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Background: Colon cancer is one of the most common health threats for humans since
its high morbidity and mortality. Detecting potential prognosis risk biomarkers (PRBs) is
essential for the improvement of therapeutic strategies and drug development. Currently,
although an integrated prognostic analysis of multi-omics for colon cancer is insufficient,
it has been reported to be valuable for improving PRBs’ detection in other cancer types.

Aim: This study aims to detect potential PRBs for colon adenocarcinoma (COAD)
samples through the cancer genome atlas (TCGA) by integrating muti-omics.

Materials and Methods: The multi-omics-based prognostic analysis (MPA) model
was first constructed to systemically analyze the prognosis of colon cancer based on
four-omics data of gene expression, exon expression, DNA methylation and somatic
mutations on COAD samples. Then, the essential features related to prognosis were
functionally annotated through protein–protein interaction (PPI) network and cancer-
related pathways. Moreover, the significance of those essential prognostic features were
further confirmed by the target regulation simulation (TRS) model. Finally, an independent
testing dataset, as well as the single cell-based expression dataset were utilized to
validate the generality and repeatability of PRBs detected in this study.

Results: By integrating the result of MPA modeling, as well the PPI network,
integrated pathway and TRS modeling, essential features with gene symbols such as
EPB41, PSMA1, FGFR3, MRAS, LEP, C7orf46, LOC285000, LBP, ZNF35, SLC30A3,
LECT2, RNF7, and DYNC1I1 were identified as PRBs which provide high potential
as drug targets for COAD treatment. Validation on the independent testing dataset
demonstrated that these PRBs could be applied to distinguish the prognosis of COAD
patients. Moreover, the prognosis of patients with different clinical conditions could also
be distinguished by the above PRBs.
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Conclusions: The MPA and TRS models constructed in this paper, as well as the PPI
network and integrated pathway analysis, could not only help detect PRBs as potential
therapeutic targets for COAD patients but also make it a paradigm for the prognostic
analysis of other cancers.

Keywords: colon cancer, prognostic analysis, multi-omics analysis, in silico simulation, pathway integration

INTRODUCTION

As one of the most common cancer types and the second leading
cause of cancer mortality (Hernandez et al., 2014), colorectal
cancer (CRC) is highly prevalent worldwide, with more than
1.2 million new cases and over 600 thousand deaths each year
(Li et al., 2015). Even though nearly 60% of CRC patients can
be treated through therapeutic surgical resection and adjuvant
chemotherapy, approximately 20–30% of patients will eventually
suffer from disease recurrence and experience poor prognosis
(O’Connell et al., 2008; Andre et al., 2009). The diagnosis and
prognosis of CRC, especially its branch colon cancer (Marley and
Nan, 2016), has received much attention in recent researches.
Thus, approaches which could efficiently identify the PRBs for
colon cancer with diagnosis, monitoring, and prognosis are
highly desired to improve the cure rate and overall survival (OS)
(Melichar, 2013; Zhou et al., 2018a,b).

With the development of next-generation sequencing (NGS),
essential PRBS for colon cancer from sequencing data such
as gene expression (Calon et al., 2015; Okugawa et al., 2017),
exon expression (Katoh et al., 2015), DNA methylation status
(Kandimalla et al., 2017), mutational profile (Yu et al., 2015;
Taieb et al., 2016) and others (Zheng et al., 2001; Ozawa et al.,
2017) were determined. For example, it was reported that CDX2
could be used as PRBs for stage II and stage III colon cancer
(van den Braak et al., 2018). And, mutations on BRAF (V600E)
and KRAS were significantly associated with disease-free survival
(DFS) and OS in CRC patients with microsatellite-stable tumors
(Taieb et al., 2016). Additionally, it was reported that high
expression of hsa-mir-155 and low expression of hsa-let-7a-2
were correlated with poor survival in lung cancer (Yanaihara
et al., 2006). Moreover, protein biomarkers such as CA19-9, CA
72-4 and carcinoembryonic antigen (CEA), can be used as PRBs
of colorectal carcinoma (Zheng et al., 2001), and plasma vascular
endothelial growth factor-A (VEGF-A) can be used as a PRBs for
colon cancer (Luo and Xu, 2014). Despite all the above efforts,
no non-invasive, specific, sensitive, and economical methods are
reported to identify the PRBs for all types of CRC patients in
clinical (Das et al., 2017). Existing PRBs are only sensitive for
limited patients and fail to be extended for large-scale populations
(Xie et al., 2018). Considering that the omics information from
different patients are not consistent, it is necessary to apply multi-
omics information in large-scale populations to detect general
PRBs. PRBs from multi-omics rather than single one cannot only
help the diagnosis of colon cancer but also increase sensitivity to
conventional therapies and improve prognosis.

By taking advantage of The Cancer Genome Atlas (TCGA)
program (Tomczak et al., 2015), multi-omics molecular profiles
including transcriptome, exon expression, DNA methylation,

