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Background: Fractures are common in physically active populations and genetic

differences may mediate injury risk.

Objective: To meta-analyse the pooled results of candidate gene association studies

with non-osteoporotic fracture risk in physically active humans.

Methods: Systematic searching of databases returned 11 eligible studies published

in English. Pooled odds ratios (ORs) with 95% confidence intervals (CI) were

produced using allele contrast, recessive and homozygote contrast meta-analysis

models to evaluate associations of risk alleles in the COL1A1 (rs1800012), COL2A1

(rs412777), CTR (rs1801197), ESR1 (rs2234693 and rs9340799) LRP5 (rs3736228),

VDR (rs10735810, rs7975232, rs1544410, and rs731236) genes with fracture incidence.

Results: Eligible study quality was generally low (7/11) and no significant overall effect

was found for any genetic variant with any comparison model (p > 0.05). A trivial

reduction in fracture risk was found for female participants with the COL1A1 Sp1

(rs1800012) T allele (OR = 0.48, 95% CI = 0.25–0.91, p = 0.03, d = –0.18).

Conclusions: No overall effect was found from the pooled results of included genetic

variants on fracture risk in physically active participants. The COL1A1 Sp1 rs1800012 T

allele may reduce fracture risk in physically active females but further high-quality research

with sex-specific analysis is required.

Trial Registration: (PROSPERO; CRD42018115008).

Keywords: human genetics, injury, intrinsic risk factors, fracture, bone

INTRODUCTION

Fractures are major musculoskeletal injuries, accounting for 22% of all sport and recreation
related injuries in the United States (Conn et al., 2003). Fracture rehabilitation requires substantial
time away from competition/work for physically active populations, such as athletes or military
personnel (Kaufman et al., 2000; Le Gall et al., 2006) and has a negative impact on performance
(Hägglund et al., 2013). Fractures occur when exposure to extrinsic aetiological factors result in
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force transfer to bone, which exceeds the threshold tolerance
of an individual (Meeuwisse et al., 2007) and may occur
from acute impact forces or repeated loading with insufficient
recovery (i.e., stress fractures; Bennell et al., 1999). Physical
activity provides an important stimulus for bone health and is
recommended to protect against osteoporotic fracture (Kohrt
et al., 2004). However, this stimulus also represent an exposure
to potentially injurious, forceful impact or repeated loading of
the musculoskeletal system (Launay, 2015; Meardon et al., 2015;
Bacon and Mauger, 2017; Schuh-Renner et al., 2017) which
cause non-osteoporotic fractures which are the focus of the
present meta-analysis.

Genetic differences have been shown to influence the inter-
individual variability in fracture risk (Efstathiadou et al.,
2001; Mann et al., 2001; Ji et al., 2010; Trajanoska et al.,
2018) with heritable factors associated with between 20 and
54% of fracture liability depending on site and age (Andrew
et al., 2004; Michaëlsson et al., 2005). Fracture risk is a
complex trait, influenced by the cumulative effects of a
currently unknown number of genetic variants, which interact
to produce slight alterations in tissue composition, structure
and regulation (Baumert et al., 2016; Kozlovskaia et al., 2017;
Herbert et al., 2018). Genome wide association studies (GWAS)
have identified single nucleotide polymorphisms (SNPs) which
influence fracture risk in genes involved in skeletal structure and
homeostasis via alterations in bone mineral density (Trajanoska
et al., 2018). To confirm the findings of GWAS, or to identify
novel genetic variants, contributing to variability in fracture
risk, genetic association studies may select candidate genes,
based on their mechanistic effect on fracture risk. SNPs can
change the physiological functionality of a genetic product by
altering the amino acid sequence or moderating expression
directly. Others may not directly influence fracture risk but
are frequently inherited, or in linkage disequilibrium, with
unidentified variants that do. The major structural protein of
bone is type 1 collagen (Mann et al., 2001), whilst vitamin
D is also fundamental for bone homeostasis (DeLuca, 2005).
SNPs in the collagen type 1 alpha 1 (COL1A1), vitamin D
receptor (VDR), and LDL receptor related protein 5 (LRP5)
genes have been associated with a three- to eight-fold increase
of fracture risk among physically active participants in some
studies (Chatzipapas et al., 2009; Blades et al., 2010; Korvala
et al., 2010), yet others have shown no association with the same
SNPs (Cosman et al., 2013; Varley et al., 2018). Several genetic
variants within the COL1A1, LRP5, and VDR genes, along with
other candidate genes, have been inconsistently associated with
fracture risk (Korvala et al., 2010; Varley et al., 2018). Researchers
exploring genetic association with fracture risk often combine
male and female participants, thus improving the statistical
power of the analysis. It can be argued that autosomal (i.e.,
non-sex-specific) genes may be compared equivalently between
the sexes. However, physically active females have a significantly
greater incidence and absolute risk of fracture compared to males
(Kaufman et al., 2000; Wentz et al., 2011; Waterman et al.,
2016), which may influence the relative contribution of genetic
differences to fracture risk. Therefore, combining physically
active male and female participants in genetic association with

