
HYPOTHESIS AND THEORY
published: 21 April 2020

doi: 10.3389/fgene.2020.00310

Frontiers in Genetics | www.frontiersin.org 1 April 2020 | Volume 11 | Article 310

Edited by:

Joao Carlos Setubal,

University of São Paulo, Brazil

Reviewed by:

Ricardo Maria Letelier,

Oregon State University, United States

Karoline Faust,

KU Leuven, Belgium

*Correspondence:

Ashley R. Coenen

acoenen3@gatech.edu

Sarah K. Hu

sarah.hu@whoi.edu

Elaine Luo

elaine.luo@hawaii.edu

Daniel Muratore

dmuratore3@gatech.edu

Joshua S. Weitz

jsweitz@gatech.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 29 May 2019

Accepted: 16 March 2020

Published: 21 April 2020

Citation:

Coenen AR, Hu SK, Luo E,

Muratore D and Weitz JS (2020) A

Primer for Microbiome Time-Series

Analysis. Front. Genet. 11:310.

doi: 10.3389/fgene.2020.00310

A Primer for Microbiome Time-Series
Analysis
Ashley R. Coenen 1*†, Sarah K. Hu 2*†, Elaine Luo 3*†, Daniel Muratore 4*† and

Joshua S. Weitz 1,5*

1 School of Physics, Georgia Institute of Technology, Atlanta, GA, United States, 2Woods Hole Oceanographic Institution,

Marine Chemistry and Geochemistry, Woods Hole, MA, United States, 3Daniel K. Inouye Center for Microbial Oceanography:

Research and Education, University of Hawaii, Honolulu, HI, United States, 4 Interdisciplinary Graduate Program in

Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, United States, 5 School of Biological Sciences,

Georgia Institute of Technology, Atlanta, GA, United States

Time-series can provide critical insights into the structure and function of microbial

communities. The analysis of temporal data warrants statistical considerations, distinct

from comparative microbiome studies, to address ecological questions. This primer

identifies unique challenges and approaches for analyzing microbiome time-series. In

doing so, we focus on (1) identifying compositionally similar samples, (2) inferring

putative interactions among populations, and (3) detecting periodic signals. We connect

theory, code and data via a series of hands-on modules with a motivating biological

question centered on marine microbial ecology. The topics of the modules include

characterizing shifts in community structure and activity, identifying expression levels with

a diel periodic signal, and identifying putative interactions within a complex community.

Modules are presented as self-contained, open-access, interactive tutorials in R and

Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated

and compositional data, with an eye to improving the robustness of inferences from

microbiome time-series. In doing so, we hope that this primer helps to broaden the use

of time-series analytic methods within the microbial ecology research community.

Keywords: microbial ecology, time-series analysis, marine microbiology, inference, clustering, periodicity, code:R,

code:matlab

1. INTRODUCTION

Microbiomes encompass biological complexity from molecules to genes, metabolisms, and
community ecological interactions. Understanding this complexity can be difficult due to
domain- or location- specific challenges in sampling and measurement. The application of
sequencing technology has revolutionized almost all disciplines of microbial ecology, by allowing
researchers the opportunity to access the diversity, functional capability, evolutionary history, and
spatiotemporal dynamics of microbial communities rapidly and at a new level of detail (Huse
et al., 2008; Caron, 2013). Increasingly it is now possible to sample at the time-scale at which
those processes occur, resulting in the collection of microbiome time-series data. While such
high-resolution sampling opens new avenues of inquiry, it also presents new challenges for
analysis (McMurdie and Holmes, 2014; Weiss et al., 2016, 2017; Widder et al., 2016; Knight et al.,
2018).

One of the first challenges in analyzing microbiome data is to categorize sequences in terms of
taxa or even “species” (Konstantinidis et al., 2006; Caron and Hu, 2019). Many methods have been
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developed to perform this categorization (Blaxter et al., 2005;
Konstantinidis and Tiedje, 2005; Huse et al., 2008; Mende et al.,
2013; Sunagawa et al., 2013; Eren et al., 2014; Katsonis et al., 2014;
Mahé et al., 2015; Varghese et al., 2015; Roux et al., 2016; Callahan
et al., 2017; Luo et al., 2017). Particular choices used to define
species-level units may alter downstream estimations of diversity
and other parameters of interest (Youssef et al., 2009; Kim et al.,
2011; Hu et al., 2015). Indeed, even the procedures for estimating
common diversity parameters are impacted by the properties of
read count data (Willis, 2019). However, some definition of taxa
is often necessary for characterizing the composition of microbial
communities. In this primer, we use the term taxon to denote
approximately species-level designations, such as operational
taxonomic unit (OTU) or amplicon sequence variant (ASV).

Once sequences have been categorized to approximate
species-level groups, the interpretation of their read count
abundances is accompanied by assumptions that violate many
standard parametric statistical analyses. For example, zero
reads from a sample mapping to a particular taxon is
commonplace in microbiome sequence results, yet it typically
remains unclear if a zero indicates evidence of absence (e.g.,
taxon not present in sample, incapable of transcribing a
gene) or absence of evidence (e.g., below detection, inadequate

FIGURE 1 | Independent random walks yield apparently significant correlations (when evaluated as independent pairs) despite no underlying interactions, in contrast

to residuals (i.e., point-to-point differences). (A) Time-series of independent random walks, xi (t). (B) Correlation structure of independent random walks. (C)

Distribution of correlation values for an ensemble of independent random walks, with p-value = 0.05 marked (red lines). (D) Time-series of the residuals of

independent random walks, i.e., 1xi (t) = xi (t+ 1t)− xi (t). (E) Correlation structure of residual time-series. (F) Distribution of correlation values for the same ensemble

as (C) but taken between the residual time-series, with p-value = 0.05 marked (red lines).

sequencing depth) (Paulson et al., 2013; Weiss et al., 2017).
In addition, sequence data is compositional, and therefore
does not include information on absolute abundances (Gloor
et al., 2017). As a result, compositional data has an intrinsic
negative correlation structure, meaning that the increase in
relative abundance of one community member necessarily
decreases the relative abundances of all other members
(Silverman et al., 2017).