mutations, etc. are collated along with clinical annotations
for patients. In that case, it is possible to discover the PRBs
with multi-omics information across large-scale populations by
machine learning techniques (Cruz and Wishart, 2007; Kourou
et al., 2015). In this study, prognostic analysis of COAD patients
was performed by integrating multi-omics data which were
closely associated with the expression or regulation of genes
including gene expression, exon expression, DNA methylation
and mutations derived from UCSC Xena database (Liu et al.,
2017; Qu et al., 2017; Zhang X. et al., 2017), as well as
clinical survival information of patients. Firstly, a MPA model
was generated to identify essential features that significantly
affect the prognosis of COAD patients. Then, the function
of the above features was analyzed through the PPI network
and pathway integration analysis. Moreover, the TRS model
was provided to validate the significance of those essential
features that alteration could increase the OS of COAD patients.
By integrating the result of MPA modeling, as well as the
PPI network, integrated pathway and TRS modeling, essential
features with gene symbols of EPB41, PSMA1, FGFR3, MRAS,
LEP, C7orf46, LOC285000, LBP,ZNF35, SLC30A3, LECT2, RNF7,
and DYNC1I1 were detected as PRBs for COAD. The validation
of the independent dataset showed that these detected PRBs could
not only distinguish the prognosis of colon cancer patients from
other data sources, but also reflect significant difference between
tumor and normal cells from single-cell based expression profile.
Moreover, these PRBs were also effectively distinguish the
prognosis of patients with different clinical conditions. With the
accumulation of multi-omics data and clinical information, it is
possible for us to comprehensively investigate PRBs and perform
therapeutic targets for future drug development.

MATERIALS AND METHODS

Data Source
The overall survival (OS) of 551 COAD samples as the survival
information is derived from the TCGA module of Public Xena
Hubs in the UCSC Xena database (Liu et al., 2017; Qu et al.,
2017; Zhang X. et al., 2017). Besides, the clinical information
of COAD samples including age, weight, person neoplasm
cancer status, number of first degree relatives with cancer
diagnosis, etc. were downloaded from the phenotype section of
the TCGA module in the UCSC Xena database. Four omics
data were downloaded followed the same process, including
gene expression profiles of 329 COAD samples, exon expression
profiles of 329 COAD samples, DNA methylation profiles of 337
COAD samples and somatic mutation information of 217 COAD
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samples (Supplementary Table S1). For each patient, a tumor
sample was selected as the research object by filtering out the
samples from normal tissue according to the nomenclature of
TCGA sample IDs.

All the profile dataset of four omics were downloaded from
the UCSC Xena database. Briefly, level 3 gene expression profiles
with 20,530 gene features recorded in the UCSC Xena database
were experimentally generated using the Illumina HiSeq 2000
RNA sequencing platform (Prego-Faraldo et al., 2018) from the
University of North Carolina TCGA genome characterization
center. The stored exon expression profiles were generated
using the same platform as the gene expression profiles, with
239,322 exon features. The downloaded DNA methylation
profiles were obtained from the platform of Illumina Infinium
HumanMethylation450 (Hong et al., 2019), which consists of
375,066 methylation features. Moreover, for somatic mutations,
the recorded sequencing data were generated on the Illumina
GA system containing 239,322 mutations. After obtained the
original mutation profiles, the information for somatic mutations
was integrated into a binary matrix, in which mutations at the
corresponding position were marked as 1 or 0. Besides, the
gene annotation information of exon and methylation were also
derived from the TCGA module of Public Xena Hubs in the
UCSC Xena database.

The background Protein–protein interaction (PPI) network
used in this project contained 10,462 nodes and 55,317
interactions was constructed mainly based on three database,
including HPRD version 9 (Stelzl et al., 2005), Mint version 2012
(Zanzoni et al., 2002) and IntAct version 4.2.12 (Hermjakob et al.,
2004). And, biological pathways for enrichment and analysis were
integrated from KEGG version 87.0 (Kanehisa et al., 2017) and
GeneCards version 4.12 (Safran et al., 2010). Targets of drugs
were retrieved from DrugBank version 5.0 (Wishart et al., 2018)
and the TTD version 2018 (Li et al., 2018).

The independent dataset was obtained from the NCBI GEO
database with the accession number of GSE17538, in which the
expression profile including 54,675 probes in 177 colon cancer
patients with survival information from Moffitt Cancer Center
(Smith et al., 2010). The single-cell based RNA-seq dataset of
colon cancer was downloaded from the NCBI GEO database
with the accession number of GSE81861 (Li et al., 2017). In
this dataset, single-cell sequencing data containing 11 primary
colorectal tumors and matched normal mucosa (NM) cell with
57,240 genes are selected. Among them, four groups including
all cell count (266 cells for NM and 375 cells for tumor), all cell
FPKM (215 cells for NM and 375 cells in tumor), epithelial cell
count (160 cells for NM and 272 cells in tumor), and epithelial cell
FPKM (160 cells for NM and 272 cells for tumor) were collected.

Determining Prognosis-Related Features
or MPA Model Construction
For each omics dataset, the intersected tumor samples with
the survival records were selected as the patient samples and
further divided into high-OS group (positive) and low-OS
group (negative) by setting the threshold of OS as 5 years
(1,825 days) (Gustafsson et al., 2016). Further, two-tailed T-tests

were used to evaluate the different features between positive
and negative samples. For each omics profile, the top 1,000
features with P-values in ascending order were first screened
and further filtered with conditions of P < 0.01 and fold change
(FC) > 1.5 or FC < 2/3.

Then, to reduce the feature dimensionality of multi-omics
profiles combined by single-omics, exploratory factor analysis
(EFA) (Cole et al., 2018) was performed on the profile of the above
detected differential features on single omics by using the psych
package of R software (Lorenzo-Seva and Van Ginkel, 2016) to
obtain the weight matrix between factors and original features, as
well as the scoring matrix of factors. For multi-omics, including
double-omics, triple-omics, and quadruple-omics, the factor
scoring matrix was obtained by combining the corresponding
factor scoring matrix in single-omics. Furthermore, the scoring
matrix of factors in each omics dataset was integrated with
logarithmically transformed OS, and unsupervised hierarchical
clustering could be performed by using the pheatmap package
of R software (Xu et al., 2018) to verify the classification
performance of factors.

