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Multiple sclerosis (MS) is an autoimmune disease for which it is difficult to find

exact disease-related genes. Effectively identifying disease-related genes would

contribute to improving the treatment and diagnosis of multiple sclerosis. Current

methods for identifying disease-related genes mainly focus on the hypothesis of

guilt-by-association and pay little attention to the global topological information of

the whole protein-protein-interaction (PPI) network. Besides, network representation

learning (NRL) has attracted a huge amount of attention in the area of network analysis

because of its promising performance in node representation and many downstream

tasks. In this paper, we try to introduce NRL into the task of disease-related gene

prediction and propose a novel framework for identifying the disease-related genes

multiple sclerosis. The proposed framework contains three main steps: capturing the

topological structure of the PPI network using NRL-based methods, encoding learned

features into low-dimensional space using a stacked autoencoder, and training a support

vector machine (SVM) classifier to predict disease-related genes. Compared with three

state-of-the-art algorithms, our proposed framework shows superior performance on the

task of predicting disease-related genes of multiple sclerosis.

Keywords: multiple sclerosis, network embedding, disease gene prediction, PPI network, deep learning

1. INTRODUCTION

Multiple sclerosis (MS) is an autoimmune disease that disrupts themyelin and axons, which leads to
inflammatory disorder of the brain and spinal cord (Compston and Coles, 2002), and it is difficult
to find exact pathogens and disease-related genes. In recent studies, some of the disease-related
genes of multiple sclerosis have been collected and made available, such as in the DisGeNet
database (Pinero et al., 2017). However, there are still many unknown MS disease-related genes
that need to be discovered. Identifying such genes will effectively contribute to discovering the
inner molecular mechanisms of MS as a disease and will help researchers to learn more about MS.
Thus, it is essential and of importance to develop a novel algorithm to identify the disease-related
genes of MS rapidly and effectively.
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Predicting disease-related genes has attracted a huge amount
of attention in recent years, and many computational methods
have been proposed because of the natural advantages of such
methods in terms of time and money saved (Peng et al., 2017,
2019a, 2020a; Ma et al., 2018a; Hu et al., 2019; Xue et al., 2019b).
Furthermore, computational methods are effective and precise
enough to guide wet experiments (Liu et al., 2019a,b; Peng et al.,
2019c). Thus, it is necessary to explore the area of predicting
disease-related genes using computational methods. Most of the
existing methods for predicting disease-related genes are based
on the assumption of the guilt-by-association hypothesis (Peng
et al., 2019a). Specifically, genes associated with the same or
similar diseases usually have a higher probability of sharing
the same topological structure or similar neighbors as others
in the gene interaction networks. Thus, based on this guilt-
by-association hypothesis, the core of predicting disease-related
genes is calculating the distance or similarity between candidate
genes and disease-related genes effectively and correctly.

Many approaches have been proposed to measure distance
or similarity between gene nodes. The simplest method is direct
neighborhood counting (Oti et al., 2006), which mainly counts
the number of disease-related genes among their neighborhoods.
If the neighbors of gene g are associated with multiple sclerosis
disease, gene g is likely to be a disease-related gene. However,
this method overlooks disease-related genes that do not connect
with g in the protein-protein-interaction (PPI) network. To
solve this problem, several methods are proposed to utilize the
shortest path length model to measure the distance between
genes (Krauthammer et al., 2004). However, these methods have
not achieved satisfying performance, because both the directing
neighborhood counting and shortest path length methods only
consider the local topological structure of the PPI network
instead of the global information of the network topology. Many
papers suggest that global topological information would be
able to improve the performance of gene node presentation and
downstream tasks (Ma et al., 2018b, 2019; Peng et al., 2019b,
2020b; Xue et al., 2019a). Thus, some papers have tried to
capture global topological information through random walk
with restart (Li and Patra, 2010; Ma et al., 2017; Peng et al., 2018).
Borrowing ideas from random walk with restart, we aim, in
the current study, to introduce network representation learning
(NRL) methods, which represent genes in the network as low-
dimensional features, into the task of predicting the disease-
related genes of MS.