fracture risk may contribute to the inconsistency observed
across studies.

A meta-analysis of 370 studies found statistically significant
heterogeneity in 14 out of 36 groups of genetic association
studies on the same topic with stronger effects in the first
study of a topic than subsequent replication attempts in 25
cases (Ioannidis et al., 2001). This may result from spurious
findings which are not validated in subsequent research or
because a gene effect may be stronger in some sub-populations
than others (Ioannidis et al., 2001). Potential limitations such
as linkage disequilibrium, population stratification and Hardy-
Weinberg equilibrium (HWE) are inherent in genetic association
studies, contributing to study heterogeneity (Ioannidis et al.,
2003; Salanti et al., 2005). Additional variation resulting from
issues relating to study design and quality, such as sample
size calculations and reporting of participant characteristics
are inconsistent in genetic association studies of fracture risk
(Välimäki et al., 2005; Suuriniemi et al., 2006; Chatzipapas
et al., 2009; Yanovich et al., 2012; Varley et al., 2016), yet
omission of methodological details such as these can have a
substantial influence on the study outcome (Ioannidis et al.,
2003). Therefore, an independent analysis of study quality is
necessary to understand the limitations of published genetic
association studies in the extant literature.

Meta-analyses pool results from individual genetic association
studies to evaluate overall effects with greater statistical power
and identify heterogeneity between studies (Ioannidis et al.,
2001; Salanti et al., 2005). It is unclear which genetic variants
are consistently associated with fracture risk and whether the
magnitude of the effect is dependent on factors such as gender
or study quality. Therefore, the aim of this systematic review
and meta-analysis was to evaluate the findings and quality of
genetic association studies with non-osteoporotic fracture risk
in physically active humans with sub-analysis of the influence of
gender on overall findings.

METHODS

Search Strategy
The current review is registered on the PROSPERO International
prospective register of systematic reviews (Trial Registration:
CRD42018115008) and was conducted in accordance with
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement guidelines (Moher et al.,
2009). A literature search to identify articles evaluating the
association of genetic variants with fracture injury incidence
was completed using a pre-determined search strategy in
the PubMed, SPORTDiscus (EBSCO) and Science Direct
databases from their inception on the 30th of October 2018.
The exact search terms used were: Fracture OR Fractures
AND Gene OR Allele OR Polymorphism OR SNP OR
Variant OR Genetic. The title and abstract of search results
were screened for relevant articles, which were selected for
full text evaluation by two authors independently (ERM
and MW) using predetermined eligibility criteria. The
reference list of eligible articles was subsequently screened
for further articles.
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Inclusion and Exclusion Criteria
Genetic case-control association studies of fracture occurrence
in physically active humans published in English in a scientific
peer-reviewed journal were included in the analysis to identify
previously investigated genetic variants. Participants were
required to be healthy, and clearly reported as at least moderately
physically active, as part of either their occupation (e.g., athletes
and military personnel) or lifestyle, as defined by the ACSM’s
Guidelines for Exercise Testing and Prescription (Thompson
et al., 2013). Any case studies or association studies with
osteoporotic fracture, osteogenesis imperfecta, fracture recovery,
and genetic risk score evaluation studies were excluded.

Study Selection and Data Extraction
Following the removal of duplicates, studies were screened
independently by two reviewers (ERM and MW) with
discrepancies concluded by consensus agreement. The following
data were extracted from eligible articles: (1) study details
(author, publication date, country of origin); (2) population
characteristics (gender, age, ethnicity, physical activity);
(3) genetic variant(s). Quality assessment and risk of bias
assessments were carried out using the Q-Genie (Sohani
et al., 2015) and modified ROBINS-I (Sterne et al., 2016;
Qasim et al., 2019) tools independently by two authors
(ERM and YM). The Q-Genie tool categorizes studies as
either poor, moderate, or good quality with the modified
ROBINS-I determining risk of bias as low, moderate, serious,
or critical. Study characteristics data are presented as means ±
standard deviations.