The issues of categorization and sampling depth apply to
all kinds of microbiome data sets. In particular, temporal
autocorrelation presents an additional complexity tomicrobiome
time-series, in that each observation is dependent on the
observations previous to it in time. Autocorrelation also
precludes the use of many standard statistical techniques, which
assume that observations are independent. In Figure 1, we
show how autocorrelation leads to high incidences of spurious
correlations among independent time-series.

Complex microbiome data demand nuanced analysis. In
this paper, we provide a condensed synthesis of principles
to guide microbiome time-series analysis in practice. This
synthesis builds upon and is complementary to prior efforts
that established the importance of analyzing temporal
variation for understanding microbial communities (e.g.,
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Faust et al., 2015). Here, we introduce core statistical methods
for microbiome time-series analysis as a starting point and
suggest further reading on other possible methods. Our
process is described in detail via several code tutorials
at https://github.com/WeitzGroup/analyzing_microbiome
_timeseries that include analytic tools and microbiome time-
series data, and provide a software skeleton for the custom
analysis of microbiome time-series data. These tutorials
include the basics of discovering underlying structure in
high-dimensional data via statistical ordination and divisive
clustering, non-parametric periodic signal detection in temporal
data, and model-based inference of interaction networks using
microbiome time-series.

2. METHODS

2.1. Overview of Tutorials
We describe three distinct categories of time-series analyses:
clustering, identifying periodicity, and inferring interactions.
For each category, we demonstrate analyses that answer
an ecologically motivated question (Figure 2). Each
tutorial emphasizes normalization methods specifically
developed for the analysis of compositional data. Each
tutorial also addresses challenges related to multiple
hypothesis testing, overdetermination, and measurement
noise. Interactive, self-contained tutorials that execute the
workflows described in the manuscript are available in

FIGURE 2 | Workflow of techniques implemented in each module. The top layer considers questions of interest for a particular study. In the second layer, data

normalizations are listed as implemented in module I and module II. For module III, we use synthetic data and instead list modeling inputs. The third layer shows the

analytical techniques used in this primer, which we note is not exhaustive. These techniques provide some insight into the initial question asked, as described in the

fourth layer.
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R and Matlab https://github.com/WeitzGroup/analyzing
_microbiome_timeseries.

2.2. Dataset Sources
For modules I and II, time-series data are derived from an 18S
rRNA gene amplicon data set from Hu et al. (2018), in which
samples were collected at 4 h intervals for a total of 19 time
points (Lagrangian sampling approach). Input data are in the
form of sequence count tables, where samples are represented
as columns and each row is a taxonomic designation (OTU or
transcript ID) with sequence counts or read coverage abundance
per taxon (here we use “taxon” as shorthand). The code in each of
these modules can be customized for use on other data, although
for the purposes of analyzing any temporal-scale variability,
samples must be taken at a frequency sufficiently shorter than the
temporal scale of interest (e.g., daily temporal variability requires
sub-daily sampling, seasonal temporal variability requires sub-
seasonal sampling).

Formodule III, time-series data are simulated from a synthetic
microbial community, for which the “true” network is known.
The techniques in this module can be applied to time-series data
as has been done in a handful of studies (Mounier et al., 2008;
Stein et al., 2013; Fisher and Mehta, 2014; Marino et al., 2014;
Dam et al., 2016; Jover et al., 2016; Ovaskainen et al., 2017; Xiao
et al., 2017; Faust et al., 2018; Venturelli et al., 2018).

2.3. Normalization
2.3.1. Log-Ratio Transformations
Microbiome data tend to have three properties: (1) they are sum-
constrained (all reads sum to the sequencing depth), (2) they
are non-negative, and (3) they are prone to heteroskedasticity
(the variance of the data is not equal across its dynamic range).
These attributes of microbiome data violate some underlying
assumptions of traditional statistical techniques. Transforming
microbiome data into log-ratios (Aitchison, 1983) can mitigate
these problems by stabilizing variance and distributing values
over all real numbers, as well as mitigating statistical bias related
to sequencing protocols (McLaren et al., 2019).

The simplest log-ratio transformation requires selecting some
particular focal variable/taxon in the composition, dividing all
other variables in each sample by the abundance of the focal
taxon, and taking the natural logarithm. Mathematically:

LRi = ln(xi)− ln(xfocal) (1)

This kind of log-ratio transformation eliminates negative
constrained covariances, but all variables become relative
to the abundance of an arbitrary focal taxon. Instead of
selecting a focal taxon, the Centered Log-Ratio Transformation
constructs ratios against the geometric average of community
abundances (Egozcue et al., 2003).

CLRi = ln(xi)−
1

n

n
∑

k=1

ln(xk) (2)

This transformation retains the same dimensionality as the
original data, but is also still sum constrained:

n
∑

k=1

CLRk =

n
∑

k=1

(

ln(xk)−
1

n

n
∑

k=1

ln(xk)

)

(3)

n
∑

k=1

CLRk =

n
∑

k=1

ln(xk)−
n

n

n
∑

k=1

ln(xk) (4)

= 0 (5)

Log-based transformations require some caution when dealing
with data sets with large numbers of zeros, namely because
the logarithm of zero is undefined. To overcome this problem,
implementations usually employ some pseudocount method,
i.e., adding a small number to all observations to make the
log of zero observations calculable. Adding a pseudocount
disproportionately affects rare taxa, where the magnitudes of
differences between samples may be similar to the magnitude of
the added pseudocount and therefore obscured (Tsilimigras and
Fodor, 2016).

