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Extrathyroidal extension (ETE) affects papillary thyroid cancer (PTC) prognosis. The
objective of this study was to identify biomarkers for ETE and explore the mechanisms
controlling its development in PTC. We performed a comprehensive bioinformatics
analysis using several datasets. Differential expression analysis and weighted gene co-
expression network analysis (WGCNA) on 58 paired PTC samples from The Cancer
Genome Atlas (TCGA) were used to detect ETE-related mRNA and long noncoding
(lnc) RNA modules and construct an lncRNA/mRNA network. An independent TCGA
dataset containing 438 samples was utilized to validate and characterize the WGCNA
results. Functional annotation was used to identify the biological functions and related
pathways of ETE modules. Two independent RNA sequencing datasets were combined
to crossvalidate relationships between lncRNAs and mRNAs by Pearson correlation
analysis. Transcription factors (TFs) for affected genes were predicted using the
binding motif data from Ensembl Biomart to construct a TF/lncRNA/mRNA network.
Other two independent datasets were used to crossvalidate TF-mRNA associations.
Finally, receiver operating characteristic, survival analyses, and Cox proportional hazard
regression model were performed to explore the significance of hub genes in ETE
diagnosis and PTC prognosis. Three mRNA modules and two lncRNA modules were
significantly associated with ETE. Enrichment analysis showed extracellular matrix
changes was closely related to the development of ETE. A TF/lncRNA/mRNA regulatory
network was constructed containing 33 validated hub genes, 64 lncRNAs, and 64 TFs,
all differentially expressed between ETE and non-ETE samples. Unc-5 family C-terminal
like [area under the curve (AUC): 0.711], sushi repeat containing protein X-linked 2
(AUC: 0.706), lysyl oxidase (AUC: 0.704), collagen type I alpha 1 chain (AUC: 0.704),
and collagen type X alpha 1 chain (AUC: 0.704) were the most highly significant hub
genes for ETE diagnosis. The Cox proportional hazard regression model constructed
with hub genes showed significant survival differences between low- and high-risk
groups (p = 0.00025) and performed good prediction for PTC prognosis(AUC = 0.794;
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C-index = 0.895). The identification of 33 biomarkers and TF/lncRNA/mRNA regulatory
network would provide new insights into the molecular mechanisms of ETE besides the
prognosis model may have important clinical implications in the improvement of PTC
risk stratification, therapeutic decision-making, and prognosis prediction.

Keywords: papillary thyroid carcinoma, extrathyroidal extension, weighted gene co-expression network analysis,
transcription factor, long noncoding RNA

INTRODUCTION

Papillary thyroid cancer (PTC) is the most common type of
thyroid cancer (TC), accounting for approximately 90% of all
cases (Kitahara et al., 2017; Xia et al., 2019). It has relatively good
prognosis and a low mortality rate (Xia et al., 2018). However,
its prognosis is associated with several clinicopathological
factors, including age, tumor size, distant metastasis, and the
development of extrathyroidal extension (ETE; Hay et al., 1993;
So et al., 2015; Lee et al., 2017).

Extrathyroidal extension, defined as the invasion of the
primary tumor into adjacent tissues beyond the thyroid gland,
is an important prognostic factor (McConahey et al., 1986; Cady
and Rossi, 1988). Woolner et al. (1961) first reported the adverse
effects of ETE on the prognosis of patients with PTC. Since then,
many studies have been reported that patients with PTC who
were discovered to have maximal ETE during surgery have an
increased risk of tumor recurrence and death, and this idea is
now widely accepted (McConahey et al., 1986; Hay et al., 2002).
According to the current eighth edition of the American Joint
Committee on Cancer staging system, ETE is an important factor
in the prognostic staging of differentiated TC. Based on the scope
of ETE, PTC is considered stage II if only the strap muscles
are grossly invaded (T3b) and stage III with gross invasion of
the subcutaneous tissue, larynx, trachea, esophagus, or recurrent
laryngeal nerve (T4a; Perrier et al., 2018). This means that ETE
plays an important role in PTC risk stratification, treatment
strategy decisions, and survival prognosis. However, despite its
significance, few reports exist on the molecular mechanisms
controlling ETE.