Meta-Analysis
Data analysis was performed by one author (ERM) and
reviewed by another (MW). Data were extracted, where possible,
in the form of genotype frequency distributions between
fractures (cases) and non-fractures (controls) for males, females,
and combined if not reported separately. If only percentage
distributions were reported, participant number for each group
was calculated using overall participant number. If neither
of the above was possible, authors were contacted directly
for data.

A meta-analysis was performed to calculate overall fracture
risk, with sub-analysis of males, and females separately, as odds
ratios (OR) for each SNP, with extracted data available from
two or more studies using the following genetic association
meta-analysis models of comparison: allele contrast, recessive,
and homozygote contrast, as recommended by Lee (2015).
The frequency distribution between fracture cases with the
candidate risk allele, as theoretically identified by the studies, and
non-injured controls was entered into a dichotomous Mantel-
Haenszel meta-analysis for each model as shown in Figure 1

using RevMan 5.3 software (Cochrane Collaboration, Oxford,
United Kingdom) to generate pooled ORs with 95% confidence
intervals (CI).

Genetic models were analyzed using either fixed (I2 < 20%) or
random (I2 ≥ 20%) effects models, depending on heterogeneity
between studies, quantified with the I2 statistic with sub-analysis
of sex. To provide a qualitative indication of the magnitude

FIGURE 1 | Meta-Analysis data input diagram. X, Risk Allele of genetic variant

for fracture as defined by mechanistic rationale or candidate gene association

study; Y, Non-Risk Allele of genetic variant. Symbols in parentheses indicate

how the frequency counts were calculated to establish if differences in the risk

allele distribution were present between cases and controls for each model.

of effect observed, the OR produced by meta-analysis were
converted to the standard mean difference and described in line
with those suggested for Cohen’s d (Cohen, 1988; Sánchez-Meca
et al., 2003). Funnel plots were generated using the outcome of
all included SNPs for each genetic comparison models to allow
visual interpretation of potential biases (Sterne et al., 2011). To
evaluate the potential of bias between studies, Egger’s Test (Egger
et al., 1997) was conducted to indicate the presence of funnel plot
asymmetry using SPSS (IBM SPSS Statistics for Windows, IBM
Corp, Version 24.0., Armonk, NY, United States) for each of the
genetic comparison models.
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RESULTS

Study Selection
Figure 2 outlines the results of the study selection process. Once
duplicates were removed, reviews, case-studies and abstracts were
excluded along with studies investigating clinical populations
(including osteogenesis imperfecta or osteoporotic fractures
patients) and fracture recovery. Reference list screening of the
remaining articles provided one additional study, resulting in the
full text review of 16 eligible studies. Five articles were excluded
based on predetermined inclusion criteria, with qualitative
assessments completed on the remaining 11 articles. Only 10
articles were included in the final meta-analysis. This was due to
lack of reported or available data in one study, determined after
contacting Yanovich et al. (2012).

Study Characteristics
The characteristics of each included study are summarized in
Table 1. A total of 39 SNPs from 14 different genes were analyzed
at least once in the included studies. The mean sample of the
studies was 499 ± 385 (males: 454 ± 400 and females: 117
± 72). However, a convenience sample of the same 501 elite

athletes from various sports (433 males and 68 females) was
replicated in three studies evaluating different genetic variants
with facture risk (Varley et al., 2015, 2016, 2018). Excluding
these duplications, a total of 4,462 (3,676 males and 686 females)
different physically active participants of various nationalities
and ethnicities, aged 4–32 years are included. Of these, 961 were
classified as fracture cases (779 males and 182 females) and 3,501
considered non-fracture controls (2,997 males and 504 females).