2.3.2. Z-Score Transformation
Another transformation that converts data from counts to a
continuous real-valued number is the z-score transformation,
achieved by applying this relationship:

zi =
xi − µx

σx
(6)

where xi is an observation,µx is the mean of population x, and σx
is the standard deviation of x. Often, µx and σx are estimated by
the sample mean and standard deviation. The z-score is how far,
in terms of number of standard deviations, a given observation
is from the sample mean Cheadle et al. (2003). Of note, this
transformation places variables of different magnitudes on a scale
with the same range.

2.3.3. Variance Stabilizing Transformation
Log-ratio-based transformations in microbiome applications
broadly serve the purpose of making the data more compatible
with statistical methods that assume continuous/real-valued
data and errors with equal variances. Such transformations are
necessary because of the heteroscedasticity of sequence count
data. A different approach to circumvent heteroscedastic data is
to directly estimate a function which describes how the variance
in the data increases as a function of the mean. Alternatively, it
is possible to use a variance-stabilizing transformation, e.g., as
implemented by the DESeq2 software package (Love et al., 2014).
While the variance-stabilizing transformation is similar to a log
transformation in the case of large counts, it is better suited to
deal with zeros and does not rely on a pseudocount.

2.3.4. Distance Metric
Multivariate microbiome data is not necessarily easy to
summarize or visualize in two or three dimensions. Therefore, to
summarize and explore data, we want to recapitulate the high-
dimensional properties of the data in fewer dimensions. Such
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low-dimensional representations are distance-based. A distance
matrix is obtained by applying a distance metric to all pairwise
combinations of observations. For example, given data matrix X,
the Euclidean distance between observations Xi and Xj is:

d(X)ij =
√

(xi − xj)2 (7)

Different metrics measure distance using different attributes
of the data [for comprehensive reviews of ecological distance
metrics we recommend (Kuczynski et al., 2010; Buttigieg
and Ramette, 2014)]. For example, only presence/absence of
different community members is used to calculate Jaccard
distance (Jaccard, 1912) and unweighted Unifrac (Lozupone
and Knight, 2005), which also takes into account phylogenetic
relationships between taxa. These metrics can be calculated
on count data without transformation, and capture changes
in the presence of rare taxa. On the other hand, Euclidean
distance emphasizes changes in relative composition. Weighted
Unifrac distance incorporates phylogenetic information as well
as changes in relative abundances. Euclidean distance performed
on log-ratio transformed data is analogous to Aitchinson’s
distance (Aitchison et al., 2000), which is recommended for the
analysis of the difference of compositions.

In addition to distance metrics, sample-to-sample difference
can also be compared by dissimilarities, such as the Bray-Curtis
dissimilarity, which is defined between sample i and sample j as:

BCij = 1−
2
∑n

k=1min(si,k, sj,k)
∑n

k=1 si,k +
∑n

k=1 sj,k
(8)

where n is the total number of unique taxon observed
between both samples, and si,k is the abundance of taxon k
in sample i. Bray-Curtis is widely used in ecological studies
to measure differences in community composition (Bray and
Curtis, 1957). A dissimilarity score of 0 means the two samples
had identical communities, and a dissimilarity score of 1 means
the two samples had no taxa in common. However, Bray-
Curtis dissimilarity does not obey the triangle inequality (Gower
and Legendre, 1986), which means that multivariate methods
that assume distance matrices as input (e.g., NMDS) may yield
uninterpretable results. For example, two samples that each have
a Bray-Curtis dissimilarity of 0.05 from a third sample may have
a Bray-Curtis dissimilarity of 1 from each other.

2.4. Ordination
2.4.1. Covariance-Based Ordination
Statistical ordination can be used to explore multivariate
microbiome data. An ordination is a transformation that
presents data in a new coordinate system, e.g., making high-
dimensional data visualizable in two or three dimensions.
Principal Components Analysis (PCA) is a method which selects
this coordinate system via the eigen decomposition of the
sample covariance matrix, i.e., which is equivalent to solving the
factorization problem:

Qm×m = Um×mDm×mU
T
m×m. (9)

Here, Q is the sample by sample covariance matrix, D is a
diagonal matrix containing the eigenvalues of Q, and U is a
matrix of the eigenvectors associated with those eigenvalues.
For PCA, the eigenvectors (or principal axes) are interpreted
as new, uncorrelated variables, which are an orthogonal linear
combination of the original m variables (Hotelling, 1933). Each
of the eigenvalues corresponds to one of the eigenvectors and
refers to its magnitude, which is proportional to the amount
of variance in the data explained by that eigenvector. To plot
a PCA, we select a subset of eigenvectors with the largest
associated eigenvalues, apply the linear combination of variables
contained in those eigenvectors to each observation, and then
plot the observations with the resulting coordinates. Importantly,
basic PCA relies on a least-squares approach for solving a
linear model with the observed variables, which poorly models
heteroscedastic non-negative data, such as taxon sequence
counts. Non-linear PCA (Kramer, 1991) is one extension of
PCA that can discover more sophisticated correlation structure
between observed variables.

Principal Coordinates Analysis (PCoA), based on PCA, is
another technique that allows for more flexibility in ordination
modeling (Buttigieg and Ramette, 2014; Gloor et al., 2017).
PCoA, on the other hand, uses the same procedure as PCA,
except on a sample by sample distance matrix is decomposed
instead of the sample covariance matrix (Borcard and Legendre,
2002), using the statistical properties of the distances instead
of the original observed data. The choice of distance metric
allows for the implementation of PCoA on either transformed
(in which distance, such as euclidean may be suitable) or raw
count (in which distance, such as Jaccard or unweighted Unifrac
may be suitable) microbiome data. For both PCA and PCoA,
scaling the data, for example with a z-score transformation,
is recommended so that no one variable disproportionately
influences the ordination (Holmes and Huber, 2019).