Then, to detect the essential features that might be closely
associated with the prognosis of COAD in each single-omics
profile, the weight matrix of factors obtained from the above
EFA process was normalized from 0 to 1 and the weights
of different features could be sorted in descending orders for
each factor. Essential features with the maximum weight for
each factor, which prompted the performance of distinguishing
prognosis, were selected as the essential features in each single-
omics for subsequent prognostic modeling. For multi-omics,
the profiles of essential features were produced by integrating
the corresponding ones in single-omics, The boxplots of above
essential features in single-omics including gene expression, exon
expression, and DNA methylation were generated by using the
ggpubr package of R software (Jiang et al., 2018) to illustrate
the distribution of above essential features in positive and
negative groups. Since the features of somatic mutation are
binary, they were annotated by the online tool of cBioPortal
(Ricketts and Linehan, 2015).

MPA Modeling for Colon Cancer
The MPA modeling requires three elements: (1) profiles
of prognosis-related features, (2) samples with classification
indicators and (3) appropriate machine learning methods. Here,
15 MPA models were created based on different combinations
of descriptors including (1) four single-omics, which including
12, 39, 22, and 32 features, respectively, (2) six combinations of
double-omics data, which including 51, 34, 44, 61, 71, and 54
features, respectively, (3) four combinations of triple-omics data,
which including 93, 66, 83, and 73 features, respectively, and
(4) combination of all quadruple-omics data, which including
all 105 features. Further, training and testing datasets for the
MPA model were obtained through the Diverse Subset sampling
method (Yuan et al., 2017). Typically, the first sample A was
randomly selected as the seed for the training dataset. Secondly,
sample B with the farthest spatial distance toward sample A (in
here, represents the spatial distance between omics profiles of two
samples) was selected to put into the training dataset. Thirdly, the

Frontiers in Genetics | www.frontiersin.org 3 May 2020 | Volume 11 | Article 524

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00524 May 22, 2020 Time: 19:45 # 4

Yin et al. Detecting Prognosis Biomarkers for COAD

third sample with the farthest average distance from both samples
A and B were extracted. Finally, sampling was repeated until
two-thirds of the positive and negative samples were extracted
as the training set, and the remaining samples were defined as
the testing set. Here, the above essential features were taken as
the potential prognosis-related features, of which the profile was
set as the feature profiles of the model training and testing. For
machine learning approaches, Support Vector Machines (SVM),
Neural Network (NN), Naïve Bayes (NB), Logistic Regression
(LR), Random Forest Classifier (RF), Linear Regression (LiR),
Keras Depp Learning (Keras) were implemented by using
the python 3.7 package of sklearn, TensorFlow and keras to
generate the MPA model.

Target Regulation Simulation (TRS)
Process for Essential Features
To generate the TRS process, the profiles of total 105 essential
features in quadruple-omics, as well as the corresponding OS
in the overlapped TCGA samples of four omics were utilized
to the MPA model training and testing. After model testing,
all the TCGA samples in the testing set were pre-clustered as
prognosis positive and negative ones according to the OS days
of 1,825. For each true negative sample, the expression profile
of 105 individual features and 5,460 two-feature combinations
were retrieved for simulation. Each selected individual feature or
features in combinations of the true negative samples were down-
regulated to the minimum value of those in positive patients,
then these samples were re-evaluated through the MPA model
to obtain a new classification label. The process of TRS was
illustrated in Figure 1.

Survival Analysis of Samples
Survival analysis (Schlumberger et al., 2017) was performed based
on the classification results of testing samples by the LR method.
Then, Kaplan–Meier survival curves of different types of samples
were evaluated using the survival and survminer packages of R
software (Modhukur et al., 2018). Besides, the log-rank test (Katai
et al., 2018) was employed to test the difference between the two
compared sample groups.

Protein–Protein Interaction (PPI)
Network of Essential Biomarkers
Essential features were used to construct a PPI network. The
essential features of each single-omics dataset derived above
were transformed into gene symbols based on the annotation
information downloaded from the UCSC Xena database. Further,
gene symbols of the quadruple-omics datasets were integrated
and annotated into the background PPI network using Cytoscape
software version 3.4.0 (Kohl et al., 2011). Different colors were
used to distinguish different omics types.

Pathway Integration Analysis of
Essential Features in the PPI Network
For essential features in the PPI network, relationship
between the corresponding gene symbol and colon cancer
was investigated using literature search and annotated into

biological pathways, including KEGG version 87.0 (Kanehisa
et al., 2017) and GeneCards version 4.12 (Rappaport et al., 2017).
Pathway integration analysis was performed by Edraw max
version 8.6 (Deng et al., 2019).

Feature Comparison From Different
Aspects
To evaluate the performance of features derived from different
aspects, 33 features including 13 from the PPI network, 8 from the
integrated pathway and 12 from the TRS process were analyzed
and compared. All samples in the dataset were grouped by the
median value of these individual features, respectively, and then
survival analysis was performed to compare the potential PRBs
from the above three different aspects. Further, all detected 13
PRBs from these three aspects were used to generate the Linear
Regression model by sklearn package of python 3.7.

Prognostic Evaluation of Samples With
Different Clinical Information
To evaluate the clinical information of patients, 11 clinical
features including age, gender, weight, histological type, history
of colon polyps, person neoplasm cancer status, lymphatic
invasion, pathologic stage, pathologic T stage, venous invasion
and number of first degree relatives with cancer diagnosis were
firstly evaluated through the Cox proportional hazard (PH)
model. Then, the samples were classified by the above prognostic
risk features. Here, 13 PRBs were individually evaluated to
estimate the survival difference by setting the median value of
each PRBs as the cutoff for prognostic classifications.