Two studies focused on acute fracture risk in children
(Suuriniemi et al., 2003; Blades et al., 2010), the other nine
evaluated stress fracture risk in professional adult military and/or
athlete groups. Only one study investigated female participants
alone (Suuriniemi et al., 2003), four investigated only males
(Välimäki et al., 2005; Chatzipapas et al., 2009; Korvala et al.,
2010; Zhao et al., 2016), five included both combined and
separate analysis for male and female participants (Yanovich
et al., 2012; Cosman et al., 2013; Varley et al., 2015, 2016, 2018)
with one reporting only pooled results for males and females
(Blades et al., 2010).

Only one paper achieved the highest classification of study
quality (Blades et al., 2010), three were classified as moderate
(Korvala et al., 2010; Cosman et al., 2013; Zhao et al., 2016),

FIGURE 2 | Genetic case-control association study of fracture risk in physically active participant systematic review and meta-analysis study selection process.
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TABLE 1 | Summary of articles identified from systematic review of genetic case-control association studies with fracture risk in physically active participants.

References Gene (SNPs) Participant characteristics Result

Sample Case/Control and sex Physical

activity

Age (y) Ethnicity

Blades et al.

(2010)

COL1A1: (rs1800012)

COL1A2: (rs412777)

M and F English

Children presented

to A&E following

impact trauma

Fracture = 197

- (M = 124, F = 73)

Control = 187

- (M = 106, F = 81)

TOTAL = 384

- (M = 230, F = 154)

Recreational

physical

activity

M = 11 ± 3

F = 11 ± 3 (4–16)

Caucasian COL1A2 “PP” genotype halved fracture risk

(p = 0.01, OR = 0.45, 95% CI = 0.24–0.82).

COL1A1 “s” allele trebled fracture risk in

pre-pubertal children (p = 0.004, OR = 3.1, 95%

CI = 1.43–6.63)

Chatzipapas

et al. (2009)

VDR: (rs10735810, rs1544410,

rs731236, rs7975232)

M only Military

personnel

Stress Fracture = 32

Control = 32

TOTAL = 64

Military Duties 23 ± 3 (19–30) Unknown VDR rs10735810 “f” (p = 0.017, OR = 2.8, 95%

CI = 1.2–6.3) and possibly rs1544410 “B”

(p = 0.051, OR = 2.2, 95% CI = 1.0–4.4) alleles

increase stress fracture risk

Cosman et al.

(2013)

COL1A1: (rs1800012) ESR1:

(rs2234693, rs9340799)

VDR: (rs1544410)

M and F US

Military Recruits

Stress Fracture = 69

- (M = 43, F = 26)

Control = 822

- (M = 712, F = 110)

TOTAL = 891

- (M = 755, F = 136)

Basic Military

Training

M = 19 ± 1

F = 18 ± 1 (18–20)

M: 86.5% Caucasian,

5% Asian, 8.5%

Black

F: 79.4% Caucasian,

11% Asian,

9.6% Black

No genetic association with stress fracture

incidence (p > 0.05)

Korvala et al.

(2010)

COL1A1: (rs1800012,

rs2696247, rs2586488,

rs406226)

COL1A2: (rs2301643,

rs3216902, rs406226)

CTR: (rs1801197)

IL-6: (rs1800795)

LRP5: (rs2277268, rs4988321,

rs556442, rs3736228)

VDR: (rs10735810,

rs1544410, rs731236)

M only Finnish

Military Conscripts

Stress Fracture = 72

Control = 120

TOTAL = 192

Basic Military

Training

M = 20 ± 2 (18–27) Unknown Absence of CTR C allele and/or VDR C-A haplotype

increased stress fracture risk (p = 0.007,

OR = 3.22, 95% CI = 1.38–7.49). LRP5 haplotype

A-G-G-C increased stress fracture risk (p = 0.031,

OR = 2.72, 95% CI = 1.10–6.73) increasing when

combined with the VDR C-A haplotype (p = 0.028,

OR = 3.85, 95% CI = 1.16–12.84) but was

mediated by body mass and BMI

Suuriniemi

et al. (2003)

COL1A2: (rs412777) F Finnish children Fracture = 37

Control = 221

TOTAL = 258

2.8–3.0

h/week

F = 11 ± 1 (10–12) Unknown COL1A2 P allele (either PP or Pp genotype)

increased fracture risk compared to pp genotype

(p = 0.007, OR = 4.1, 95% CI = 1.4–12.4)

Välimäki et al.

(2005)

ESR1: (rs2234693, rs9340799) M Finnish Military

Conscripts

Stress Fracture = 15

Control = 164

TOTAL = 179

Basic Military

Training

M = 19 ± 1 (18–20) Unknown No genetic association with stress fracture

incidence (p > 0.23)

Varley et al.