Rapid advancements in biological technology and
bioinformatics have resulted in new more effective methods
to study the mechanisms of cancer. In more than 30 years,
sequencing technology has made considerable progress, it is
becoming more and more effective and accurate. Expression
profiles such as microarray and RNA-sequencing have been
widely used to identify the gene expression level. Chromatin
immunoprecipitation (ChIP) is a powerful tool for studying
protein-DNA interactions in vivo and is often used to study
transcription factor binding sites or histone-specific modification
sites. Besides, many other biotechnologies have been invented,
such as single-cell sequencing, methylation sequencing,
etc. (Furey, 2012; Thermes, 2014; Stark et al., 2019). While
these technologies bring large amounts of biology data for
research, they also bring huge challenges for biostatistics.
How to effectively use these data, the rapid development
of bioinformatics is crucial. It can help us mine more
information in the data. Weighted gene co-expression network

analysis (WGCNA) is an effective bioinformatics method that
characterizes correlation patterns among genes in microarray or
RNA sequencing (RNA-seq) samples. It can be used to identify
modules with highly correlated genes, to relate modules to
external sample traits, and to calculate module membership
(MM) measures. More importantly, correlation network-based
gene screening methods can be used to identify candidate
biomarkers or treatment targets (Langfelder and Horvath,
2008). This method has been successfully applied to a variety
of diseases (Chen et al., 2018; Zhang et al., 2018; McDonough
et al., 2019). The Cox proportional-hazards regression model has
achieved widespread use in the analysis of time-to-event data
with censoring and covariates. The exponential of the coefficients
from the Cox model gives the instantaneous relative risk for an
increase of one unit for the covariate in question. It is often used
to predict survival in terms of subject covariates (Fisher and Lin,
1999). The purpose of this study was to explore the molecular
mechanisms of ETE development in PTC and identify ETE
biomarkers through comprehensive bioinformatics analysis. The
results provide new insights to the genes regulating ETE.

MATERIALS AND METHODS

Data Collection
An RNA-seq dataset containing 568 TC samples was downloaded
from The Cancer Genome Atlas (TCGA) database1 for
differentially expressed gene (DEG) screening, WGCNA,
and validation. Matched clinical data were obtained from
University of California Santa Cruz (UCSC) Xena2. Datasets
GSE83520 and GSE64912, derived using Illumina HiSeq RNA-
seq technology and obtained from the Gene Expression Omnibus
(GEO) database3, were combined and analyzed to crossvalidate
relationships between long noncoding (lnc) RNAs and mRNAs.
The human reference genome (version: GRCh38.p12) and related
human binding motif data were downloaded from the Ensemble
BioMart database4 to predict transcription factors (TFs) affecting
identified genes. A gene expression matrix [log2 (fragments per
kilobase of transcript per million mapped reads)] of 568 TC
samples was obtained from UCSC Xena to correlate TFs with
lncRNAs and mRNAs. The microarray datasets GSE33630 and
GSE60542, both acquired using the Affymetrix Human Genome
U133 Plus 2.0 Array (HG U133 Plus 2.0) platform, were obtained

1https://portal.gdc.cancer.gov
2http://xena.ucsc.edu/
3http://www.ncbi.nlm.nih.gov/geo/
4http://asia.ensembl.org/index.html
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from the GEO database, combined, and analyzed to crossvalidate
relationships between TFs and mRNAs.

Data Preprocessing and Differentially
Expressed Gene Screening
We preprocessed the raw data from microarray and RNA-seq
experiments in different ways. For RNA-seq data, the read counts
data were transformed by variance-stabilizing transformation in
the R package “DESeq2” (Chen et al., 2018). For microarray data,
raw expression data were calculated following preprocessing,
including robust multi-array analysis background correction,
log2 transformation, and quantile normalization. Probes were
annotated using Affymetrix annotation files, and when different
probes were linked to the same gene, the average value was
used as the gene expression value. As different datasets and
different samples within datasets were processed in multiple
batches, batch effects were corrected using the ComBat method
implemented in the “SVA” package. After data preprocessing,
principal component (PC) analysis was used to verify dataset
quality using the R package “FactoMineR” (Supplementary
Figure S1). “DEseq2” was applied to identify DEGs in 58 pairs
of PTC samples from TCGA. The cut-off criterion for DEGs was
an adjusted p value (adjP) <0.05, and these DEGs, including
lncRNAs and mRNAs, were used for further WGCNA analysis.

Weighted Gene Co-expression Network
Construction
The R package “WGCNA” was used to construct a co-expression
network based on the gene expression profiles of differentially
expressed mRNAs and lncRNAs from the 58 PTC samples
with complete clinical data. The process of constructing the
mRNA co-expression network was the same as for lncRNA.
First, by calculating the correlations between all pairs of genes,
a matrix of similarity was constructed. Then, the integrated
function pickSoftThreshold in the “WGCNA” package was used
to select an appropriate soft-thresholding power β. With this
soft-thresholding power, the matrix of similarity was raised to
result in scale-free topology. Third, the adjacency matrix was
transformed into a topological overlap matrix by similarity, and
the corresponding dissimilarity was also calculated. Finally, co-
expression gene modules were identified using the R package
“Dynamic Tree Cut” with a deepSplit of 2, a minModuleSize
of 30, and a maxBlockSize of 20,000. Module eigengenes (i.e.,
the first PC of the gene expression matrix in each module)
were obtained by WGCNA and represented the expression
profiles of their corresponding module genes. Highly similar
modules were merged when the module eigengene height in the
clustering was <0.25.