RESULTS

Differential Expression Profiles of COAD
Patient Based on Multi-Omics Analysis
To determine the essential features that closely related to the
prognosis of COAD patients, differential expression features for
four omics data were initially derived by setting appropriate
conditions with P < 0.01 and FC > 1.5 or FC < 2/3
(see section “Materials and Methods”). Thus, 146 features
for gene expression, 1,000 features for exon expression, 362
features for DNA methylation, and 968 features for somatic
mutations were selected. After factor analysis, 19 factors for
gene expression, 45 factors for exon expression, 39 factors
for DNA methylation and 37 factors for mutations were
determined. Thus, 140 factors were used to analyze patient
samples based on quadruple-omics profiles (Figure 2). The
expression profiles of 202 overlapped patient samples included
in all quadruple-omics profiles are illustrated in Figure 2A,
in which samples with high-OS were mostly clustered into
one branch (marked with blue dotted box). In that case,
the overall expression profiles contained all quadruple-omics
data that could significantly distinguish high-OS and low-
OS patients.

Moreover, by removing redundancy, 105 unique essential
features including 12 for gene expression (Figure 2B), 39
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FIGURE 1 | Illustration of the TRS process. Original samples with poor-prognosis were marked in orange while good-prognosis samples were marked in yellow.
Each time, one or two features (marked with a red star) were down-regulated according to the expression level of good-prognosis samples, causing the original
samples to be re-classified according to the MPA model.

for exon expression (Figure 2C), 22 for DNA methylation
(Figure 2D) and 32 for somatic mutations (Figure 2E) were
retained. The further analysis illustrated that the expression
levels in negative groups were generally higher than those in
positive ones for both gene expression, exon expression and
DNA methylation. For somatic mutation, none of the positive
samples contained alterations on those 32 essential features
(Figure 2E), while truncating mutations, in-frame mutations
and missense mutations frequently occurred in negative groups
(Supplementary Table S2). Thus, all the above essential features
could be considered as prognosis-related features that were
differentially expressed between the positive and negative
samples from TCGA.

Performance of MPA Modeling
The MPA modeling was established based on 15 different
combinations of omics profiles, and further been evaluated
through four machine learning approaches including SVM,
NN, NB, and LR for comparison. The receiver operating
characteristic (ROC) curves of all 15 models were illustrated

in Supplementary Figure S1. Results illustrated that the best
MPA model for single-omics data could achieve the AUC value
of 0.945 as the baseline, which could be further increased to
0.959 for the combination of double-omics data and 0.980
for triple-omics data. By integrating all four omics data, the
classification performance could reach to the AUC of 0.998
for MPA modeling on LR (Figure 3A), followed by 0.963 for
SVM, 0.936 for NN and 0.911 for NB (Figure 3B). Since the
LR model revealed the best prediction performance among
other approaches, it was chosen for MPA modeling and further
prognosis analysis.

Further, we evaluated our MPA model through survival
analysis based on the predictions of the LR model. The KM
survival curves indicated that the combination of triple-omics
data was still unable to ideally distinguish the high-OS and low-
OS samples (Figure 3C), even though the prediction performance
is distinguishable. Remarkably, the KM survival curves for
positive and negative groups predicted by the MPA model, which
consisted of all four omics data could be perfectly distinguishable
(Figure 3D). In that case, the MPA model based on 105
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FIGURE 2 | Differential expression profiles of COAD patients. (A) Clustering of 202 patient samples based on omics data corresponding to gene expression, exon
expression, DNA methylation, and mutation. Each line shows one factor represented by corresponding features, while each column represents one patient sample.
Each omics dataset and OS were logarithmically transformed for normalization. (B) Expression of 12 genes in positive and negative samples. (C) Expression of 39
exons in positive and negative samples. (D) Expression of 22 DNA methylation marks in positive and negative samples. (E) Mutation profiles of 32 genes in different
patient samples. **P < 0.01 and ***P < 0.001.

essential features derived from four omics data could be used for
prognostic analysis of COAD patients.

PPI Network and Pathway Integration
Analysis of Survival-Associated Omics
Features
To detect the PRBs, all prognosis-related features were
transformed into non-redundant gene symbols including
12 for gene expression, 31 for exon expression, 26 for DNA
methylation and 32 for somatic mutations (Supplementary
Table S3). Since ZNF493 and MYH2 could be transformed
from multi-omics data, 99 unique gene symbols were obtained

(Supplementary Table S4). Among them, 45 genes could be
annotated into an integrated PPI network. In particular, 30 genes
were defined as hub nodes with a degree over or equal to 5, which
indicates those genes might participate in crucial biological
functions. Further analysis showed that all 45 genes mapped
in the PPI network were associated with biological processes
or pathways related to the pathogenesis and development of
cancer (Table 1). The refined PPI network which contains 30
genes with the degree over 5 were illustrated in Figure 4A,
and canonical cancer-related pathways of those features such
as cell signaling pathways, cell cycle, apoptosis, and diabetes
pathways which derived from KEGG database were illustrated in
Figure 4B.
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FIGURE 3 | Performance of the MPA model for COAD prognostic analysis. (A) ROC curves of the quadruple-omics MPA model. Different machine learning
approaches are represented by different lines. (B) AUC values of different MPA models, including single-omics data and combinations of multi-omics data. “GE,”
“EX,” “ME,” “MU” stands for “gene,” “exon,” “methylation,” “mutation,” respectively. (C) Survival curves determined by the MPA model based on the combination of
gene expression, exon expression, and DNA methylation. (D) Survival curves determined by the MPA model based on the combination of gene expression, exon
expression, DNA methylation, and somatic mutations.

