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Ribosomal proteins (RPs) are essential components that translate genetic information
from mRNA templates into proteins. Their expressional dysregulation adversely affects
the survival and growth of human cells. Nevertheless, little is known about the nucleotide
sequences regulating the expression of RPs. Genome-wide associations for expression
level of 70 RP genes were conducted across expression stages. Eighteen expression
regulatory quantitative trait loci (erQTLs) were identified for protein abundances of
21 RPs (P < 1 × 10−5), but not for their mRNA expression and ribosome occupancy
(P > 1 × 10−5). These erQTLs for protein abundance (pQTLs) were all trans-acting.
Three of the pQTLs were associated with the expression of long noncoding RNAs
(lncRNAs). Target genes of these lncRNAs may produce ribosomal components or
may control the metabolic cues for ribosome synthesis. mRNAs of the RP genes
extensively interact with miRNAs. The protein-specific erQTLs may become engendered
by intensive miRNA controls at the translational stage, which in turn can produce
RPs efficient in handling instantaneous cell requirements. This study suggests that
the expression levels of RPs may be greatly influenced by trans-acting regulation,
presumably via interference of miRNAs and target genes of lncRNAs. Further studies
are warranted to examine the molecular functions of pQTLs presented in this study and
to understand the underlying regulatory mechanisms of gene expression of RPs.

Keywords: ribosomal protein, expression regulatory quantitative trait loci, trans-acting regulation, pQTL, lncRNA

INTRODUCTION

Ribosome is a complex organelle required for translating the genetic information of mRNA
templates into proteins, and ribosomal proteins (RPs) are primary components of the ribosome
in conjunction with ribosomal RNAs (rRNAs). In humans, 80 RPs are assembled into a ribosome
together with four rRNAs (Anger et al., 2013), and over 200 factors are involved in the assembly
(Thomson et al., 2013). Thus, expression of the RP genes should be exquisitely regulated throughout
all stages of gene expression, considering that the RP genes are scattered over the entire human
genome. For example, mammalian target of rapamycin (mTOR) signaling controls ribosome
biogenesis via expressional regulation of RPs and rRNAs. Under sufficient nutrient condition and
presence of growth factors, mTOR signaling increased both transcription and translation of RP
genes (Mayer and Grummt, 2006). During transcription, mTOR-dependent transcription factors
(e.g., SFP1 and FHL1) bind to the promoters of RP genes (Jorgensen et al., 2004). Moreover, mTOR
signaling can activate chromatin state of the RP genes by recruiting histone acetyltransferase ESA1
(Reid et al., 2000), and phosphorylate p70 RP S6 kinase 1 (S6K1; Holz et al., 2005). In particular,
S6K1 is a well-known coordinator of ribosome biogenesis and promotes transcription of numerous
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genes encoding nucleolar factors for ribosome biosynthesis
such as rRNA synthesis and RP assembly/transport (Gao and
Roux, 2015). During translation, the mTOR signaling promotes
translation of the mRNAs with a 5′-terminal oligopyrimidine
(5′TOP) sequence (Gentilella and Thomas, 2012). All RP
genes include the 5′TOP sequence at their transcriptional start
sites (Gentilella and Thomas, 2012), thereby leading to the
coordination of ribosome biogenesis regulation in a cell.

For ribosome biogenesis, the cells control RP gene expression,
thus ensuring stoichiometric production of RPs (Gupta and
Warner, 2014). In general, certain RPs are excessively expressed
beyond the cell requirement, and those that fail to assemble
into ribosomal subunits are rapidly degraded by the nuclear
ubiquitin–proteasome system; however, dysregulation of RP
expression or perturbation of ribosome biosynthesis can lead to
accumulation of unassembled RPs in the insoluble aggregates in
the nucleolus (Sung et al., 2016). Such aggregation can provoke
nucleolar stress and activate the MDM2–p53 tumor suppress
pathway (Deisenroth and Zhang, 2010).

Although regulating the gene expression of RPs is crucial in
maintaining cell growth and survival, the mechanism by which
genetic factors regulate their gene expression remains unclear.
The present study aimed to identify the expression regulatory
quantitative trait loci (erQTLs) for RPs across expressional stages.