Identifying Clinically Significant Modules
and Module Functional Annotation
Weighted gene co-expression network analysis identifies gene
modules based on their expression similarities in samples, and
calculates correlations between external clinical information
and gene modules to identify clinically significant modules.
Gene modules most correlated with ETE were selected as

ETE-related modules, and the functions of the genes these
modules were explored through gene ontology (GO) enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis, performed using the
R package “clusterProfiler,” and using adjP < 0.05 as a
threshold for inclusion.

Hub Gene Identification and Validation
Genes that had the highest degrees of connectivity in their
gene modules and helped determine the module characteristics
were termed hub genes, and were identified by calculating gene
significance (GS) and MM. The GS of a gene is the correlation
between the gene and a relevant clinical parameter, and the
MM of a gene is the correlation between its expression profile
and those of identified module eigengenes. Genes with absolute
values of MM > 0.85 and GS > 0.4 and p values <0.05 for
both MM and GS were defined as hub genes in their modules.
An independent dataset of 438 PTC samples from TCGA with
complete clinical data were analyzed to compare the expression
of hub genes between ETE and non-ETE samples using the
Wilcoxon rank sum test.

lncRNA/mRNA Network Construction
Clinically relevant lncRNA modules were identified in the same
manner as for mRNAs, but the criteria for lncRNAs were p
values <0.05 for both GS and MM. The 58 pairs of PTC samples
from TCGA were used in correlation analysis to construct the
lncRNA/mRNA network, and two independent RNA-seq datasets
(GSE64912 and GSE83520) were combined to crossvalidate the
results. The criteria for screening the regulatory lncRNAs of hub
mRNAs was an absolute correlation coefficient (r) value >0.6 and
a p value <0.05. In addition, the independent dataset of 438 PTC
samples was analyzed to compare the expression levels of these
regulatory lncRNAs between patients with and without ETE.

TF/lncRNA and TF/mRNA Network
Construction
The Human Reference Genome data and human binding
motif data (both version GRCh38.p12) were downloaded from
Ensembl BioMart. The promoter region of a gene was defined
as the 1,000 bp upstream and 200 bp downstream of the
transcriptional start site, and the TFs binding the promoters of
regulatory lncRNAs and hub mRNAs were predicted according
to known TF binding motifs. The specific process for our team to
predict the transcription factor of the target genes was shown in
Supplementary Table S1.

Then, the gene expression matrix from UCSC Xena was used
in Pearson correlation analysis to associate TFs with lncRNAs
and mRNAs. In addition, the microarray datasets GSE33630
and GSE64512 were combined and analyzed to crossvalidate
relationships between TFs and mRNAs. The criterion for
assigning TFs to regulatory lncRNAs and hub mRNAs was a p
value <0.05. In addition, associations between identified TFs and
ETE were validated with a dataset of 438 PTC samples using the
Wilcoxon rank sum test.
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TF/lncRNA/mRNA Network Construction
Through the above series of analyses, we obtained hub genes
associated with ETE, and regulatory lncRNAs significantly co-
expressed with hub mRNAs. These were combined with the
predicted TFs of hub mRNAs and regulatory lncRNAs to
construct a complete TF/lncRNA/mRNA regulatory network for
PTC-related ETE in Cytoscape (version: 3.7.1).

Receiver Operating Characteristic and
Survival Analyses
To detect the significance of hub genes for the diagnosis of ETE
in PTC, receiver operating characteristic (ROC) analysis was
performed with an independent subset with 438 PTC samples
and the area under the curve (AUC) was calculated using the
R package “plotROC” (version: 2.2.1). An AUC > 0.5 indicated
upregulation, while an AUC < 0.5 represented downregulation.
Larger | AUC-0.5| values indicated that these genes had increased
ability to distinguish between ETE and non-ETE samples.

To reveal the prognostic value of hub genes in patients
with PTC, survival analysis was performed using the GEPIA
database5. Overall survival (OS) calculations and statistical
significance assessments were performed using the Kaplan-
Meier (KM) method (Paszek et al., 2005) and the log-rank
test (Butcher et al., 2009), respectively. p values <0.05 were
considered statistically significant. To further clarify how hub
genes collectively affect patient survival and prognosis, we first
performed a one-way ANOVA analysis on clinical characteristics
of 501 PTC from TCGA to determine the reliability of the
clinical data (Supplementary Table S9). Then we constructed
Cox proportional hazard regression model using hub genes and
survival information, and Akaike information criterion (AIC)
was used to optimize the cox regression model which is a measure
of the goodness of fit of a statistical model by the R packages
Survival and Stats (Terry et al., 2000). Based on the median of
the risk scores, we classified all 501 PTC patients into high-
and low-risk two groups. Then KM curves and log-rank test
were used to assess survival differences between the two groups.
Besides, two different methods including time-dependent ROC
curves and concordance index (C-index) were used to measure
the accuracy of the Cox regression model, and the stats of
the two methods were compared using bootstrap with 1,000
times re-sampling separately to ensure the credibility (Heagerty
et al., 2000; Schröder et al., 2011). Finally, the nomogram was
developed based on the result of the multivariable Cox regression
model to detect the effect of each hub genes on patient survival
prognosis. A weighted score calculated using hub genes was
used to estimate 3- and 5-year OS. All statistical analysis was
performed by R version 3.6.3 statistical software.