Previous researches reported that signaling pathways are
frequently altered in cancers (Sanchez-Vega et al., 2018). Here,
FGFR3 and MRAS in the MAPK signaling pathway were
found to participate in gene expression and cellular processes
including cell proliferation and cell differentiation. Additionally,
MRAS is involved in the PI3K-AKT signaling pathway related
to cell survival, cell growth, and cell cycle progression, while
PDE3B is found in the Hedgehog signaling pathway, which is
related to the inhibition of lipolysis. Besides, HTR2C which
participated in the calcium signaling pathway is potentially
associated with cell proliferation. Moreover, LBP involved in the
NF-κB signaling pathway is associated with pro-inflammatory
effects, and SKAP1 in the Rap1 signaling pathway is involved in
cell proliferation and survival.

Besides, genetic alterations that control cell cycle progression
and apoptosis are considered to be common hallmarks of
multiple cancer types (Sanchez-Vega et al., 2018). LEP is found
to be involved in the cell cycle, JAK-STAT signaling pathway
and apoptosis to regulate tumor growth arrest and apoptosis.
Moreover, emerging evidence from observational studies and
meta-analyses suggest that diabetes mellitus is associated with an

increased risk of cancer, as well as cancer incidence or prognosis
(Noto, 2018). In particular, diabetes has been validated as a
prognostic factor in stages I to III colorectal cancer patients (Croft
et al., 2018), in which GAD2 involved could induce β-cell death.
Other cancer-associated processes or pathways and literature
evidence for the occurrence or development of colon cancer can
be found in Table 1. Thus, features such as EPB41, PSMA1,
FGFR3, MRAS, and LEP which were involved in cancer-related
pathways and with high PPI degrees (>/ = 10) were considered
as PRBs for further analysis.

Detection and Evaluation of Prognosis
Risk Biomarkers for COAD
To further explore how the above prognosis-related features
affect the prognosis of COAD patients, we performed in silico
TRS modeling (see section “Materials and Methods”). The
expression value of features in the negative group (low-OS
patients) was individually or assembly adjusted to normal levels
as those in the positive group (high-OS patients). Then, the
prognosis level of adjusted patients was simulated through
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FIGURE 4 | Protein–protein interaction (PPI) network and pathway involving the survival-associated features. (A) PPI network of 35 features; green, blue, orange,
and red represent gene expression, exon expression, DNA methylation, and somatic mutations, respectively. Gray nodes represent the background. (B) Canonical
cancer-related pathway in the KEGG database. The color of each node is the same as that in panel (A).
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TABLE 1 | The information of genes in the integrated PPI network.

Gene Class Color Degree Pathway Database PMID

GAD2*# Mutation Red 4 Type I diabetes mellitus* KEGG 3003660$

KIF5C Mutation Red 10 Dopaminergic synapse KEGG 18413843$

CCNB1IP1 Exon Blue 2 Cell cycle PubMed 19437480

OFD1 Methylation Orange 7 Cell cycle Genecards 20835237

KIF13B Mutation Red 3 ∼ ∼ 23142292

GTF2IRD1 Methylation Orange 6 cGMP-PKG signaling pathway KEGG 23804703$

PDE3B* Methylation Orange 3 Hedgehog signaling pathway* KEGG 24282571

RPL14 Mutation Red 7 Ribosome KEGG 24824907$

KLF5 Mutation red 13 Glucose/energy metabolism Genecards 25037223

LEP* Exon Blue 10 JAK-STAT signaling pathway, cell cycle, apoptosis* KEGG 25250132

HTR2C* Mutation Red 6 Calcium signaling pathway* KEGG 25323578$

FGFR3* Methylation Orange 37 MAPK signaling pathway* KEGG 25623536

HEXA Methylation Orange 5 Metabolic pathways Genecards 26401073

EXO1 Mutation Red 5 Mismatch repair KEGG 26714599

CRELD2# Mutation Red 2 ∼ ∼ 27392906

KLKB1 Mutation Red 8 Complement and coagulation cascades KEGG 27779706$

LBP* Exon Blue 6 NF-kappa B signaling pathway* KEGG 27876571

GLS2 Methylation Orange 10 Alanine, aspartate and glutamate metabolism KEGG 28007957

SYNE1 Exon Blue 6 Cell cycle Genecards 28058013

EPB41 Exon Blue 128 Cell cycle Genecards 28193906$

DYNC1I1 Mutation Red 10 Cell cycle Genecards 28193906$

GLUL Methylation Orange 8 Alanine, aspartate and glutamate metabolism KEGG 28207045$