2.4.2. Non-metric Multidimensional Scaling
Non-metric Multidimensional Scaling (NMDS) is an alternative
ordination method which forces data to be projected into a
pre-specified number of dimensions (Kruskal, 1964). NMDS
projects high-dimensional data into a lower-dimensional space
such that all pairwise distances between points are preserved. To
implement NMDS, we solve the optimization problem:

X̂′ = argmin ‖d(X)− d(X′)‖2 (10)

whereX is the original data matrix andX′ is the data in the lower-
dimensional space. Here d is a distance metric (see Distance
section). Because the sum of pairwise distances is the quantity
being minimized by NMDS, this method is strongly affected
by outliers, so data should be examined for outliers prior to
NMDS ordination. Additionally, unlike PCA and PCoA, where
the new sample coordinates are directly related to the measured
variables, NMDS coordinates have no meaning outside of their
pairwise distances. Another important difference betweenNMDS
and PCA is that the NMDS is enforced to fit the ordination
to a fixed number of dimensions, which means the projection
is not guaranteed to be a good fit. Stress (Kruskal, 1964) is the
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quantification of how well the NMDS projection recapitulates the
distance structure of the original data:

Stress =

√
∑

(d(X)− d(X′))2
∑

d(X)2
(11)

The closer the stress is to 0, the better the NMDS performed.

2.4.3. Clustering
Clustering defines relationships between individual data points,
identifying a collection of points that are more similar to
each other than members of other groups. Many clustering
algorithms have been developed for the analysis of time
series data (comprehensively reviewed in Liao, 2005). These
algorithms include hierarchical methods, such as agglomerative
clustering and k-medoids (McMurdie and Holmes, 2014;
Gülagiz and Sahin, 2017), topological methods, such as
self-organizing maps (Kohonen, 1990; Kavanaugh et al.,
2014),and density-based methods, such as the DBSCAN
algorithm (Khan et al., 2014). As a working example, we
implement two types of hierarchical distance-based clustering
algorithms, the partitioning about medoids (PAM or k-medoid)
algorithm (Kaufman and Rousseeuw, 2009), and hierarchical
agglomerative clustering (Murtagh, 1985). A hierarchical
clustering method is one which works by partitioning the data
into groups with increasingly similar features. The number of
groups to divide the taxa into is determined prior to calculation,
which begs the question: how many groups? This question can
be quantitatively assessed using several indices. A clustering
algorithm can be implemented using a range of possible
numbers of clusters, and then comparison of these indices will
indicate which number has a high degree of fit without over-
fitting. These indices can also be used to help choose between
clustering algorithms.

One such index is sum of squared differences, which is related
to the total amount of uniformity in all clusters, defined as LaTeX
error this align should read:

SSE =

nclusters∑

k=0

nmembers∑

i=0





Cluster member
︷︸︸︷

xi,k −

Cluster center
︷︸︸︷

ck





2

(12)

A common heuristic to identifying an optimal number of clusters
is to plot SSE vs. k and look for where the curve “elbows,” or where
the decrease slows down (Liu et al., 2010; Gülagiz and Sahin,
2017) (see clustering tutorial).

Another way to evaluate the efficacy of clustering is via the
Calinski-Harabasz index (Calinski and Harabasz, 1974), which is
the ratio of the between-cluster squared distances to the within-
cluster squared differences (Liu et al., 2010):

CH =

B(x)
k−1
W(x)
n−k

(13)

where B(x) is the between cluster sum of square differences,W(x)
is the within cluster sum of square differences, n is the number

of taxa, and k is the number of clusters. This index accounts for
the number of clusters the data are partitioned into as well as
the overall variation in the data as a whole. A large value of CH
indicates that the between-cluster differences are much higher
than the average differences between the dynamics of any pair of
taxa in the data, so a maximum value of CH indicates maximum
clustering coherence.

The “Silhouette width” is another index which allows for
fine-scale examination of the coherence of individual taxon to
their cluster. Silhouette width is therefore helpful for identifying
outliers in clusters (Liu et al., 2010). The silhouette width for any
given clustering of data is calculated for each taxon by taking
the ratio of the difference between that taxon’s furthest in-cluster
neighbor and nearest out-of-cluster neighbor to the maximum of
the two, such that

SWi =

sum square diff out of cluster
︷ ︸︸ ︷

min(d(xi, xj/∈C)) −

sum square diff in cluster
︷ ︸︸ ︷

max(d(xi, xj∈C))

max(min(d(xi, xj/∈C)),max(d(xi, xj∈C)))
(14)

where C is all taxa in the cluster, and d is the sum square
difference operator. The widths can range from −1 to 1.
Silhouette widths above 0 indicate taxa which are closer to any
of their in-cluster neighbors than any out-of-cluster taxa, so
having as many taxa with silhouette widths above 0 as possible
is desirable. Any taxon with particularly low silhouette widths
compared to the rest of their in-cluster neighbors should be
investigated as potential outliers.

2.5. Periodicity Analysis
Periodicity analysis reveals whether or not a signal exhibits
a cyclical periodic change in abundance. Approaches to
identifying periodic signals include parametric methods and
non-parametric methods. The multi-taper method is an
example of a parametric method, which uses autoregression
to find periodic signals in low signal-to-noise data (Mann
and Lees, 1996) (for a software implementation in R
https://cran.r-project.org/web/packages/ssa/index.html). Other
examples of parametric methods include harmonic
regression (Yang and Su, 2010; Ottesen et al., 2014), methods
based on frequency spectral decomposition (Yang et al., 2011),
and a widely used (Aylward et al., 2017; Hughes et al., 2017;
Wilson et al., 2017; Hu et al., 2018) non-parametric method,
“Rhythmicity Analysis Incorporating Non-parametric methods”
(RAIN) (Thaben and Westermark, 2014).