RESULTS

Data Preprocessing
A workflow of the study is shown in Figure 1. A level three RNA-
seq dataset containing 510 thyroid tumor samples and 58 normal

5http://gepia.cancer-pku.cn/detail.php

samples was obtained from the TCGA database. After removing
one follicular TC sample, eight metastatic samples, and five
samples without complete ETE clinical information, 496 primary
tumor samples, and 58 healthy samples from patients with PTC
remained. These 554 samples were divided into two subsets:
one, called TCGA58, contained tumor samples and matched
healthy samples from 58 patients with PTC; the other, called
TCGA438, contained tumor samples from the remaining 438
patients. Details on the datasets used in this study are presented
in Supplementary Table S2.

Differentially Expressed Gene
Identification
TCGA58 was subjected to differential expression analysis, and
16,134 DEGs, including 11,584 mRNAs and 4,550 lncRNAs, were
identified. With a | log2 (FC)| > 1 and adjP < 0.05, 4,991
significant DEGs, including 3,095 mRNAs and 1,896 lncRNAs,
were identified. Among the significant DEGs, 2,699 and 2,292
were significantly upregulated and downregulated in the cancer
samples, respectively (Figures 2A–C).

Weighted Co-expression Network
Construction
The 11,584 differentially expressed mRNAs, 4,550 differentially
expressed lncRNAs, and 58 tumor samples with complete
clinical data from TCGA58 were used to construct mRNA
and lncRNA weighted co-expressed networks. One of the most
critical parameters was the soft-thresholding power value, which
affected the independence and average connectivity degree
of co-expression modules. The appropriate soft-thresholding
power was selected when the scale-free topology fit index
reached 0.85. In the mRNA weighted co-expressed network, a
power value of five was selected, which identified 30 modules
(Figures 3A–E). In the lncRNA weighted co-expressed network,
a power value of six was selected, which identified 15 modules
(Supplementary Figure S2).

Identification of Clinically Significant
Modules and Module Functional
Annotation
We next sought to identify modules most significantly related
to clinical features, and investigate their biological functions. In
the mRNA network, based on threshold criteria of | r| > 0.3
and p < 0.05, brown, greenyellow, and lightyellow modules were
defined as most relevant to ETE (Figures 4A–E). These three
modules contained 1,362, 223, and 129 mRNAs, respectively.
In the lncRNA network, with the same criteria, salmon and
turquoise modules were defined as the most relevant to ETE
(Supplementary Figure S3); these two modules contained 65 and
653 lncRNAs, respectively.

To examine the functions of the three ETE-related mRNA
modules, genes in these modules were subjected to GO
enrichment analysis, and the detailed results are shown in
Supplementary Table S3. Interestingly, in cellular component
analysis, all three modules were enriched for genes of the
extracellular matrix (ECM), which is a major component
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FIGURE 1 | Study flowchart. TCGA, The Cancer Genome Atlas; GO, gene ontology; DEG, differentially expressed gene; DEL, differentially expressed lncRNA.

of the tumor microenvironment and plays important roles
in tumor progression. In terms of biological processes, the
lightyellow and greenyellow modules were both enriched in genes
involved in ECM regulation, including the terms “extracellular
matrix organization” and “extracellular structure organization,”
while the brown module was enriched in genes involved
in the regulation of the immune response, which is also
closely associated with tumorigenesis, invasion and metastasis.
Enriched terms included “granulocyte chemotaxis,” “neutrophil
chemotaxis,” and “leukocyte chemotaxis.”

Detailed results from the KEGG analysis are shown
in Supplementary Table S4. The lightyellow module

was mainly enriched in pathways controlling ECM
remodeling, including protein digestion and absorption,
ECM-receptor interactions, focal adhesions, and the
phosphoinositide 3-kinase/Akt signaling pathway, while the
brown module was mainly enriched in pathways controlling
the immune response, such as cytokine–cytokine receptor
interactions, interleukin 17 signaling, and chemokine
signaling. The greenyellow module was enriched for signal
transduction pathways, including neuroactive ligand–receptor
interactions, transforming growth factor β signaling, and
phospholipase D signaling, all of which are associated with
tumor progression.
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FIGURE 2 | Identification of DEGs in the TCGA58 dataset. (A) Heatmap of the top 2,000 DEGs. (B,C) Volcano plots of DEMs and DELs.