ARHGEF15 Mutation Red 4 GPCR Pathway Genecards 29073728

CAPN6# Mutation Red 2 Apoptosis Pathway Genecards 29202800$

MRAS* Methylation Orange 10 MAPK/PI3K-AKT signaling pathway* KEGG 29305742$

PSMA1 Methylation Orange 54 wnt pathway Genecards 29423100

ADAM12 Mutation Red 11 Insulin growth factor-related pathway PubMed 29731694

ASCL2 Methylation Orange 6 ∼ ∼ 29886802

POLG# Mutation Red 2 Metabolic pathways Genecards 30002826

SKAP1* Methylation Orange 7 Rap1 signaling pathway* KEGG 30183087$

TSSC1 Methylation Orange 6 ∼ ∼ 30231249

DAP# Methylation Orange 1 Apoptosis and autophagy Genecards 30552554

MYH10 Methylation Orange 28 ∼ ∼ ∼

RNF7 Methylation Orange 21 ∼ ∼ ∼

SNTB2 Mutation Red 13 ∼ ∼ ∼

MYH2 Gene_exon Lightblue 7 ∼ ∼ ∼

PHOX2A Methylation Orange 5 ∼ ∼ ∼

SFTPA1 Gene Green 5 ∼ ∼ ∼

TRAPPC2 Methylation Orange 5 ∼ ∼ ∼

SLC30A3# Exon Blue 3 ∼ ∼ ∼

EXD3# Mutation Red 2 ∼ ∼ ∼

FAM71E2# Mutation Red 1 ∼ ∼ ∼

OPN4# Exon Blue 1 ∼ ∼ ∼

PMS1 Mutation Red 1 ∼ ∼ ∼

PPP4R4# Exon Blue 1 ∼ ∼ ∼

aColumns 1–4 stands for the gene name, corresponding omics data type, color and degree of genes illustrated in the PPI network, respectively. Columns 5 and 6
represent the pathway name and database of gene annotations. Column 7 represents the PMID of the corresponding literature. *Genes and pathways involved in the
integrated pathway in Figure 4B. The first column represents all genes that could be mapped to the PPI network. #Genes not illustrated in Figure 4. $Pathway in which
the gene located is associated with colon cancer.

the MPA model. Here, 105 single prognosis-related features
and 5,460 combinations of two features were systemically
adjusted for simulation. Results showed that 12 out of 105
single features and 1,210 out of 5,460 combined features could

change the prognosis of TCGA patients. As been illustrated
in Figure 5, each node represents 1 of 105 single prognosis-
related features and each line links two nodes represents one
feature pair. Detailed information of nodes can be found in
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Supplementary Table S5. Since the regulation of single or
combined prognosis-related features could change the prognosis
of TCGA patients, it is possible to detect the PRBs for COAD,
and thus, drugs that targeting the corresponding PRBs might
be helpful for COAD patients. It can be found that the most
essential nodes include me8 (cg06685724), e20 (chr2:106226785–
106227016:−), e25 (chr20:36977951–36978065:+) representing
C7orf46, LOC285000 and LBP, respectively. More importantly,
the above three features were involved in 104 out of 1,210
feature combinations, which exceeding other features. In that
case, C7orf46, LOC285000, and LBP were defined as essential
prognosis biomarkers detected by TRS modeling.

Finally, we evaluate the performance of features derived
from different aspects including 13 from the PPI network, 8
from the integrated pathway and 12 from the TRS modeling.
The survival analysis was performed for each feature based on
the median value as the classification indicator to evaluate the
performance. Results showed that the 4 features including ZNF35
(cg20717205), LOC285000 (chr2:106226785–106227016:−),
SLC30A3 (chr2:27479254–27479388:−) and LECT2 derived
from TRS modeling could distinguish patients with different
OS (Supplementary Figure S2). For PPI, 3 features that
hold the potential to distinguish patients with different OS
were detected, including LEP (chr7:127894457–127897682),
RNF7 (cg06671690) and DYNC1I1 (Supplementary Figure
S2). Among them, LEP was also involved in the JAK-STAT
signaling pathway.

Thus, through PPI network and pathway integration analysis
of all prognosis-related features detected by MPA modeling, 7
essential PRBs including EPB41, PSMA1, FGFR3, MRAS, LEP,
RNF7, and DYNC1I1 were identified. Further, by combining with
TRS modeling, C7orf46, LOC285000, LBP, ZNF35, SLC30A3, and
LECT2 were also added and a total of 13 PRBs were eventually
detected by integrating MPA and TRS modeling. Further, a
prognosis risk scoring (PRS) model based on above 13 PRBs were
constructed to evaluate whether those markers could distinguish
high-OS and low-OS patients. By using linear regression, the PRS
could be described based on the following equation (1):

PRS = (−1.021∗EPB41)+ (−0.364∗PSMA1)+

(−0.046∗FGFR3)+ (−0.113∗MRAS)+ (−0.013∗LEP)+(
−0.219∗C7orf 46

)
+ (−0.379∗LOC285000)+

(−0.085∗LBP)+ (−0.539∗ZNF35)+

(−0.150∗SLC30A3)+ (−0.057∗LECT2)+

(−0.404∗RNF7)+ (−0.143∗DYNC1I1)+ 0.325 (1)

The performance of the above PRS model could reach to 0.825
for AUC value, and by setting the best threshold of 0.254, the
sensitivity of 0.900 and specificity of 0.625 could be achieved.

Validation of PRBs on Independent
Testing Dataset
To evaluate the practicability and scalability of the PRBs
mentioned above, 13 PRBs explored in this study were
used to validate the performance in independent datasets

FIGURE 5 | Network of prognosis-related features that could change the
prognosis of COAD patients. Green, blue, orange, and red nodes represent
gene expression, exon expression, DNA methylation, and somatic mutations,
respectively. The size of each node represents the number of patients that are
affected by the corresponding features. Lines linking two nodes indicate that
the combination of the two nodes can change the prognosis of patients, and
the number is represented by the thickness of each line.

downloaded from the NCBI GEO dataset (see section “Materials
and Methods”), which included 177 patients with survival
information from Moffitt Cancer Center. Here, all potential
PRBs detected above were first translated into gene signatures.
Then, the expression profiles of the above gene signatures
were used to generate the classification model for patient
samples by setting the cutoff of OS and disease-free survival
(DFS) as 5 years. Results indicated that the prediction model
constructed on the above gene signatures could achieve the
AUC value of 0.745 for OS and 0.742 for DFS, respectively
(Figure 6A). Moreover, the survival analysis based on the
prediction of the gene signature-based model indicated that
by integrating all the above features, the classification results
could successfully distinguish the positive and negative samples
for both OS (Figure 6B) and DFS (Figure 6C). Furthermore,
by setting the median expression value as the cutoff in the
independent testing dataset, gene signatures of EPB41, C7orf46,
and FGFR3 could also distinguish the positive and negative
samples classified by both OS and DFS, has been illustrated in
Figures 6D–6I.