MATERIALS AND METHODS

Expression Data
This study examined erQTLs for expression of RP genes at
three different stages: mRNA transcription, ribosome occupancy,
and protein abundance. We used expression data obtained from
studies that assessed three kinds of expression levels using
lymphoblastoid cell lines (LCLs) derived from unrelated Yoruba
individuals of Ibadan in Nigeria (Pickrell et al., 2010; Battle
et al., 2015). The mRNA transcript levels of 75 individuals
were obtained by polyadenylated fractions of RNAs using the
Illumina GA2 platform (Pickrell et al., 2010). The quantity was
estimated with the median of 8.6 M reads per individual uniquely
mapped to the Ensemble genes. Read counts were normalized
by the total number of mapped reads and gene length and were
recorded as reads per kilobase per million mapped reads (RPKM)
of each gene for every individual. The ribosome occupancy
levels of 72 individuals were produced by sequencing ribosome-
protected fragments (RPFs) of mRNA isolated using Illumina
HiSeq 2500 with ARTseq Ribosome Profiling kit (Epicenter,
RPHMR12126; Battle et al., 2015). The median was 12.1 M
reads per individual, and the read counts were also normalized.
Protein abundance levels were obtained as ratios to the stable
isotope labeling by amino acids in cell culture (SILAC) internal
standard sample for the gene using protein mass spectrometry
(Battle et al., 2015). Individuals lacking SILAC internal standard
sample were excluded.

Expression regulatory quantitative trait loci were identified
with the data centered and scaled to mean 0 and variance 1
and were then quantile-normalized to fit a standardized normal
distribution. A principal component (PC) analysis was conducted

to eliminate the unmeasured potential confounding effects.
The PC count was determined by maximizing the number of
identified erQTLs for each of three kinds of expression data. Six
PCs were regressed out from mRNA expression, nine PCs from
ribosomal occupancy, and seven PCs from protein abundance.
Expression data of RPs used in the present study included mRNA
expression of 70 RP genes (43 for large subunit and 27 for small
subunit), ribosome occupancy of 69 RP genes (42 and 27), and
protein abundance of 66 RP genes (39 and 27).

Genotype Data
We used autosomal genotypic data of Yoruba individuals in a
variant calling format produced from the 1000 Genomes Project
Phase 31. The sequence variants were excluded following the
criteria of Hardy–Weinberg disequilibrium (P < 1 × 10−6) and
the minor allele frequency (MAF) < 0.1. After the quality control,
genotypic data for 5,594,467 nucleotide variants on 64 YRI
individuals were retained for analyzing the erQTL association.
Only individuals with both genotype and expression data were
used for the present erQTL analysis. As a result, 63 individuals
for eQTL analysis, 62 for rQTL, and 51 for pQTL were included.

Additional Data
We further investigated erQTLs using various expression data to
specify the regulatory mechanism of identified erQTLs. Initially,
we identified cis-eGenes to understand the potential regulatory
mechanism of trans-erQTL. The cis-eGene was defined as a
protein-coding or noncoding gene within 1 Mb from erQTL. The
erQTLs for protein-coding genes and lncRNAs were determined
by transcriptomic data resulting from the Genotype-Tissue
Expression Consortium (GTEx)2. The erQTLs for miRNA were
examined for their expression in LCL of Yoruba individuals from
the 1000 Genomes project (Lappalainen et al., 2013).

To discover the putative mRNA targets of lncRNAs
identified as cis-eGenes, the lncRNA–RNA interaction was
predicted based on the energy of intermolecular base-pairing
interactions. These predictions were made with a cutoff value
of 16 kcal/mol reduction in the interaction energy using Rtools3

(Terai et al., 2016).
The human miRNA interactome data produced by cross-

linking, ligation, and sequencing of hybrids (CLASH) were used
to evaluate the posttranscriptional regulation of RP genes. A total
of 18,514 miRNA–target RNA interactions were available as
chimeric sequencing reads between 6,959 genes and 399 miRNAs
(Helwak et al., 2013). All the miRNAs paired with human
RP genes were selected to examine whether miRNA–RP RNA
interactions were enriched.