The RAIN method identifies significant periodic signals
given a pre-specified period and sampling frequency. RAIN
then conducts a series of Mann-Whitney U tests [rank-based
difference of means (Mann and Whitney, 1947)] between time-
points in the time-series over the course of one period. For
example, one such series of tests might answer the question:
are samples at hours 0, 24, 48 higher in rank than the samples
at hours 4, 28 (Hotelling, 1933). Then, the sequence of ranks
is examined to determine if there is a consistent rise and
fall about a peak time. For this procedure to work, RAIN
relies on the assumption that time-series are stationary, or
have the same mean across all sampled periods. One way to
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normalize microbiome time-series to better fit this assumption is
detrending, or regression normalization, which removes longer-
term temporal effects, such as seasonality. A first approximation
of non-stationary linear processes can be made by taking the
linear regression of all time-points with time as the independent
variable, then subtracting this regression from the time-series.
This operation stabilizes the data to have a similar mean across
all local windows.

In order to assess periodicity for an entire microbial
community, we may conduct many hypothesis tests. The more
tests that are performed at once, the higher the probability of
finding a low p-value due to chance alone (Streiner, 2015). Some
form of multiple testing correction is therefore encouraged. False
Discovery Rate (FDR) based methods are recommended for
high-throughput biological data over more stringent Familywise
Error Rate corrections (Noble, 2009; Glickman et al., 2014).
The method employed here is the Benjamini-Hochberg step-
up procedure (Benjamini and Yekutieli, 2001) (for graphical
demonstration see the “periodicity” tutorial in the associated
software package). P-values are ranked from smallest to largest,
and all null hypotheses are sequentially rejected until test kwhere:

pk ≥
k

m
α (15)

where m is the total number of tests conducted, and α

is the desired false discovery rate amongst rejected null
hypotheses. Alternative p-value adjustmentmethods designed for
sequencing data have been proposed (Conneely and Boehnke,
2007) which take into account correlation between tests,
although simulations (Stevens et al., 2017) demonstrate that for
moderate effect sizes, methods, such as Benjamini-Hochberg
generally control false discoveries as expected, if not slightly
more conservatively.

2.6. Inferring Interactions
2.6.1. Model Specification of Ecological Dynamics
Inferring interactions using a model-based approach requires
the specification of ecological (or eco-evolutionary) dynamics.
Model specification requires extensive knowledge of the system
of interest. Furthermore, models can be specified at diffierent
levels of abstraction regarding taxonomic resolution (e.g. Storch
and Šizling, 2008) and biological mechanisms (e.g. Vincenzi et al.,
2016 ), leading to challenges in interpretability (Cao et al., 2017).
Alternatively, data-driven identification of dynamical systems is
an active area of research (e.g. Brunton et al., 2016; Mangan
et al., 2016, 2017), providinga possible way forward when an
appropriate model is not known a priori.

Currently, widely used models include some variation of
Lotka-Volterra dynamics where each taxon is represented as
a population whose abundances vary in time given density-
dependent feedback with other populations (Mounier et al.,
2008; Stein et al., 2013; Fisher and Mehta, 2014; Marino et al.,
2014; Dam et al., 2016; Jover et al., 2016; Ovaskainen et al.,
2017; Xiao et al., 2017; Faust et al., 2018; Venturelli et al.,
2018). Here, we focus on a variant of this class of problem, i.e.,
virus-microbe dynamics.

The microbe-virus ecological dynamics are modeled via a
system of differential equations

Ḣi = riHi

(

1−
1

K

NH∑

i′

Hi′

)

−Hi

NV∑

j

MijφijVj (16)

V̇j = Vj

NH∑

i

MijφijβijHi −mjVj (17)

where Hi and Vj denote the densities of host (i.e., microbe) type
i and virus type j as they change over time. There are NH host
types and NV virus types, each defined by their life history traits:
growth rate ri for host type i, decay rate mj for virus type j, and
a community-wide host carrying capacity K. The interactions
between hosts and viruses are modeled as antagonistic infections
culminating in the lysis (i.e., death) of the host cell and release
of new viruses. For each pair host type i and virus type j,
the infection is quantified by the interaction coefficient Mij,
adsorption rate φij and burst size βij. The interaction coefficient is
either 1 (the virus infects the host) or 0 (the virus does not infect
the host) (Jover et al., 2013; Korytowski and Smith, 2017).

We randomly sample the life history traits and interaction
parameters such that they are biologically plausible and guarantee
local coexistence of all host and virus types (as described in
Jover et al., 2016). We simulate the time-series of the resulting
dynamical system using ODE45 in Matlab.

2.6.2. Objective Function for Model-Based Inference
We seek the interaction network that minimizes the difference
between observed dynamics in densities and those predicted by
the dynamical model. We use the virus equations (Equation 17)
to derive the objective function

min

∣
∣
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∣

∣
∣
∣
∣
W −

(

M̃T −Em
)
(
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E1

)∣
∣
∣
∣

∣
∣
∣
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2
+ λ ||∼ M||1 (18)

subject to M̃ij > 0 (19)

mj > 0 (20)

where Wjk is the per-capita derivative estimate of virus type j at
sampled time tk, Hik is the density of host type i at sampled time
tk, M̃

T
ij = Mijφijβij is the weighted infection coefficient between

virus type j and host type i and mj is the decay rate of virus type
j (as described in Jover et al., 2016). We seek to estimate the
unknownweighted infection network M̃, using sampled densities
of hosts H and virusesW over time.