Moreover, the single cell-based expression dataset of colon
cancer was obtained from the NCBI GEO database with the
accession number of GSE18161 (Li et al., 2017), which included
the count and FPKM of tumor/NM cells, as well as the
count and FPKM of tumor/NM epithelial cells. Further, the
Wilcoxon Test and Fold change were used to evaluate whether
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FIGURE 6 | Performance of PRB gene signatures on independent testing dataset. (A) AUC value of 13 PRBs on independent testing dataset by set OS and DFS as
classification indicators. (B) Survival analysis of 13 PRBs based on OS. (C) Survival analysis of 13 PRBs based on DFS. (D) Survival analysis of EPB41 based on OS.
(E) Survival analysis of C7orf46 based on OS. (F) Survival analysis of FGFR3 based on OS. (G) Survival analysis of EPB41 based on DFS. (H) Survival analysis of
C7orf46 based on DFS. (I) Survival analysis of FGFR3 based on DFS.

the above PRBs were differentially expressed between tumor
and normal cells (Supplementary Table S6). Results showed
that gene signatures such as PSMA1, FGFR3, C7orf46, RNF7,
and ZNF35 were differentially expressed in normal and tumor
samples with the P-value < 0.05. Other gene signatures including

EPB41, MRAS, LEP, LOC285000, LBP, LECT2, SLC30A3, and
DYNC1T1 were also differentially expressed in normal and
tumor samples with |FC|> 2 (Supplementary Figure S3).
Thus, the evaluation of the corresponding gene signatures for
PRBs through the independent testing dataset illustrated that
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above 13 PRBs detected by MPA and TRS modeling could
be defined as classification indicators to predict the prognosis
of COAD patients.

PRBs Illustrated Different Affections for
Patients With Different Conditions
It should be noticed that clinical information which reflect
different conditions of patient samples might affect the prognosis
of colon cancer (Vergo and Benson, 2012; Dienstmann et al.,
2015; Karvinen and Vallance, 2015). Thus, 11 personalized
clinical features including age, gender, weight, histological
type, history of colon polyps, person neoplasm cancer status,
lymphatic invasion, pathologic stage, pathologic T stage, venous
invasion and number of first degree relatives with cancer
diagnosis, which may closely related with cancer prognosis
were selected to the prognostic risk assessment with Cox PH
regression model. Results showed that age, weight, person
neoplasm cancer status, lymphatic invasion, pathologic stage,
pathologic T stage, and venous invasion were detected as the
colon cancer prognosis-related risk factors (Supplementary
Table S7). Further, samples in our testing dataset were
grouped by personalized prognostic risk features as well as
the number of first degree relatives with cancer diagnosis.
For example, for the risk factor of age, all patients were
separated into two groups, age over 65 or age less than or
equal to 65. Then, all 13 PRB-related gene signatures were
individually analyzed by setting the median value as the cutoff
to classify the prognosis difference in each group through
survival analysis.

The co-occurrence and exclusivity of PRBs could be
detected in patients with different personal conditions. For
example, SLC30A3 could significantly distinguish positive and
negative samples for both patients older than 65 or younger
than 65. However, PRBs such as LOC285000 and LEP
could only distinguish those patients older than 65, while
DYNC1I1 only illustrate significance in patients younger than
65 (Supplementary Figure S4). For person neoplasm cancer
status, LOC285000 and LEP could distinguish the prognosis
of patients free from neoplasm, while SLC30A3 and DYNC1I1
were significant for patients with neoplasm (Supplementary
Figure S5). Thus, PRBs illustrated different affections for patients
with different personalized clinical conditions which were closely
associated with the prognosis of COAD. Detailed information
of different sample groups classified by personalized prognostic
risk features (Supplementary Table S8) and the corresponding
significant PRBs (Supplementary Table S9) were provided.

DISCUSSION

Identification of PRBs in colon cancer is essential for the
diagnosis, monitoring, and treatment of patients. By taking
advantage of next-generation sequencing technologies, large-
scale data could be obtained for in silico analysis to reveal
PRBs. Here, we presented the MPA and TRS modeling to
detect the PRBs for COAD. First, by integrating multi-
omics data from gene expression, exon expression, DNA

methylation, and somatic mutations. Then, features selection
were obtained through dimensionality reduction based on
factor analysis. After that, all 105 essential features from
quadruple-omics data were integrated to generate the MPA
model. Furthermore, 45 prognosis-related features were obtained
through the analysis of PPI networks and mapped into multiple
cancer-related pathways. Among them, some prognosis-related
features were directly related with the occurrence, development
or prognosis of cancer, such as PSMA1 (degree = 54) was
identified as colon cancer markers by proteomic profiling
(Yang et al., 2018), FGFR3 (degree = 37) was related with
multi-regional colon cancer through inter- and intra-tumor
profiling (Kogita et al., 2015), ALPi is selectively induced
by HDACi in colon cancer cells in a KLF5 (degree = 13)
dependent manner (Shin et al., 2014), GLS2 (degree = 10)
was validated as differential expression gene in colon cancer
cells (Alix-Panabieres et al., 2017) and LEP (degree = 10)
was examined to be associated with the development of
colorectal cancer (Rezaei-Tavirani et al., 2013). Furthermore,
several pathways were provided to be colon cancer-related
pathways, such as wnt pathway, PI3K-AKT signaling pathway
and cell cycle signaling pathway were reported as common
oncogenic signaling pathways (Sanchez-Vega et al., 2018),
which could be regulated by PSMA1 (degree = 54), MRAS
(degree = 10), and LEP (degree = 10), respectively. Detailed
information of all prognosis-related features including degrees,
corresponding pathways, and literature evidence was listed
in Table 1.