Statistical Analysis
The erQTLs for RPs at mRNA transcription, ribosome
occupancy, and protein abundance were identified using a
mixed linear model. The analytical model for genome-wide
erQTL included polygenic effects with a genomic similarity

1ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
2https://gtexportal.org/
3http://rtools.cbrc.jp/cgi-bin/RNARNA/index.pl
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matrix (GSM) to avoid population stratification (Lee, 2018)
as follows:

y = µ1+ Xβ+ g + ε

where y is the vector of expression levels for RP genes, µ is the
overall mean, 1 is the vector of 1′s, β presents the fixed effects
for the minor allele of the nucleotide variant to be tested for
association, andX is the design matrix with elements of 0, 1, and 2
for the homozygote of the major allele, heterozygote of the minor
allele, and homozygote of the minor allele, respectively. Vector
g presents the random polygenic effects with g ∼ N(0,Aσ2

g),
where A is the GSM with elements of pairwise genomic
similarity coefficients estimated using sequence variants and σ2

g
is the polygenic variance component. The genomic similarity
coefficient between individuals j and k can be calculated (Yang
et al., 2011) as follows:

gjk =
1
nν

nν∑
i=1

(τij − 2fi)(τik − 2fi)
2fi(1− fi)

where nν is the number of nucleotide variants that contribute to
the genomic similarity, τij, and τik represent the number (0, 1,
or 2) of minor alleles for the nucleotide variant i, and fi is the
frequency of the minor allele. Vector ε is the random residuals
with ε ∼ N

(
0, Iσ2

ε

)
, where σ2

ε is the environmental variance
component and I is the identity matrix. The variance components
for polygenic effects and residuals were estimated using restricted
maximum likelihood (REML). The REML estimates were initially
obtained by expectation–maximization algorithm and were then
used as initial values to obtain their average information-based
REML estimates. All the association analyses for erQTL were

carried out using GCTA (v1.26)4. For genome-wide identification
of erQLT, multiple testing was applied with a conservative
significance threshold of P = 1.0 × 10−5 using permutation. The
erQTL identification process was repeated for the three types of
levels across the expression stages.

RESULTS

Genome-wide analysis of erQTL for RPs revealed associations
of 132 nucleotide variants with protein abundance
(P < 1.0 × 10−5), but any associations were not found with
mRNA expression or with ribosome occupancy (P> 1.0× 10−5).
Linkage analysis showed that the 132 variants were included
in 18 independent linkage disequilibrium blocks. The 18
pQTLs are presented with a representative variant at each
association signal in Table 1. The signals except for rs10986456,
rs10792421, and rs7323301 were shared by two or more RPs.
Significances for the pQTLs across 21 RPs are presented
in Figure 1. None of the 18 pQTLs was located within the
corresponding eGene. Nine intragenic pQTLs were found within
genes encoding five proteins (CACNA1A, TGFBR2, ATP11B,
BMP6, and KIR2DS4) and four lncRNAs (RP11-483P21.3,
AC083864.3, RP4-705D16.3, and AC07371.1). Five pQTLs in
the protein-coding genes were not associated with expression
of the corresponding gene or genes in the same chromosome
regardless of their expressional stages (P > 0.05). In contrast,
two pQTLs (rs462331 and rs2710804) in lncRNA genes were
associated with the corresponding lncRNAs (RP11-483P21.3
and AC083864.3, respectively) in numerous human tissues

4http://cnsgenomics.com/software/gcta/

TABLE 1 | Genome-wide association of genetic variants with abundance of ribosomal protein*.