To prevent over-fitting, we introduce a hyper-parameter λ,
which can be tuned to control the sparsity of the inferred
network M. Other approaches can also be used to identifya
balance between goodness of fit and model complexity, such as
k-crossfold validation or information criterion (e.g. AIC). For an
exampleof using k-crossfold validation, see Stein et al. (2013).

2.6.3. Interaction Inference via Convex Optimization
In practice, we can solve theminimization problem (Equation 20)
and infer the interaction network M̃ using convex optimization.
Convex optimization is a well-developed technology for

Frontiers in Genetics | www.frontiersin.org 7 April 2020 | Volume 11 | Article 310

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Coenen et al. A Primer for Microbiome Time-Series Analysis

efficiently and accurately solving minimization problems of a
particular form which are guaranteed to have a global minimum.
Here, we use a freely available third-party software package for
Matlab available for download at http://cvxr.com/cvx/ (Grant
and Boyd, 2008, 2014) (also available for implementation in
Python at https://www.cvxpy.org Diamond and Boyd, 2016;
Agrawal et al., 2018). The details of implementation are described
in Jover et al. (2016) and in the accompanying code tutorial.

In addition to convex optimization, there are many methods
for inferring the interaction network, and dynamical systems
parameters in general, from time-series. Two recent examples
include MCMC fitting (Thamatrakoln et al., 2019; Zobitz et al.,
2011) and Tikhonov regularization Stein et al. (2013).

3. RESULTS AND DISCUSSION

3.1. Exploring Shifts in Daily Protistan
Community Activity
The North Pacific Subtropical Gyre (NPSG) is widely studied as a
model ocean ecosystem. Near the surface, the NPSG undergoes
strong daily changes in light input. Abundant microorganisms
in the NPSG surface community, such as the cyanobacteria
Prochlorococcus and Crocosphaera, adapt metabolic activities,
such as cell growth and division to particular times of
day (Aylward et al., 2015; Ribalet et al., 2015; Wilson et al., 2017).
However, the extent to which these daily cycles and the timings
of particular metabolic activities extend to protistan members
of the NPSG surface ecosystem remains less characterized. To
this end, we examined an 18S rRNA gene diel dataset from a
summer 2015 cruise sampled every 4 h for 3 days on a Lagrangian
track near Station ALOHA (Hu et al., 2018). In this expedition,
both rRNA and rDNA were sampled to explore differences in
metabolic activity for particular community members at different
times of day (Hu et al., 2016). Previous work (Hu et al., 2018)
found shifts in the metabolically active protistan community,
including phototrophic chlorophytes and haptophytes as well as
parasitic Syndiniales.

In this analysis, we asked whether or not the metabolically
active component of the microbial community is unique to
different times of day. Therefore, we focused specifically on the
18S rRNA gene data as a proxy for overall functional activity
of protistan taxa (Charvet et al., 2014; Hu et al., 2016; Xu
et al., 2017). We used statistical ordination to explore underlying
sample covariance. Samples that appear near each other in a
statistical ordination have similar multivariate structure. In the
clustering tutorial we present several methods for performing
ordination, e.g., NMDS and PCoA (see Methods: Ordination).
In Figures 3B,C, we construct a PCoA using Jaccard distance
to emphasize changes in presence/absence of rRNA signatures,
and find that the first 3 Principal Coordinates explain 64.76%
of the variation amongst all samples. Samples from 2 PM and 6
AM strongly differentiate along the first coordinate axis, while
samples at 10 AM settle between them. The ordination suggests
that the taxa which are transcribing the 18S rRNA gene at 2
PM are fairly distinct from those transcribing at 6 AM, while
10 AM is intermediate between the two. We also constructed a
corresponding NMDS ordination using the same distance matrix

that we constrained to two dimensions. The pattern of separation
between 2 and 6 PM is maintained in this projection, reinforcing
its importance as an underlying structural feature of these data.
Next, we constructed an additional PCoA ordination on the
Euclidean distance matrix of isometric log-ratio transformed
18S rRNA counts (see clustering tutorial for implementation).
We select the isometric log-ratio transformation to alleviate
the constraint of compositionality and to scale the data to
a similar range of magnitudes, making Euclidean distance a
suitable choice of distance metric. As seen in the scree plot
in Figure 3E, while the first Principal Coordinate explained
about 25% of the variation between samples, the following four
Principal Coordinates each explained around 5% of the variation.
Despite the low proportion of total variance explained, strong
separation emerges between 2 PM and 6 AM samples along
the largest coordinate axis. This ordination qualitatively agrees
with a corresponding NMDS ordination (Figure 3D) forced into
two dimensions.

Noting the differences in active community members between
2 PM and 6 AM, we identified co-occurring taxa by clustering
their temporal dynamics after variance-stabilization and scaling
normalizations (see clustering tutorial for discussion). Based on
comparisons of sum squared errors and the CH index introduced
in Methods, we opted to divide the OTUs into eight clusters
(Figure 4 for composition and representative temporal signature,
tutorial for details on cluster selection). After comparing cluster
evaluation metrics for hierarchical agglomerative clustering and
a k-medoids algorithm, we conducted this clustering with
k-medoids (see clustering tutorial for implementation). This
method allows us to identify the time-series of the median taxon
for each cluster as a representative shape for the cluster’s temporal
dynamics. We observe 2 PM peaks associated with clusters 2, 3,
6, and 8 and increased nighttime expression levels in cluster 1.
These temporal patterns coincide with those surmised during our
exploratory ordination of the community sampled at each time
point (where 2 PM and 6 AM samples formed distinct clusters,
Figure 3). Upon closer inspection of cluster membership (bar
plots in Figure 4A), we find cluster 3 contains 65/105 (62%) of
haptophyte OTUs and 18/33 (55%) of archaeplastids, including
members of chlorophyta.