Elaborate investigation of TCGA samples indicated that the
above prognosis-related features were mostly overexpressed
in negative samples. To further illustrate the therapeutic
actionability, TRS modeling was processed to detect potential
targets for inhibitors. Generally, TRS could simulate the
prognosis classifications of TCGA patients with expression
levels altered for individual or combined prognosis-related
features. After scanning all single and combinations among 105
prognosis-related features in low-OS patients, results indicated
that alter the expression level of features such as chr20:36977951–
36978065:+ (LBP), chr2:106226785–106227016:− (LOC285000),
and cg06685724 (C7orf46), the classification could be
switched from low-OS to high-OS. Thus, by integrating
MPA and TRS modeling, 8 features including chr1:29315868–
29315947:+ (EPB41), cg02654360 (PSMA1), cg23835677
(FGFR3), cg18421529 (MRAS), chr7:127894457–127897682:+
(LEP), cg06685724 (C7orf46), chr2:106226785–106227016:−
(LOC285000) and chr20:36977951–36978065:+ (LBP) were
detected as potential PRBs. Among them, LOC28500 and LBP
were also been identified as prognostic risk factors by both
univariate and multivariate analysis of the Cox PH regression
model (Supplementary Table S10). Moreover, FGFR3 has
already been proved to be an essential drug target for multiple
cancer types. For example, XL999, which targeting FGFR3, has
the potential to prevent tumor growth and has been investigated
for the treatment of unspecified cancer/tumors (Supplementary
Table S11). In addition, to compare the prognostic performance
of the prognosis-related features of colon cancer from different
criteria, we evaluated the performance of the features derived
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from the PPI network, integrated pathway, and TRS modeling.
The results of survival analysis showed that features extracted
from TRS modeling reflected better performance by comparing
with those derived from the PPI network and integrated
pathway, indicating that the TRS modeling might be an efficient
strategy to explore PRBs for cancer prognosis. By combining
13 PRBs from different aspects, the linear regression model
could reach an AUC value of 0.825. Thus, the strategy of
screening PRBs from different aspects might better reflect
the prognostic features of cancer patients as previous studies
reported (Chen S. et al., 2019; Chen Y. H. et al., 2019;
Wang et al., 2019).

Also, the above 13 PRBs were also reported to affect the
progression and prognosis of different cancers. For example,
EPB41, PSMA1, LEP, LECT2, and ZNF35 were associated with
breast cancer (Kao et al., 2005; Deng et al., 2006; Andres
et al., 2015; Feng et al., 2019). PSMA1, MRAS, LEP, SLC30A3,
and RNF7 were found closely related with prostate cancer
(Singh et al., 2016; Sun et al., 2016; Wang et al., 2016; Xiao
et al., 2017; Zhu et al., 2017). FGFR3, LBP, LECT2, and
DYNC1I1 were distinguishable markers in lung cancer (Wang
et al., 2017, 2018; Zhang Y. et al., 2017; Hung et al., 2018).
Besides intra- validation, the generality and repeatability of PRBs
were evaluated through an independent dataset from the GEO
database. The results of both classification and survival analysis
indicated that the PRBs and corresponding gene signatures
determined here could effectively distinguish the samples with
different prognostic independent dataset, which could be used as
prognostic classification indicator for COAD patients.

Furthermore, it is noted that among the above 13
PRBs, five PRBs of chr1:29315868–29315947:+ (EPB41),
chr7:127894457–127897682:+ (LEP), chr2:106226785–
106227016:− (LOC285000) chr20:36977951–36978065:+ (LBP),
and chr2:27479254–27479388:− (SLC30A3), were from exon
expression, while other six PRBs including cg02654360 (PSMA1),
cg23835677 (FGFR3), cg18421529 (MRAS), cg06685724
(C7orf46), cg20717205 (ZNF35), and cg06671690 (RNF7) were
from DNA methylation. And one of the PRBs LECT2 was from
gene expression, and the left one DYNC1I1 was from somatic
mutation. This means the expression level of exon expression and
DNA methylation might be more important for the prognosis
of COAD patients rather than gene expression and somatic
mutations. Meanwhile, by integrating quadruple-omics data
with appropriate machine learning approaches such as logistic
regression, the prognosis prediction performance could be
further increased to 0.998 based on 105 essential features. Thus,
with the accumulation of multi-omics data and improvement
of machine learning approaches, the PRBs for multiple cancer
types could be detected and accelerate the development of
cancer therapeutics.

CONCLUSION

In this paper, we constructed the MPA model to comprehensively
reveal the PRBs for COAD patients based on gene expression,

exon expression, DNA methylation, and somatic mutations.
Besides the high performance of the MPA model for prognostic
classification, 105 essential features that were closely related
to COAD prognosis were detected. Furthermore, by screening
through the criteria of the PPI network, cancer-related
pathway and TRS modeling, essential features with gene
symbols of EPB41, PSMA1, FGFR3, MRAS, LEP, C7orf46,
LOC285000, LBP, ZNF35, SLC30A3, LECT2, RNF7, and
DYNC1I1 were identified as PRBs for COAD patients. In
addition, evaluation of the independent testing dataset and
single-cell based RNA-seq dataset illustrated the PRBs and
corresponding gene symbols detected in this study could
successfully distinguish COAD patients with different prognosis.
Finally, some of the PRBs were demonstrated to hold the
potential to distinguish different prognosis in patients with
different clinical conditions. The MPA and TRS modeling,
as well as the PPI network and integrated pathway analysis
presented here could only detect the PRBs to predict the
prognosis of COAD patients, but also provide new perspectives
for novel drug development and therapeutic applications
for COAD treatment.
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