pQTL* Position§§§ Allele¶¶¶ MAF Gene‡‡‡ RP†††

rs462331 16:83832299 A/T 0.098 RP11-483P21.3 RPLP2, RPS7, RPL12, RPS26, RPL10A

rs537968655 4:117607965 A/G 0.167 – RPS11, RPS6, RPS7, RPL10A, RPL28

rs80058813 4:117610565 G/A 0.225 – RPS2, RPS7, RPL15

rs11085865 19:13680104 C/T 0.137 CACNA1A RPL21, RPS7, RPL26, RPL3

rs74832379 4:34551579 T/A 0.147 – RPL38, RPL37A

rs10986456 9:27602577 C/T 0.069 WDR38 RPS12

rs2710804 7:36084529 T/C 0.108 AC083864.3 RPS7, RPLP2, RPS8

rs73972909 2:154234327 T/A 0.127 AC079150.3 RPL28, RPS7, RPL12

rs10792421 11:63605177 G/A 0.147 MARK2 RPS7

rs1431131 3:30675880 A/T 0.225 TGFBR2 RPS15A, RPL11

rs9820794 3:182633827 T/G 0.118 ATP11B RPS11, RPS7

rs17784260 12:4984022 T/C 0.137 KCNA6 RPS7, RPS6

rs270407 6:7738392 T/C 0.167 BMP6 RPS29, RPS11

rs6135868 20:16706651 A/C 0.127 RP4-705D16.3 RPS29, RPS11

rs7323301 13:27336447 C/A 0.147 GPR12 RPL38

rs74641852 21:21060812 G/A 0.108 – RPS21, RPS7

rs8109630 19:55356516 A/C 0.127 KIR2DS4 RPL12, RPS8

rs820938 7:109282537 G/T 0.147 AC073071.1 RPS7, RPS29

*No erQTLs were found for mRNA expression or for ribosome occupancy (P > 1.0 × 10−5). Representative nucleotide sequence variants for each erQTL signal are
presented. §The chromosomal position (Chr: bp) is obtained from the GRCh37 reference genome. ‡The gene is located within ± 100 kb from the pQTL. ¶Major/minor
allele. †Ribosomal proteins for their abundance association with pQTL are presented. pQTL, protein quantitative trait loci; MAF, minor allele frequency; and RPs,
ribosomal proteins.
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FIGURE 1 | Heatmap of pQTL significance for ribosomal protein genes across expression stages. Significance of association with representative nucleotide variant
at every pQTL signal is presented.

(P < 1.0 × 10−4, Table 2). Moreover, rs462331 and rs10986456
were associated with their nearby lncRNAs, RP11-483P21.2 and
RP3-377H17.2, respectively.

Furthermore, the top-ranked 200 target genes were
analyzed for their mRNA interaction with each of
the four lncRNAs associated with pQTLs. Protein
abundance of nine of the target genes was associated
(P < 0.05) with the pQTLs identified in the present study
(Table 3). Two (DFFA and VKORC1L1) of these nine
target genes for lncRNAs were associated with multiple
pQTLs (rs462331 and rs2710804) which were previously
identified for expression of lncRNAs (RP11-483P21.2 and
AC083864.3, respectively).

Of the 80 known RP genes in human genome, RNAs
transcribed from 76 genes were found to interact with
miRNAs using CLASH (Table 4). Their proportion
(0.95) is significantly larger (P < 0.01) than that
(0.35) for other human genes. The interactions for

TABLE 2 | Association of pQTL for ribosomal protein with mRNA expression of
near gene (cis-eGene).

eQTL* cis-eGene P-value Tissue

rs462331 RP11-483P21.2† 9.1 × 10−8 Mucosa of esophagus

rs462331 RP11-483P21.3† 2.2 × 10−7 Tibial artery

rs462331 RP11-483P21.3† 1.8 × 10−5 Sun exposed skin of lower leg

rs2710804 PP13004 6.3 × 10−7 Testis

rs2710804 AC083864.3† 1.3 × 10−5 Subcutaneous adipose

rs10792421 C11orf84 6.1 × 10−7 Sun exposed skin of lower leg

rs10792421 NAA40 7.6 × 10−5 Thyroid

rs17784260 RP3-377H17.2† 3.0 × 10−5 Brain cortex

*These eQTLs were identified for cis-eGenes in the following column as listed and
were originally found as pQTLs for RP in the present study. †Long non-coding RNA.

every RP RNA and the RP RNA targeted by a miRNA
occurred more frequently than those for other human
genes (P < 0.05).
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TABLE 3 | Association of pQTL with gene targeted by cis-eGene*.

pQTL cis-eGene (lncRNA) Gene targeted by cis-eGene§§§ Relevant function††† P-value

rs462331 RP11-483P21.2 PLEKHA2 (3′UTR) None 3.40 × 10−4

VKORC1L1 (3′UTR) Oxidative stress 8.54 × 10−3

DFFA (3′UTR) Apoptosis 1.03 × 10−2

RPL37 (3′UTR) Producing RPs 1.87 × 10−2

EXOSC2 (3′UTR) Producing rRNAs 3.31 × 10−2

DENND4C (3′UTR) Energy level 3.59 × 10−2

rs17784260 RP3-377H17.2 NCL (CDS) Producing rRNAs 5.53 × 10−3

rs2710804 AC083864.3 HBS1L (3′UTR) Producing RPs 7.92 × 10−3

DFFA (3′UTR) Apoptosis 8.40 × 10−3

VKORC1L1 (3′UTR) Oxidative stress 1.17 × 10−2

RPS3A (3′UTR) Producing RPs 2.09 × 10−2

*Among the identified cis-eGenes, only genes encoding lncRNA were examined. §Target location is presented in parentheses. †Functions of the target genes for RP
demand or synthesis. UTR, untranslated region; CDS, coding sequence.