In this paper, we implement an existing NRL method, termed
NRL-based algorithms, for the task of predicting MS disease-
related genes and transform non-linear feature vectors into low-
dimensional space with a stacked autoencoder. The contributions
of this paper can be listed as follows:

• NRL-based algorithms learn global non-linear topological
information of the protein-protein-interaction network based
on node2vec, DeepWalk, and LINE.

• The deep learning model of a stacked autoencoder is
implemented in our proposed framework to extract low-
dimensional feature vectors.

• NRL-based algorithms show superior performance in the task
of predicting the disease-related genes of MS.

2. METHODS

In this paper, we introduce NRL algorithms, termed NRL-
based algorithms, for the task of predicting the disease-related
genes of MS. The framework used contains three main parts:
NRL-based algorithms, a Stacked AutoEncoder (Bengio et al.,
2006), and a Support Vector Machine (SVM) (Chang and Lin,
2011). Here, we use three classical NRL algorithms to transform
the PPI network into high-dimensional feature space, namely
node2vec (Grover and Leskovec, 2016), DeepWalk (Perozzi et al.,
2014), and LINE (Tang et al., 2015). After obtaining the PPI
network embedding features, we run a stacked autoencoder
model to extract useful feature vectors into low-dimensional
space. Finally, a SVM classifier is implemented to predict the
disease-related genes of MS. The whole workflow of the model
is shown in Figure 1.

2.1. NRL-Based Protein-Protein Interaction
Network Embedding
In our method, we use three classical NRL algorithms (node2vec,
DeepWalk, and LINE) to capture the global features of the PPI
network and represent genes as non-linear feature vectors. The
details of the three algorithms are introduced in the next part.

DeepWalk (Perozzi et al., 2014) is the first-proposed NRL
algorithm. It tries to represent nodes as novel latent feature
vectors. It first learns topological information from the network
using a random walk algorithm. Then, it can be treated as
a natural language process problem. The learned sequence
information is inputted into the Skip-Gram model. The aim of
the DeepWalk model is to maximize the probability of neighbors
of the node ni in the walk sequence. The objective function can
be shown as:

maxϕPr({ni−w, ..., ni+w} \ ni|ϕ(ni)) =

i+w∏

j=i−w,j 6=i

Pr(nj|ϕ(ni)) (1)

where w is the size of the window and ϕ(ni) and {ni−w, ..., ni+w}

are the current feature representation and neighborhood
nodes of ni, respectively. Finally, the DeepWalk algorithm
uses hierarchical softmax to generate the low-dimensional
representation vectors. The overall overflow can be seen in
Figure 2A. node2vec (Grover and Leskovec, 2016) is an extended
version of the DeepWalk algorithm. In the process of learning
the network topology, node2vec integrates two neighborhood
sampling strategies, Breadth-First Search (BFS) and Depth First
Search (DFS). These two strategies for capturing topological
information are shown in Figure 2B. The node2vec algorithm
proposes a novel random walk strategy with two parameters,
p and q. The random walk procedure of node2vec can be
seen in Figure 2C. Parameter p mainly controls the probability
of revisiting a node in the process of random walk, and q
controls the possibility of capturing “local” or “global” nodes. In
particular, if p = 1.0 and q = 1.0, then the node2vec algorithm
can be seen similarly as the DeepWalk method.

LINE (Tang et al., 2015) is designed for large-scale NRL,
mainly capturing the first-order and second-order topological
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FIGURE 1 | The workflow of the proposed NRL-based framework. The framework contains three main parts: (A) learning the topological structure of the

protein-protein-interaction network, (B) transforming network embedding features into low-dimensional space, and (C) training the support vector machine classifier

to predict disease-related genes.