(2015)

TNFSF11: (rs1021188,

rs9594738)

TNFRSF11A: (rs3018362)

TNFRSF11B: (rs4355801)

M and F Elite

Athletes from USA

and UK (SFEA

Cohort)

Stress Fracture = 125

- (M = 98, F = 27)

Control = 376

- (M = 335, F = 41)

TOTAL = 501

- (M = 433, F = 68)

Professional

Athletes of

Various

Sports

Stress

Fracture = 27.2 ± 6.9

Control = 24.2 ± 5.5

Caucasian: Stress

Fractures 83.2%,

Controls 79.9%

Other Unknown:

Stress Fracture

16.8%,

Controls 20.1%

TNFSF11 rs1021188 AA (p = 0.024, OR = 2.9,

95% CI = 1.2–7.3) and TNFRSF11A rs3018362

GA+AA (p = 0.049, OR = 1.5, 95% CI = 1.0–2.4)

individuals showed increased risk of stress fracture

in comparison to GG individuals

(Continued)

F
ro
n
tie
rs

in
G
e
n
e
tic
s
|w

w
w
.fro

n
tie
rsin

.o
rg

5
Ju

n
e
2
0
2
0
|V

o
lu
m
e
1
1
|
A
rtic

le
5
5
1

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


R
ya
n
-M

o
o
re

e
t
a
l.

F
ra
c
tu
re

a
n
d
E
xe

rc
ise

G
e
n
e
tic

M
e
ta
-A

n
a
lysis

TABLE 1 | Continued

References Gene (SNPs) Participant characteristics Result

Sample Case/Control and sex Physical

activity

Age (y) Ethnicity

Varley et al.

(2016)

P2X7R: (rs1653624, rs3751143,

rs2230912, rs2230911,

rs1718119, rs28360457,

rs7958316, rs7958311,

rs208294, rs28360447,

rs17525809, rs35933842)

M and F Israeli

Defence Force

Soldiers and Elite

Athletes from USA

and UK (SFEA

Cohort)

Military = 210

- (M = 198, F = 12),

Stress Fracture = 43

- (M = 41, F = 2)

Control = 167

- (M 157, F = 10)

Elite Athletes = 501

- (M = 433, F = 68)

Stress Fracture = 125

- (M = 98, F = 27)

Control = 376

- (M = 335, F = 41)

TOTAL = 711

- (M = 631, F = 80)

Military

Training and

Professional

Athletes of

Various

Sports

Military: Stress

Fracture = 20.3 ± 1.6,

Control = 18.9 ± 0.5

Athletes: Stress

Fracture = 27.7 ± 7.5,

Control = 24.4 ± 5.4

Elite Athletes: Stress

fractures 83.2%

Caucasian, 16.8%

other. Controls

79.9%, Caucasian,

20.1% other

Military: Stress

Fracture 36%

non-Ashkenazi, 64%

Ashkenazi. Control,

45% non-Ashkenazi,

and 55% Ashkenazi

P2X7R rs1718119A allele (p = 0.01) and

rs3751143C allele (M only) (p = 0.04) associated

with stress fracture occurrence in military

participants. P2X7R rs3751143C allele associated

with stress fracture occurrence (p = 0.05) in elite

athletes. After correcting for multiple comparisons

using the false discovery rate test none of the

findings remained significant (p > 0.05)

Varley et al.

(2018)

COL1A1: (rs1800012)

CTR: (rs1801197)

GC: (rs4588, rs7041)

LRP5: (rs3736228)

SOST: (rs1877632)

VDR: (rs10735810, rs7975232,

rs731236, rs1544410)

WNT16: (rs3801387)

M and F Elite

Athletes from USA

and UK (SFEA

Cohort)

Stress Fracture = 125

- (M = 98, F = 27)

Control = 376

- (M = 335, F = 41)

TOTAL = 501

- (M = 433, F = 68)

Professional

Athletes of

Various

Sports

Stress

Fracture = 27.7 ± 7.5

Control = 24.4 ± 5.4

Caucasian: Stress

Fractures 83.2%,

Controls 79.9%

Other Unknown:

Stress Fracture

16.8%,

Controls 20.1%

SOST rs1877632 TT+TC v CC (p = 0.02), VDR

rs10735810 (p = 0.01), and rs731236 (p = 0.01) C

homozygotes (both M only) were associated with

stress fracture occurrence. After correcting for

multiple comparisons using the false discovery rate

test none of the findings remained significant (p >

0.05).