TABLE 4 | Number and enrichment ratio of ribosomal protein genes interacting with miRNAs.

Count Ratio

Genes (A) Interactions with miRNA (B) Interacting genes (C) Interacting miRNA (D) C/A B/C B/CD

All genes* 19,901 18,514 6,959 399 0.35 2.66 0.0067

RP genes 80 554 76 146 0.95 7.29 0.0499

*The protein coding gene count was referred from GENCODE V25.

DISCUSSION

We identified 18 erQTLs for protein abundance of 21 RPs: 10 RPs
in a small subunit and 11 RPs in a large subunit (P < 1.0× 10−5).
They were all protein-specific and trans-acting erQTLs. Three
(rs462331, rs2710804, and rs10986456) of these pQTLs were
associated with lncRNAs (RP11-483P21.3, AC083864.3, RP11-
483P21.2, and RP3-377H17.2) in cis-acting. Some genes predicted
as targets of the lncRNAs shared the pQTLs with RP genes.
The target genes may trigger the RP expression. For example,
RPS3A, RPL37, NCL, and EXOSC2 are known to be involved
in ribosome synthesis (Mitchell et al., 1997; Ginisty et al., 1998;
Fremerey et al., 2016). Furthermore, DFFA is implicated in
apoptosis by provoking DNA fragmentation (Liu et al., 1997),
and expression of VKORC1L1 is inflated by oxidative stress
(Westhofen et al., 2011).

Since ribosomes are essential for most cellular activities such
as cell survival, cell growth, and development in every living cell,
the genes encoding RPs are well known and stably expressed (De
Jonge et al., 2007). About 70% of cellular transcription is involved
in ribosome biogenesis. Moreover, 50% of RNAPII transcription
and 90% of mRNA splicing are allocated to transcription of RP
genes (Li et al., 1999; Warner, 1999). About 30% translation
in cells is processed for ribosome biogenesis (de la Cruz et al.,
2018). Thus, the RP expression seems to be a high energy-
demanding process and requires efficient regulation of the
fluctuating cellular environment.

Certain strategies are applied for the rapid production of RPs
according to the cell demand. RPs are excessively produced.
In general, 25% of RPs in the protein level are spared to
cope with the unexpectedly increased demand (Metzl-Raz
et al., 2017); however, translation is a high-energy-consuming

process for amino acid synthesis and polypeptide assembly.
This requires approximately 50% of ATP consumption in
the rapidly growing yeast cells (Warner, 1999). In contrast,
transcription utilizes only 10% of the energy required for protein
production (Liu et al., 2016). Thus, an instantaneous translation
may be an energy-efficient model for prompt production
of proteins. Indeed, RP mRNAs are abundantly stored as
inactive messenger ribonucleoprotein (mRNP) particles in the
cytoplasm of quiescent cells and poised for translation (Mayer
and Grummt, 2006; Patursky-Polischuk et al., 2009). Only RP
pQTLs were identified in the present study due to the intensive
translational control of RPs; that is, instantaneous changes from
repressed to active state are greatly attributed to translational
regulations. In particular, it is notable that erQTL for ribosomal
occupancy was not found in the current study, considering
that ribosomal occupancy is, in general, largely correlated with
protein abundance (Battle et al., 2015). A substantial control after
initiation of translation is suspected. Polysomes for RP transcripts
have larger ribosome density and larger tRNA adaptation than
those for non-RP transcripts to cope with a heavy translation
burden for cellular activity (Riba et al., 2019). Nevertheless,
elongation of translation is slower for RP transcripts than for
other transcripts (Riba et al., 2019). These results imply that
expression of the RP genes is intensively regulated by controlling
elongation speed of translation. The elongation speed can be
controlled by frequent interaction of RP mRNA with miRNA.
This was supported by the current study where various miRNAs
were bound to RP mRNA as shown in Table 4. Numerous RPs
(95%) were regulated by miRNAs, with three times more frequent
interactions than other human genes. Moreover, RP genes were
regulated 7.49 times more frequently by one miRNA on average
than by other human genes. The substantial interactions with
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miRNA may efficiently regulate the RP expression. The fine-
tuning in translational regulation by various miRNAs is crucial
for ribosome heterogeneity (Genuth and Barna, 2018).