FIGURE 2 | (A) Overview of DeepWalk. It consists of three main parts: random walk generation, representation learning, and hierarchical softmax. This figure was

extracted from the original paper. (B) Two types of search strategies from node 5, BFS and DFS. (C) The random walk procedure in node2vec.

information. The idea of second-order information in LINE can
be learned from Figure 2B. In this figure, nodes 5 and 2 have
the same neighborhood, 3, 8, and 6. Although nodes 2 and 5
are not linked directly, we think that they are similar to each
other. The first-order and second-order topological information
between two nodes ni and nj can be measured as:

P1(ni, nj) =
1

1+ exp(−uTi uj)
P2(nj|ni) =

exp(ūTj ūi)∑
k exp(ū

T
k
ūi)

(2)
where ui describes the representation of node ni. By optimizing
the KL-divergence of these first-order and second-order
distributions, we can obtain the final representations of
gene nodes.

2.2. Extracting Low-Dimensional Feature
Vectors
In our NRL-based MS disease-related gene prediction
model, we use a stacked autoencoder model to transform

high-dimensional non-linear features learned by NRL-
based algorithms into low-dimensional feature space.
Commonly, many models use Principal Component
Analysis (PCA) (Abdi and Williams, 2010) or Independent
Component Analysis (ICA) (Hyvärinen and Oja, 2000) to
reduce the dimensionality of the feature matrix. However,
these methods cannot capture non-linear feature vectors
effectively. Also, these linear dimensionality reduction
methods would distort the original data structure and
cannot keep original features in the low-dimensional feature
space. A stacked autoencoder (SAE) model can address
these shortcomings.

An autoencoder is an unsupervised model that is widely
used in feature extraction and dimensionality reduction. An
autoencoder contains two main parts, an encoder and a decoder,
and its aim is to minimize the reconstruction error between input
and output. The encoded features of the hidden layer are the final
low-dimensional output that is used in the downstream tasks.
Assuming that the i−th input node vector is xi, the reconstructed
node vector can be described as x̂i = g(W′ · f (W · xi + b) + b′),
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TABLE 1 | The experimental results of NRL-based methods and other baselines.

Abc F1 AUROC AUPRC

ED 0.6032 (0.0165) 0.5933 (0.0204) 0.6439 (0.0163) 0.6356 (0.0216)

SPL 0.6136 (0.0296) 0.6033 (0.0198) 0.6703 (0.0205) 0.6531 (0.0208)

RWR 0.5312 (0.0113) 0.5203 (0.0305) 0.5431 (0.0195) 0.5321 (0.0233)

LINE-SAE-SVM 0.5527 (0.0102) 0.5403 (0.0218) 0.5838 (0.0106) 0.5716 (0.0198)

node2vec-SAE-SVM 0.7011 (0.0212) 0.6944 (0.0138) 0.7647 (0.0186) 0.7472 (0.0283)

DeepWalk-SAE-SVM 0.6941 (0.0288) 0.6914 (0.0315) 0.7554 (0.0204) 0.7478 (0.0243)

The bold values indicate the best performance.

where f and g are activation functions, and 2 = {W, b,W′, b′}
are the parameters to be learned. Then, the loss function of a
three-layer autoencoder can be represented as follows:

argmin
θ∈2

n∑

i=1

‖ x̂i − xi ‖
2
2 (3)

The stacked autoencoder has been widely used in many areas
to extract feature vectors and reduce the dimensionality (Peng
et al., 2019b). Thus, we also add a stacked autoencoder model
in our framework to improve the performance of predicting MS
disease-related genes.

2.3. Predicting Disease-Related Genes
Based on an SVM Classifier
After obtaining low-dimensional gene feature vectors, we train
the SVM algorithm to predict the disease-related genes of MS.
This prediction task can be treated as a label classification
problem. SVM is applied widely on many classification tasks
because of its stability, simplicity, and effectiveness. Here, we
also select SVM as the classifier for our model. The disease-
related genes of MS are chosen as positive samples, and then we
randomly select several unrelated genes as negative samples from
the PPI network. The number of negative samples is the same as
that of positive samples.