Identification and Validation of Hub
Genes
We identified 33 highly connected genes in the brown,
greenyellow, and lightyellow modules as hub genes (Table 1),
and generated hub gene-centric networks (Figures 5A–C). The
hub genes were validated using the TCGA438 dataset, and
significant expression differences in ETE and non-ETE samples
were detected for each hub gene (Figure 6).

lncRNA/mRNA Network Construction
We identified 226 lncRNAs from the salmon and turquoise
modules that were significantly relevant to ETE. The TCGA58
dataset was used to correlate these lncRNAs with the hub genes by
Pearson correlation analysis, and the results were crossvalidated.

Based on the threshold criteria, 66 lncRNAs were significantly
coexpressed with 24 hub genes were selected as candidate
regulatory lncRNAs (Supplementary Table S5). To validate the
associations between these lncRNAs and ETE, the TCGA438
dataset was analyzed for expression differences between ETE and
non-ETE samples. The result revealed that 64/66 lncRNAs were
significantly differentially expressed (Figure 7) and these were
included as regulatory lncRNAs in further analysis.

TF/lncRNA and TF/mRNA Network
Construction
TF prediction analysis resulted in 108 TFs that may regulate
20/33 hub genes, and 153 TFs that may regulate 45/64 regulatory
lncRNAs. Correlation analysis revealed that 37/108 TFs showed
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FIGURE 3 | DEG weighted gene co-expression network construction. (A,B) The scale-free fit index and the mean connectivity with various soft-thresholding powers.
(C,D) Histogram of connectivity distributions and check scale-free topology when β = 5. (E) DEG clustering dendrograms.
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FIGURE 4 | Identification of mRNA modules associated with clinical traits of ETE. (A) Heatmap of module–trait relationships. (B) Distribution of average gene
significance in modules related with ETE. (C–E) Scatter plots of correlations between gene module membership and gene significance in the three ETE-related
mRNA modules.

significant coexpression with 14/20 hub mRNAs, and 110/153
TFs showed significant coexpression with 42/45 regulatory
lncRNAs; these were included as regulatory TFs for the mRNAs
and lncRNAs, respectively, for a total of 111 unique TFs. The
TCGA438 dataset was used to validate the associations between
the 111 TFs and ETE, and 64/111 were successfully validated
(Supplementary Table S6). After removing the TFs that failed
validation, the TF/mRNA network included 30 TFs and 14 hub
mRNAs (Supplementary Table S7) and the TF/lncRNA network
included 64 TFs and 40 lncRNAs (Supplementary Table S8).

TF/lncRNA/mRNA Network Construction
and Visualization
As a result of the above analyses, a total of 161 genes,
including 33 hub mRNAs, 64 lncRNAs, and 64 TFs were used to
construct a TF/lncRNA/mRNA regulatory network for ETE. This
large network includes three subnetworks: an lncRNA/mRNA
regulatory network including 24 mRNAs and 64 lncRNAs,
a TF/lncRNA regulatory network including 64 TFs and 40
lncRNAs, and a TF/mRNA regulatory network including 30 TFs
and 14 mRNAs (Figure 8).

Receiver Operating Characteristic and
Survival Analyses
Receiver operating characteristic analysis and AUC calculations
for the 33 hub genes are shown in Figure 9. The average
AUC of the hub genes was 0.67, and unc-5 family C-terminal
like (AUC: 0.711), sushi repeat containing protein X-linked
2 (AUC: 0.706), lysyl oxidase (AUC: 0.704), collagen (COL)
type I alpha 1 chain (AUC: 0.704), and COL type X alpha
1 chain (AUC: 0.704) were the most highly significant genes
predicting ETE diagnosis in PTC. So the results indicated
that these genes may be used as candidates for the clinical
diagnosis of ETE. Survival analysis demonstrated that most
of the hub genes could influence the survival prognosis of
patients with PTC to some extent, but only one gene, the
serine protease corin, was statistically significant (p = 0.018;
Supplementary Figure S4). Considering these hub genes may
affect the prognosis through a cooperative mechanism, and the
role of an individual hub gene was not so significant. Therefore,
we try to further clarify the effect of hub genes on the survival
prognosis of PTC. One-way ANOVA analysis demonstrated age
(p = 5.9E−9), tumor_size (p = 0.02), extrathyroid_extension
(p = 0.045), pathologic_M (p = 0.032), and pathologic_stage
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TABLE 1 | Hub genes in modules associated with ETE.