The 18 pQTLs found in the present study were all trans-
acting pQTLs. Among these, 15 pQTLs were associated with
multiple RPs. We initially tried to discover cis-eGenes of
the trans-acting pQTLs. As a result, seven cis-eGenes were
identified, and four of them were lncRNAs (Table 2). The
lncRNAs were five times larger than those (0.8) that resulted
from non-RP pQTLs (P < 0.05; Supplementary Table S1).
In general, lncRNAs regulate the expression of their target
genes after transcription via base-pairing interactions between
lncRNA and RNA (Kretz et al., 2013). These lncRNAs may
regulate the gene expression that may further control expression
of RP genes. Protein abundance of nine target genes, which
presumably interact with the four lncRNAs, is known to be
associated with the pQTLs originally identified in the present
study (Table 3). The target genes may contribute to ribosome
synthesis by producing rRNAs or RPs itself or indirectly by
controlling the metabolic cues that influence ribosome synthesis
(Table 3). For example, RPL37 and RPS3A as the RPs were
found to be regulated by lncRNA. HBS1L controls ribosome-
associated mRNA surveillance, retrieving stalled ribosome during
translation and maintaining ribosome homeostasis (Shoemaker
et al., 2010). NCL and EXOSC2 produce rRNA (Mitchell et al.,
1997; Ginisty et al., 1998; Fremerey et al., 2016). The rRNAs
as major components for ribosome synthesis are expressed
simultaneously with the RP genes. In particular, transcription of
rRNAs strictly controlled the expression of RP genes in yeasts
(Granneman and Tollervey, 2007). Moreover, NCL is known to
play a pivotal role in ribosome assembly and biogenesis as well
as in rRNA transcription and maturation (Ghisolfi et al., 1992;
Bouvet et al., 1998). The NCL can control the expression of RPs
by modulating the posttranscriptional expression of apoptosis-
related genes such as BCL2, CCNI, and TP53 (Sengupta et al.,
2004; Takagi et al., 2005; Abdelmohsen et al., 2011). Target
genes with a function of regulating metabolic cues for ribosome
synthesis include DFFA, VKORC1L1, and DENND4C. DFFA
as an inhibitor of CAD is normally present in a complex
with CAD. A cleavage between DFFA and CAD can provoke
DNA fragmentation, a primary process of apoptosis (Sakahira
et al., 1998). VKORC1L1 decreases the level of vitamins, K 2,3-
epoxide, and K quinone. This reductase contributes to vitamin
K-mediated protection against oxidative stress and conversion
to active vitamin K (Westhofen et al., 2011; Karasawa et al.,
2013). Thus, it plays a pivotal role in cell survival and apoptosis
via intracellular antioxidation (Westhofen et al., 2011) and
binding of the active vitamin K to BAK (Karasawa et al., 2013),

respectively. DENND4C can facilitate glucose transportation into
a cell as a guanine nucleotide exchange factor for Rab10 that is
required for translocating GLUT4 (Sano et al., 2011). Cellular
glucose is essential for promoting mTOR signaling (Dibble and
Manning, 2013) and thereby affects the RP expression. Moreover,
mTOR can be also facilitated by other metabolic cues such as
apoptosis and oxidative stress. It triggers expression of various
RPs by trans-pQTL. Such trans-regulations might considerably
explain various protein levels in human cells. A previous pQTL
study of human blood plasma revealed that multiple variants of
a single gene can regulate even 60% of protein variance (Suhre
et al., 2017). Knowledge regarding the underlying mechanisms of
these trans-regulations is limited only to the regulation by few
intermediates such as miRNA.

The present study identifies 18 erQTLs for RP genes in
humans, and they are all pQTLs and trans-acting. Notably, the RP
expression might be triggered by the target gene of lncRNA that is
the very cis-eGene of the trans-acting pQTL. Moreover, RPs can
be efficiently regulated via substantial interactions with miRNAs
after the transcriptional stage. The erQTLs across expressional
stages would help in understanding the underlying regulatory
mechanisms in RP expression.
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