In order to evaluate the performance of the SVM classifier
in the task of MS disease-related gene prediction, we randomly
select 80% of the dataset as a training dataset and 20% as
the test dataset. We choose the standard RBF kernel for the
SVM classifier and use the grid search method to select the
optimal hyper-parameters.

3. RESULTS

3.1. Datasets and Baselines
In the experimental part, we mainly use two datasets: the
protein-protein interaction network (PPI) and the disease-
related genes of MS. The PPI network contains 13,460
nodes and 141,296 edges, which is the same as in the
paper (Menche et al., 2015). Candidate genes associated
with MS disease were downloaded from the DisGeNet database
(https://www.disgenet.org/browser/0/1/1/C0026769) (Pinero
et al., 2017). After preprocessing, we can obtain 924 genes that
relate to MS disease. In order to evaluate the performance
of our proposed method, we compare NRL-based methods

FIGURE 3 | Accuracy and AUPRC values of three network representation

learning algorithms with four different numbers of dimensions. The x-axis

represents three different methods. The y-axis represents the values of

Accuracy (left) and AUROC (right).

with three classical methods, including Random Walk with
Restart (RWR) (Li and Patra, 2010), Shortest Path Length
(SPL) (Krauthammer et al., 2004) and Euclidean distance
(ED) (Díaz-Uriarte and de Andrés, 2006). Random walk with
restart is a classical path learning method, which is widely used in
biological network analysis to capture the topological structure
of the network. Shortest path length and Euclidean distance are
both typical path-based disease-related gene prediction methods.
We, in this paper, compare NRL-based methods with these
path-based methods to validate the superiority of NRL on the
task of disease-related gene prediction.

On the task of disease-related gene prediction, we adopt
accuracy, F1, area under the ROC curve (AUROC), and area
under the PR curve (AUPRC) as the evaluation criterion. All
of the experiments adopt five-fold cross-validation. After several
experimental validations, the optimal number of dimensions
of the PPI network embedding and the final dimensionality
of features after running stacked autoencoder are 512 and 64,
respectively.

3.2. Performance in Predicting
Disease-Related Red Genes of MS
In order to validate the performance of NRL-based algorithms
on the task of predicting the disease-related genes of MS, we
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FIGURE 4 | Accuracy, F1, AUPRC, and AUPRC values of three network representation learning algorithms with four different numbers of dimensions and different

autoencoder structures. The x-axis represents four different evaluation metrics. The y-axis represents the value of the evaluation metric.

TABLE 2 | The experimental results of NRL-based methods with different classifiers.

Acc F1 AUROC AUPRC

Logistic
LINE 0.5272(0.0131) 0.5172(0.0125) 0.5596(0.0138) 0.5391(0.0248)

Regression
node2vec 0.6483(0.0163) 0.6483(0.0163) 0.6899(0.0236) 0.6409(0.0208)

DeepWalk 0.5793(0.0250) 0.5793(0.0150) 0.6658(0.0216) 0.6153(0.0200)

Random
LINE 0.6176(0.0188) 0.6276(0.0188) 0.6208(0.0216) 0.6057(0.0263)

Forest
node2vec 0.7172(0.0117) 0.7012(0.0217) 0.7400(0.0126) 0.7191(0.0203)

DeepWalk 0.6959(0.0215) 0.6759(0.0163) 0.7336(0.0185) 0.7008(0.0202)

FIGURE 5 | AUROC with different parameter combinations of p and q in the node2vec algorithm. The x-axis represents different parameter combinations. The y-axis

represents the value of AUROC.

