MCC is essentially a correlation coefficient between the
actual classification and the prediction classification, and is a
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TABLE 1 | Running time of the main modules of 4mcPred-IFL and 4mcDeep-CBI.

Running_time (minute)

Sample size SVM_10 SVM_50 4mcDeep-CBI

1,000 31.3 9.2 3.1

4,000 1034.4 222.1 10.7

7,000 3123.6 698.4 19.8

10,000 6255.8 1365.6 24.5

13,000 9449.5 2173.2 35.1

16,000 15094.4 3261.3 48.2

relatively comprehensive metric. This shows that 4mcDeep-CBI
is better than 4mcPred-IFL in terms of comprehensiveness
and integrity.

The ROC curve between the different methods is shown in
Figure 6. As can be seen from the figure, the ROC curve of
4mcDeep-CBI is closer to the upper left corner, and the area
under the ROC curve is the largest, which is 4.35% larger than
that of 4mcPred-IFL. In summary, the above results illustrate
that the performance of 4mcDeep-CBI is better than 4mcPred-
IFL, and 4mcDeep-CBI can effectively improve the accuracy of
identifying 4mC sites.

3.4. 4mcDeep-CBI vs. State-of-Art
Predictor on Running Time
The running time of the main modules of 4mcPred-IFL
and 4mcDeep-CBI accounts for a large proportion in their
respective models. Among them, the main module of 4mcPred-
IFL refers to the preliminary experimental results obtained
by putting the extracted preliminary features into the SVM
model. The main module of the 4mcDeep-CBI model refers to
the preliminary experimental results obtained by putting the
extracted preliminary features into the deep learning model.
In order to explore the operational efficiency of the model,
we run the main modules of 4mcPred-IFL and 4mcDeep-CBI
separately on the same server. The preliminary feature is BKF as
an example. Experiments are carried out with different sample
sizes. The results obtained are shown in Table 1. 4mcPred-
IFL employed Sequential Forward Search (SFS) to determine
the optimal feature subset. In Table 1, “SVM_10” refers to the
distance of the SFS is 10, and “SVM_50” refers to the distance
of the SFS is 50. The smaller the distance setting, the greater
the possibility of better experimental results, and the longer the
experiment runs. In addition, when the distance range from 10
to 50, the optimal subset of features can be obtained. As we can
see in Table 1, our model runs much faster than the state-of-
art predictor. After running 16, 000 samples, 4mcDeep-CBI need
48.2 min only, but even if the distance is set to 50, 4mcPred-
IFL takes 3261.3 min to run. The running time is more than
50 times slower than us. Moreover, as the number of samples
increased, 4mcDeep-CBI grew more slowly than 4mcPred-IFL.
There are at least two reasons: (1) The efficiency of 4mcpred-
IFL using SFS method to obtain the optimal feature set is
very slow. (2) There are two important parameters (the penalty
parameter C and the kernel parameter γ ) in the SVM model

TABLE 2 | ACC of 4mcDeep-CBI with 4 CNN layers under different parameters.

nb_filter Filter_length ACC (%)

4, 8, 16, 32 4, 4, 4, 4 90.02

4, 8, 16, 32 8, 8, 8, 8 89.46

4, 8, 16, 32 16, 16, 16, 16 88.70

8, 16, 32, 64 4, 4, 4, 4 90.17

8, 16, 32, 64 8, 8, 8, 8 90.02

8, 16, 32, 64 16, 16, 16, 16 89.25

16, 32, 64, 128 4, 4, 4, 4 89.78

16, 32, 64, 128 8, 8, 8, 8 89.37

16, 32, 64, 128 16, 16, 16, 16 89.18

32, 16, 8, 4 4, 4, 4, 4 89.36

32, 16, 8, 4 8, 8, 8, 8 89.29

32, 16, 8, 4 16, 16, 16, 16 88.31

64, 32, 16, 8 4, 4, 4, 4 89.89

64, 32, 16, 8 8, 8, 8, 8 88.72

64, 32, 16, 8 16, 16, 16, 16 87.97

128, 64, 32, 16 4, 4, 4, 4 90.03

128, 64, 32, 16 8, 8, 8, 8 89.96

128, 64, 32, 16 16, 16, 16, 16 89.09

used by 4mcPred-IFL. Meanwhile, 4mcPred-IFL takes a lot of
time to call SVM algorithm over and over again to optimize
the penalty parameter C and the kernel parameter γ by using
the grid search method. Consequently, the complexity of the
4mcpred-IFL model is much higher than our proposed model.

3.5. Impact of Different CNN Layers on
4mcDeep-CBI
In the proposed model 4mcDeep-CBI, we have three CNN layers
which can efficiently extract the features from input data. In the
experiment, with the CNN layers given, we obtain the accuracy
of the 4mcDeep-CBI, and we make a performance comparison
according to different CNN layers. For feature RFHCP, Table 2
shows the experimental results of the 4mcDeep-CBI with 4
CNN layers. Parameters are set as batch_size = 32, 64, 128,
256; maxpool1D = 1, 2, 3; learning rate = 0.001, 0.005, 0.0001;
dropout ratio = 0.1, 0.2, 0.5. It can be found from Table 2

that the maximum ACC value is 90.17% when the 4mcDeep-
CBI has 4 CNN layers. Similarly, we do experiments based on
different (2, 3, 5, and 7) CNN layers. The experimental results
are shown in Figure 7. As can be seen from Figure 7, maximum
ACC value is 90.57% when the 4mcDeep-CBI has 3 CNN layers.
For other features, the experiment has the same result. Therefore,
the experiment verifies that 3-CNN layer model has the best
performance, that is why we choose 3 CNN layers in the model
design of the 4mcDeep-CBI.

4. CONCLUSION

In this paper, we propose a deep neural network named
4mcDeep-CBI, which can further boost the performance of
identifying 4mC sites. Moreover, we found a large number of
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FIGURE 7 | Impact of different CNN layers on ACC.

4mC sites and non 4mC sites of C. elegans from the latest
MethSMRT website, which greatly expanded the data set of C.
elegans. The proposed model 4mcDeep-CBI uses 3-CNN and
BLSTM modules to mine deep information of features to obtain
advanced features. By experimental comparisonwith the state-of-
art predictor, we found that our proposed framework performed
better than the state-of-art predictor, and our model did not
appear to have an over-fitting phenomenon. In addition, we
have proposed an integrated algorithm to generate informative
features. By analyzing the accuracy of the model during the
iterative process, we find that the integrated algorithm is
constantly improving the performance of the model. Finally,

we evaluated our proposed 4mcDeep-CBI with the state-of-
art predictor, and the results demonstrate that our model can
achieve better performance in identifying 4mC sites and runs
more efficiently. We hope that 4mcDeep-CBI can be an useful
bioinformatics tool for identifying 4mC sites and promoting the
DNA methylation analysis.

Deep learning is an important way of sequence analysis. For
feature selection, we can use the most popular word embedding
training method: Word2Vec algorithm, which can be combined
with the secondary structure of DNA to predict 4mC sites.
Moreover, the sequence length provided by the MethSMRT
website is 41 bp, and we need longer DNA sequence fragments,
such as 80, 100, and 150 bp to do further research.
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