Gene symbol Module GS MM GS p-value MM p-value

AHNAK2 Brown 0.402278 0.873431 0.001746 3.81E−19

ADAMTS14 Brown 0.43586 0.868652 0.000626 1.01E−18

MARVELD1 Brown 0.43485 0.863324 0.000647 2.85E−18

LOX Brown 0.462729 0.863266 0.000255 2.88E−18

UNC5CL Brown 0.405672 0.860998 0.001582 4.42E−18

SPX Brown −0.44091 −0.86006 0.000532 5.27E−18

PRRX1 Greenyellow 0.403475 0.915264 0.001686 8.94E−24

OMD Greenyellow 0.518178 0.88662 3.10E−05 2.10E−20

DCN Greenyellow 0.418423 0.855051 0.001081 1.32E−17

ADAM12 Lightyellow 0.447943 0.922858 0.000422 7.15E−25

COL6A3 Lightyellow 0.501222 0.92266 6.13E−05 7.66E−25

COL5A1 Lightyellow 0.474416 0.918535 0.000168 3.10E−24

COL3A1 Lightyellow 0.481693 0.917229 0.000129 4.76E−24

FAP Lightyellow 0.522662 0.914703 2.57E−05 1.07E−23

NKX3-2 Lightyellow 0.436338 0.912589 0.000617 2.06E−23

TWIST1 Lightyellow 0.436359 0.906986 0.000617 1.09E−22

WISP1 Lightyellow 0.478241 0.902639 0.000147 3.68E−22

COL1A1 Lightyellow 0.48874 0.896033 9.92E−05 2.11E−21

MATN3 Lightyellow 0.423758 0.893841 0.000917 3.67E−21

COL11A1 Lightyellow 0.506507 0.890533 4.98E−05 8.29E−21

COL10A1 Lightyellow 0.48897 0.889692 9.83E−05 1.02E−20

SRPX2 Lightyellow 0.487384 0.88712 0.000104 1.87E−20

THBS2 Lightyellow 0.500577 0.88698 6.29E−05 1.93E−20

ADAMTS2 Lightyellow 0.40372 0.881852 0.001674 6.23E−20

C3orf80 Lightyellow 0.411638 0.877935 0.001326 1.47E−19

TNFAIP6 Lightyellow 0.480372 0.874937 0.000135 2.79E−19

COL5A2 Lightyellow 0.423757 0.870184 0.000918 7.41E−19

VCAN Lightyellow 0.457712 0.864524 0.000303 2.26E−18

DRP2 Lightyellow 0.487352 0.85884 0.000105 6.61E−18

MMP13 Lightyellow 0.450368 0.856966 0.000389 9.31E−18

CORIN Lightyellow 0.506103 0.856206 5.06E-05 1.07E−17

CTHRC1 Lightyellow 0.422339 0.855813 0.000959 1.15E−17

COL1A2 Lightyellow 0.475445 0.851442 0.000162 2.49E−17

GS, gene significance; MM, module membership.

(p = 0.0001) were significant influential factors for the survival
prognosis of PTC patients (Supplementary Table S9). Then, we
constructed a multivariable Cox proportional hazards model, and
the optimized Cox regression model using the AIC algorithm
contained 14 hub genes at last (Supplementary Table S10)
and the total 501 PTC patients were classified into high- and
low-risk groups based on the median of the risk scores 0.923
(Supplementary Table S11). The result of the Kaplan-Meier
curves and log-rank test showed a significant difference between
the high- and low-risk groups (p = 0.00025) (Figure 10A). This
suggested that these hub genes are statistically significant in
predicting patient prognosis. Besides, the time-dependent ROC
showed that AUC for 3- and 5-year OS was calculated separately
as 0.847 (95% CI: 0.701–0.964) and 0.794 (95% CI: 0.714–0.896),
and C-index was calculated as 0.895 (95% CI: 0.809–0.952), both
indicating the Cox regression model performed good prediction
for PTC survival prognosis (Figures 10B,C, Supplementary
Figure S5). The nomogram was developed based on the results of
the multivariable Cox proportional hazards model. A weighted

score calculated using the 14 hub genes was used to estimate 3-
and 5-year OS (Figure 10D).

DISCUSSION

In this study, we identified three gene modules (lightyellow,
greenyellow, and brown) and two lncRNA modules (salmon and
turquoise) that were significantly related to ETE in PTC. Among
the three gene modules, 33 genes were screened and validated as
hub genes that may play important roles in ETE development and
progression. Through correlation analysis and TF prediction, we
have constructed a transcriptional regulatory network for ETE,
which provides a myriad of clues toward the elucidation of the
molecular mechanisms of ETE in PTC.

It is widely recognized that ETE is a major factor affecting
PTC prognosis, and the presence of ETE is an important staging
consideration for PTC, making understanding its molecular
mechanisms and identifying biomarkers important. In previous
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FIGURE 5 | Construction of hub gene-centric interaction networks. (A) An interaction network centered on six hub genes in the brown module. (B) An interaction
network centered on three hub genes in the greenyellow module. (C) An interaction network centered on 24 hub genes in the lightyellow module. Hub genes are
shown in red and the point size indicates the node degree.