compare our model with three classical methods: random walk
with restart, shortest path length, and Euclidean distance. The
experimental results of the NRL-based methods and baselines
are shown in Table 1. The node2vec-based and DeepWalk-based
methods are obviously superior to the other algorithms. For
node2vec, the values of accuracy and AUROC reach 0.7011

and 0.7647, respectively, much higher than the three classical
methods. The performance of DeepWalk is similar to that of
node2vec, and the AUPRC value of DeepWalk is the highest
among the six algorithms. However, the performance of LINE is
not as good as the other two NRL-based methods. LINE mainly
considers the first-order and second-order information of the

Frontiers in Genetics | www.frontiersin.org 5 April 2020 | Volume 11 | Article 328

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liu et al. Predicting Multiple Sclerosis’s Disease Genes

network topology in the process of embedding. The PPI network
is very sparse and many isolated nodes exist, which may lead to
the poor performance of LINE. Overall, the NRL-based methods
contribute to improving the performance of MS disease-related
gene prediction.

3.3. Effects of Different Parameters on
Disease-Related Gene Prediction
The whole process of the NRL-based methods consists of three
main parts: capturing the topological information of the PPI
network, extracting low-dimensional features, and predicting
disease-related genes based on the SVM classifier. Among
different parameters, the most influential is the number of
dimensions of embedding. Thus, we mainly explore the effects
of the number of embedding dimensions on the task of disease-
related gene prediction. In detail, we run three NRL algorithms
with four different numbers of dimensions, namely 64, 128,
256, and 512. The experimental results are shown in Figure 3.
In general, the values of accuracy and AUROC are stable, and
the number of embedding dimensions has less impact on the
experimental results in predicting the disease-related genes of
MS. For node2vec, the values of accuracy and AUROC are
around 0.67 and 0.73, respectively, in the case of the four
different dimensionalities.

Except for the dimensionality of network embedding, we
also consider the effects of the stacked autoencoder. Here,
we also embed the PPI network with four different numbers
of dimensions. We, then, implement the stacked autoencoder
to transform high-dimensional features into low-dimensional
space. The final number of dimensions through the stacked
autoencoder is 64. The experimental results are shown in
Figure 4. Comparing the experimental results with the model
without an autoencoder, we can clearly see the effects of the
autoencoder on extracting low-dimensional features. Besides,
with the increase in the number of autoencoder layers, the model
shows better performance in the task of predicting MS disease-
related genes. Thus, we adopt five layers [512-256-128-64] as
our model’s stacked autoencoder structure. In the third part, an
SVM classifier is used in our model to predict disease-related
genes. This step is flexible: we can train other classifiers to finish
prediction tasks. Here, we also train Logistic Regression and
Random Forest classifiers to predict the disease-related genes of
MS. The detailed experimental results are shown in Table 2.

node2vec performs better than the other two algorithms,
DeepWalk and LINE. Thus, we also explore the effects of
the two parameters in the node2vec algorithm, p and q. We

randomly select parameters p ∈ {2.0, 20.0, 200} and q ∈

{0.1, 0.01, 0.001, 0.0001}. The experimental results are shown in
Figure 5. The AUROC values are fluctuating within a certain
range [0.72, 0.77]. When p = 20 and q = 0.01, the AUROC value
of the node2vec algorithm achieve its maximum (0.7647).

4. CONCLUSION

Identifying the disease-related genes of MS effectively is essential
for the treatment and diagnosis ofMS. In this paper, we introduce
NRL methods into the task of identifying disease-related genes
and propose a novel NRL-based framework to predict the
disease-related genes of MS. The NRL-based algorithms consist
of three main components: capturing the global topological
structure of the PPI, encoding non-linear representation vectors
into low-dimensional feature space using a stacked autoencoder,
and training a SVM classifier to predict disease-related genes. We
compare our proposed method with three classical algorithms.
The experimental results show the superior performance of
the NRL-based algorithms. Moreover, the proposed NRL-based
algorithms are scalable and robust enough to be applied to many
other tasks of disease-related gene prediction.
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