These results suggest temporal niche partitioning within the
complex protistan community, consistent with the findings of Hu
et al. (2018). By clustering results with respect to temporal
patterns, we were able to parse the complex community to reveal
the identities of key taxonomic groups driving the observed
temporal patterns. The taxonomic composition of cluster 3
was made up of haptophytes and chlorophytes. Photosynthetic
chlorophytes have previously been found to be correlated with
the light cycle (Poretsky et al., 2009; Aylward et al., 2015) and
the temporal pattern found in Hu et al. (2018) was similar to
the standardized expression level (Figure 4B), as was the inferred
relative metabolic activity of haptophytes.

3.2. Identifying Protists With Diel
Periodicity in 18S Expression Levels
The metabolic activity of microbes is a critical aspect of the
basis of marine food webs (Karl, 2002). In the euphotic zone,
microbial populations are inherently linked to the light cycle as
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the energy source for metabolism. Identifying diel patterns in
protists is particularly interesting due to widespread mixotrophy,
where a mixotroph may ingest prey during periods of limiting
inorganic nutrients or light (Nygaard and Tobiesen, 1993;
Finkel et al., 2009; McKie-Krisberg et al., 2015). Additionally,
protistan species encompass a wide range of cell sizes, thus
the synchronization of light among photoautotrophs may reflect
species-specific differences in nutrient uptake strategies (Hein
et al., 1995; Gerea et al., 2019). Based on the observation of
sample differentiation between the middle of the day (2 PM)
and dawn (6 AM) from exploratory ordination and clustering
analyses described in 4.1, we further investigated the hypothesis
that some protists may exhibit a 24-h periodicity in their 18S
rRNA gene expression levels.

The high-resolution nature of the sequencing effort in this
study enabled us to ask which members of the protistan
community had 24-h periodic signals. Following normalization
(CLR, Equation 2) and detrending to center mean expression
levels across the entire time series (see Periodicity tutorial and
Methods: Periodicity Analysis), we used RAIN to assess the
periodic nature of each OTU over time. Results from RAIN

analysis reported p-values for each OTU at the specified period
as well as estimates of peak phase and shape. The null hypothesis
tested by RAIN is that the observations do not consistently
increase, then decrease (or vice-versa) once over the course of a
period. Rejecting the null hypothesis, then, asserts a time-series
has one peak during the specified period. To determine which
OTUs were found to have significant periodicity we rejected
the null hypothesis at 5% FDR level (Equation 13). Figure 5
illustrates examples of two protistan OTUs with significant
diel periodicity, a haptophyte and stramenopile. Trends in
CLR normalized values for each OTU indicated that there was
a repeated and temporally coordinated relative increased in
the metabolic activity of both taxa at 2 PM (Figure 5). Both
groups have previously been found to respond to day-night
environmental cues, which is also supported by Hu et al. (2018).

Identities of OTUs found to have significant diel periodicity
included taxa with known phototrophic and/or heterotrophic
feeding strategies. This suggests that taxa with diel changes in
metabolic activity may be responding to light or availability
of prey. More specifically, several known phototrophs or
mixotrophs, including dinoflagellates, haptophytes, and

FIGURE 3 | Comparing statistical ordination techniques for 18S community compositions across samples. (Top row) Ordinations using Jaccard distance for

comparison of presence/absence of community members between samples. (Bottom row) Ordinations using Euclidean distance on isometric log-ratio transformed

data. (A,D) Non-metric Multidimensional Scaling (NMDS) projection in two dimensions, arbitrary units. Convex hulls have been drawn to emphasize ordinal separation

of 6 AM (yellow), 10 AM (light green), and 2 PM (teal) samples. (B,E) Scree plots for PCoA ordinations. Each bar corresponds to one axis of the PCoA, the height is

proportional to the amount of variance explained by that axis. We decided the first 3 axes were necessary to summarize the data in these cases [explaining a total of

(B) 64.76% and (E) 37.54% of the variance]. Shading of bars indicate our interpretations of which axes are important to show (black), which are unimportant (light

gray), and which are intermediate cases (medium gray). (C,F) PCoA ordinations using the selected axes after scree plot examination. Each point is one sample, the

color of the point indicates the time of day at which the sample was taken (colors correspond to NMDS projections).
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stramenopiles were found to have significant diel periodicity.
Interestingly, there were a number of OTUs identified as
belonging to the Syndiniales group (Alveolates) which are

obligate parasites. Diel rhythmicity among these parasites
suggests that they may be temporally coordinated to hosts that
also have a periodic signal, which includes dinoflagellates.

FIGURE 4 | Characterization of protist clusters. (A) Cluster membership based on the phylum or class level protistan taxonomy. The “Other/unknown” category

includes sequences with non-specific identity, such as “uncultured eukaryote” and “Unassigned” denotes sequences with no taxonomic hit (< 90% similar to

reference database). (B) Representative taxon time-series for each cluster. Y-axis is z-score (see Methods: Normalizations), so a value of 0 corresponds to mean

expression level. White and shaded regions represent samples taken during the light (white) dark cycle (shaded).