FIGURE 6 | Boxplots of hub genes between ETE and non-ETE samples in the TCGA438 dataset. p values were calculated using the Wilcoxon rank sum test.
*p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 7 | Boxplots of hub mRNA-regulating lncRNAs between ETE and non-ETE samples in the TCGA438 dataset. p values were calculated using the Wilcoxon
rank sum test. *p < 0.05, **p < 0.01, and ***p < 0.001.

studies, Chakraborty et al. (2012) and Lee et al. (2017) found that
B-Raf proto-oncogene mutation status was significantly related to
extrathyroidal invasion and lymph node metastasis. However, no
studies identifying biomarkers of ETE in PTC have been reported.

The tumor microenvironment encompasses tumor cells
and the tumor stroma, such as cancer-associated fibroblasts,
endothelial cells, immune cells, cancer-associated adipocytes,
and the ECM (Hanahan and Coussens, 2012; Bussard et al.,
2016; Brioschi and Colonna, 2019), and plays an important
role in tumor progression through the interaction and co-
evolution of tumor cells and the stroma (Garcia et al., 2011;
Fang et al., 2014; Wu et al., 2019). Interestingly, functional
annotation revealed that all three ETE-related gene modules
were enriched in genes involved in the regulation of ECM.
The ECM, which is mainly composed of collagen, fibronectin,
immune cells, proteoglycans, and glycosaminoglycans, is the
main component of tumor stroma and a key regulator of cell
and tissue functions. The results suggest that dynamic changes in
the tumor microenvironment, and particularly in the ECM, play
important roles in ETE.

The lightyellow module was the module most significantly
associated with ETE. GO analysis revealed enrichment in
biological processes involved in ECM organization, which can
involve the assembly, rearrangement, or disassembly of the ECM.
It is worth noting that ECM remodeling affects cell adhesion,
tumor migration, and angiogenesis by triggering biochemical
and biophysical signals (Paszek et al., 2005; Butcher et al.,

2009; Wolf and Friedl, 2009). ECM remodeling is tightly
controlled in normal tissues but is usually dysregulated in
cancer (Page-McCaw et al., 2007). In addition, KEGG analysis
indicated enrichment in many cancer-associated pathways,
including those involved in aspects of ECM remodeling, and
interestingly, the phosphoinositide 3-kinase/Akt pathway, which
plays important roles in transformation and in cancer cell
cycle progression and apoptosis (Chang et al., 2003). These
results suggest that ECM remodeling is closely related to the
development of ETE.

In the brown module, GO analysis suggested functions
related to the immune response. Immune cells are an
important component of the tumor stroma and immune-
mediated dysregulation has been associated with many cancers
(Balkwill et al., 2005; de Visser et al., 2006; Wyckoff et al., 2007;
Bergdorf et al., 2019). Consistently, KEGG pathway analysis also
suggested immunoregulatory functions, as well as enrichment
in cancer-associated pathways. Therefore, genes in the brown
module may participate in ETE development through immune-
mediated dysregulation.

For the greenyellow module, GO analysis identified
enrichment in genes related to the ECM, as in the lightyellow
module. However, KEGG pathway analysis identified enrichment
in multiple signal transduction pathways. Signal transduction
between the ECM and cells plays an important role in the
dynamic changes of ECM biomechanics associated with tumor
progression (Essex et al., 2001; Hoffman et al., 2011). Hence,
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FIGURE 8 | Construction of the TF/lncRNA/mRNA regulatory network. Hub genes, TFs, and lncRNAs are denoted in red, blue, and green, respectively. The point
size indicates the node edgecount and the arrow represents regulatory effect.

genes in the greenyellow module may promote ETE development
by transducing signals from the tumor microenvironment.

In these ETE-related gene modules, we identified 33 hub
genes that may serve as important biomarkers for ETE and have
important clinical implications for improving risk stratification,
treatment decision-making, and prognosis prediction in patients
with PTC. Interestingly, most of the products of these genes are
ECM components, including eight hub genes (COL3A1,COL6A3,
COL1A2,COL1A1,COL11A1,COL5A2,COL5A1, andCOL10A1)
that encode collagen. As the most abundant component of
the ECM, collagen is crucial for ECM function, and both
increased and decreased collagen deposition are involved in
biomechanical force changes associated with tumor invasion
and migration (Butcher et al., 2009; Levental et al., 2009). The
hub gene lysyl oxidase encodes an ECM protein that increases
insoluble matrix deposition and tissue stiffness by crosslinking
collagens with elastin, and is essential to enable tumor cells

to escape from primary sites and grow at secondary sites
during metastasis (Wang et al., 2016; Johnston and Lopez,
2018). Collagen degradation is necessary for tumor invasion,
and matrix metalloproteinases, which play important roles in
this process, have direct causative effects on tumor progression
(Page-McCaw et al., 2007; Hoffman et al., 2011; Torzilli et al.,
2012). The hub gene matrix metalloproteinase 13 promotes
the progression of different kinds of cancers (Dumortier et al.,
2018; Liu et al., 2018). Therefore, these hub genes may
promote the progression of ETE in PTC through direct or
indirect interactions.