FIGURE 5 | Centered Log Ratio (CLR)-transformed, detrended 18S rRNA gene levels (y-axes) over time (x-axes) for a subset of OTUs found to have significant diel

periodicity (RAIN analysis). A value of 0 denotes the mean expression level for a given OTU. Included OTUs belong to the (A) Haptophyte and (B) Stramenopile

groups. White and shaded regions represent samples taken during the light (white) dark cycle (shaded).
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3.3. Inferring Interactions in a Synthetic
Microbial Community
The goal of an inference method is to quantify ecological
interactions between pairs of populations or taxonomic
designation of interest. The result of such analysis is an
interaction network for the community of interest. In the
context of microbial communities, “interaction” can be broadly
defined and include, for example, direct competition for a
nutrient, toxin-mediated attacks, or cooperation via exchange
of secondary metabolites. Besides pairwise interactions between
microbes, other interactions may be of interest, such as higher-
order interactions [e.g., three-way microbial exchanges (Fisher
and Mehta, 2014; Bairey et al., 2016; Grilli et al., 2017)],
pressures from other trophic levels (e.g., grazers, viruses), or

driving via environmental variables (e.g., antibiotics, nutrient
flux). Inferring interaction networks is a challenging task,
in part due to autocorrelation inherent in time-series data.
Time-series which are highly autocorrelated appear correlated
with one another, even when there is no underlying causal
relationship (see Figure 1). This leads to high false-positive
rates of inferred interactions, particularly for correlation-based
inference methods (Kurtz et al., 2015; Weiss et al., 2016; Coenen
and Weitz, 2018; Carr et al., 2019; Hirano and Takemoto, 2019;
Mainali et al., 2019; Thurman et al., 2019).

Model-based inference methods are built from dynamical
models of microbial community ecology. As such, temporal
variation and structure is incorporated into any model-
based inference framework, accounting for potentially difficult

FIGURE 6 | Inferring the microbe-virus infection network from time-series data for a 10 by 10 synthetic microbe-virus community. (A) Simulated host (left) and virus

(right) densities over time. (B) Host densities (left, H) and transformed virus differences (right, W), for input into the objective function (Equation 20). (C) The original

“ground-truth” interaction network (left) and the reconstructed network (right). In the interaction matrix, the rows denote hosts, the columns represent viruses, and the

colors denote the scaled intensity of interactions (where white denotes no interaction).
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statistical properties, such as autocorrelation. Model-based
inference has been shown to perform favorably in in silico
studies (Mounier et al., 2008; Stein et al., 2013; Fisher and
Mehta, 2014; Marino et al., 2014; Dam et al., 2016; Jover
et al., 2016; Ovaskainen et al., 2017; Xiao et al., 2017; Faust
et al., 2018; Venturelli et al., 2018). Major challenges remain
for implementing model-based inference in practice, including
requirements of high time-resolution data and a detailed
understanding of the biological and ecological mechanisms
at play in order to correctly specify the underlying model.
Futhermore, evaluating accuracy of inferred networks remains
dificult, in part because difierent networks can produce similar
patterns of ecological dynamics (Cao et al., 2017). Despite
challenges, model-based inference has shown potential to
accurately infer interaction networks in a computationally
efficient and scalable manner (see one such application in Stein
et al., 2013).

Here, we demonstrate the use of a model-based inference
method on a synthetic microbial community with viruses
(methods and code adapted from Jover et al., 2016). We use
a synthetic community so that the inferred network can be
compared to the original, “ground-truth” network. Using our
model for microbe-virus ecological dynamics (Equation 17),
we simulate population time-series of the community over
the course of several days. We sample the simulated time-
series to use as data inputs into the minimization problem
(Equation 20), from which we estimate the weighted microbe-
virus infection network M̃. Simulated time-series, data inputs,
original and reconstructed networks are shown in Figure 6).
As shown, the reconstructed network closely resembles the
original, with only minor quantitative differences (i.e., in the
strengths of the interactions). We caution that the choice (and
parameterization) of ecological dynamics is critical to developing
a model-based approach, for alternative examples see Mounier
et al. (2008), Stein et al. (2013), Fisher and Mehta (2014),
Marino et al. (2014), Dam et al. (2016), Jover et al. (2016),
Ovaskainen et al. (2017), Xiao et al. (2017), Faust et al. (2018),
and Venturelli et al. (2018).

4. CONCLUSION

The aim of this primer was to integrate analytic advances
together to serve practical aims, so that they can be transferred
for analysis of other high resolution temporal data sets.
Conducting high-resolution temporal analyses to understand
microbial community dynamics has become more feasible in
recent years with continued advances in sequence technology.
Accordingly, specific statistical considerations should be taken
into account as a precursor for microbiome analysis. In
this primer, we summarized challenges in analyzing time-
series data and present examples which synthesize practical
steps to manage these challenges. For further reading on the
topics addressed here, we recommend: normalizations and log-
ratios (Egozcue et al., 2003; Silverman et al., 2017), distance
calculations (Willis and Martin, 2018), clustering (Kurtz et al.,
2015; Martin-Platero et al., 2018), statistical ordination (Morton

et al., 2017; Ren et al., 2017), regression (Martin et al.,
2019), vector autoregression (Opgen-Rhein and Strimmer, 2007),
periodicity detection (Ernst and Bar-Joseph, 2006), general best
practices (Holmes and Huber, 2019), and an in-depth review
of multivariate data analysis (Buttigieg and Ramette, 2014). For
inferring interactions from time-series, model-based inference
approaches have significant potential (Mounier et al., 2008; Stein
et al., 2013; Fisher and Mehta, 2014; Marino et al., 2014; Dam
et al., 2016; Jover et al., 2016; Ovaskainen et al., 2017; Xiao
et al., 2017; Faust et al., 2018; Venturelli et al., 2018). Although
correlation-based methods have been widely used for inferring
interactions, recent literature suggests that correlation-based
methods are poor indicators of interaction (Weiss et al., 2016;
Coenen andWeitz, 2018; Carr et al., 2019; Hirano and Takemoto,
2019; Mainali et al., 2019; Thurman et al., 2019). Other model-
free methods, such as Granger causality (Mainali et al., 2019)
and cross-convergent mapping (Sugihara et al., 2012), may be
useful alternatives for inference although care should be taken
that data do not violate the methods’ assumptions (McCracken
and Weigel, 2014; Baskerville and Cobey, 2017). In closing, we
hope that the consolidated methods and workflows in both R
and Matlab help researchers from multiple disciplines advance
the quantitative in situ study of microbial communities.
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