As known, ETE was one of the most important factors
affecting the prognosis of PTC patients and whether there is
ETE will determine different treatment strategies such as different
surgery methods and whether combining with postoperative
radiotherapy and so on. Therefore, we speculate that these hub
genes closely related to ETE could serve as biomarkers for
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FIGURE 9 | ROC analysis and AUC calculations for hub genes in the TCGA438 dataset. Genes with AUC values <0.5 were considered downregulated. The greater
the value of |AUC-0.5|, the more meaningful the hub gene is for ETE diagnosis.

ETE diagnosis and affect survival prognosis to an extent. To
verify this idea, we first performed Wilcoxon rank sum test and
ROC analysis, the results showed each hub gene was able to
distinguish ETE and non-ETE samples and performed a relative
good prediction in ETE diagnosis. Then KM curves and log-
rank test showed most hub genes could affect PTC survival
prognosis to an extent, but only one hub gene was statistically
significant. Possible reasons leading to this result include
insufficient sample size, especially for the sample numbers of
dead patients, and the interference of other factors affecting
survival prognosis, such as age and metastasis. Considering
that these hub genes may influence the prognosis through a
mechanism that works together, and the role of individual
genes was not so significant. Therefore, we constructed a
multivariable Cox proportional hazards model using hub genes
and survival information to further clarify the effect of hub
genes on the survival prognosis of PTC. Survival analysis for
the high- and low-risk groups showed hub genes are statistically
significant in predicting patient prognosis. Besides, the time-
dependent ROC and C-index for checking the accuracy of the
Cox regression model both suggested good prediction ability.
The time-dependent ROC showed the predicted 3- and 5-year
survival rate was 97.03 and 92.91% separately, which were
consistent with previous studies (Kitahara et al., 2017; Liu
et al., 2017). In the nomogram plot, weighted scores calculated
using the 14 hub genes were used to estimate 3- and 5-
year OS and that means we could use these hub genes and

weighted scores to predict the OS of PTC patients, but still
need large amounts of clinical data to validate. In summary, as
we explored the relationship of 33 hub genes to ETE diagnosis
and PTC survival prognosis, we found the 33 hub genes closely
associated with ETE demonstrated relative good prediction in
ETE diagnosis. In addition, selected 14 hub genes constructing
the Cox regression model could perform a good prediction for
OS of PTC patients.

Understanding the regulation of gene expression is of
fundamental importance, as the vast majority of biological
processes are regulated by differential gene expression. It has
been demonstrated that lncRNAs, non-coding RNA >200
nucleotides in length, can regulate gene expression through
epigenetic, transcriptional, posttranscriptional, and translational
mechanisms, and play important roles in cancer development
(Schmitz et al., 2016; Sun et al., 2016; Li et al., 2019; Zhang et al.,
2019). Since the three mRNA modules and two lncRNA modules
are all closely related to ETE, we speculated that genes in these
modules have regulatory relationships. Therefore, we constructed
a lncRNA/mRNA regulatory network including 24 hub mRNAs
and 64 lncRNAs. TFs are DNA-binding proteins whose gene
regulation ability is crucial to define the molecular state of
cells (Simicevic and Deplancke, 2017). Therefore, predicting TFs
for these genes was crucial to construct a complete regulatory
network. TF binding motifs dictate the binding specificity of gene
promoters or cis-regulatory modules, usually by pooling a series
of conserved and variable binding sites (Harbison et al., 2004;
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FIGURE 10 | Evaluation of the optimized Cox proportional hazards model effectiveness. (A) Kaplan-Meier survival curves of high- and low-risk groups based on the
median riskscores. (B,C) Time-dependent receiver operating characteristic (ROC) was used to evaluate the performance of Cox regression prognostic models for 3-
and 5-year overall survival. (D) Nomogram plot was constructed with the 14 hub genes for overall survival. The effects of each hub genes can be converted into the
point’s axis at the top of the nomogram. After adding the points of each hub genes and corresponding to the total point’s axis at the bottom of the nomogram, a
patient’s probability of survival (3- and 5-year) can be predicted at the bottom of the nomogram.

Maston et al., 2006). Our regulatory network includes 64 TFs and
provides new insights into the molecular mechanisms of ETE.

In conclusion, through comprehensive bioinformatics
analysis, this study identified 33 biomarkers and multiple
signaling pathways related to ETE in PTC, resulting in a
transcriptional regulatory network for ETE including TFs,
lncRNAs, and mRNAs. Moreover, ROC and survival analysis
showed these hub genes could serve as candidates for ETE
diagnosis and prognosis of PTC patients. Verification with a
larger number of samples will be required; however, currently
few datasets with complete ETE information exist. Also, our
results will require lots of experimental verification. Taken
together, our findings provide novel insights into the molecular
mechanisms of ETE in PTC, and may have important clinical
implications in the improvement of PTC risk stratification,
therapeutic decision-making, and prognosis prediction.
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