Yanovich

et al. (2012)

ANKH: (rs4701616)

CALCR: (rs12154667,

rs1548456)

CBG: (rs11629171, rs2281518)

COL1A2: (rs420257, rs42517,

rs42522, rs24531, rs413826)

IL6: (rs1554606)

LRP4: (rs2306033)

NR3C1: (rs4244032,

rs12656106)

ROR2: (rs10992075)

VDR: (rs4328262)

Additional Not Reported

M and F Israeli

Defence Force

Soldiers

Stress Fracture = 182

- (M = 165, F = 17)

Control = 203

- (M = 162, F = 41)

TOTAL = 385

- (M = 327, F = 58)

Military

Training

Stress

Fracture = 20.1 ± 1.7

(18–32)

Control = 20.2 ± 1.3

(18–32)

Ashkenazi 49.5%,

Non-Ashkenazi

38.1%, and

Unknown 12.4%

NR3C1, ANKH, VDR, ROR2, CALCR, IL6, CBG,

and COL1A2 associated with increased risk of

stress fracture (p < 0.05). NR3C1, AR, VDR,

CALCR, COL1A2, and LRP4 associated with

reduced risk of stress fracture (p < 0.05). After

correcting for multiple comparisons using the false

discovery rate test none of the findings remained

significant (p > 0.05)

Zhao et al.

(2016)

GDF5: (rs143383) M Chinese Military

Recruits

Stress Fracture = 189

Control = 1209

TOTAL = 1398

Basic Military

Training

Stress

Fracture = 18.5 ± 1.4

Control = 18.5 ± 1.8

Unknown GDF5 rs143383T allele (p < 0.001, OR = 1.8, 95%

CI = 1.4–2.3) and TT genotype (p = 0.002,

OR = 1.8, 95% CI = 1.3–2.5) increased risk of

stress fracture occurrence in comparison to C allele

and TC+CC genotypes, respectively

M, male; F, female; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
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TABLE 2 | Risk of bias assessment judgements for genetic case-control association studies with fracture risk in physically active participants.

References Selection

bias

Bias due to

confounding

Bias in

classification

of exposure

Bias in

assessment

of outcome

Bias due to

missing data

Bias in selection

of reported

results

Overall risk

of bias

Blades et al. (2010) Moderate Serious Moderate Moderate Low Moderate Serious

Chatzipapas et al. (2009) Serious Serious Serious Serious Low Moderate Serious

Cosman et al. (2013) Moderate Moderate Low Low Low Moderate Moderate

Korvala et al. (2010) Serious Serious Serious Serious Moderate Moderate Serious

Suuriniemi et al. (2003) Moderate Moderate Moderate Moderate Low Moderate Moderate

Välimäki et al. (2005) Moderate Moderate Moderate Moderate Low Moderate Moderate

Varley et al. (2015) Serious Moderate Low Moderate Low Serious Serious

Varley et al. (2016) Serious Serious Serious Moderate Serious Serious Serious

Varley et al. (2018) Serious Serious Serious Moderate Low Serious Serious

Yanovich et al. (2012) Serious Serious Serious Low Serious Critical Critical

Zhao et al. (2016) Moderate Moderate Low Low Low Low Moderate

resulting in seven of the eligible studies defined as poor quality
genetic association studies (Suuriniemi et al., 2003; Välimäki
et al., 2005; Chatzipapas et al., 2009; Yanovich et al., 2012; Varley
et al., 2015, 2016, 2018). The overall risk of bias judgement varied
frommoderate to critical and was predominantly affected by bias
due to confounding and participant selection. A summary of the
assessment, including domain level judgments, are presented in
Table 2. The funnel plots for the allele, recessive and homozygote
comparison models, shown in Figures 3–5, respectively, did not
display a perfect funnel shape, but indicated no clear publication
bias. The funnel plots generally display a cluster of large studies
around the summary estimate and a lack of smaller studies spread
beneath. The nine studies included in the Egger’s test of thismeta-
analysis was just under the ten recommended as a rule of thumb
for sufficient power by Sterne et al. (2011). However, the results
of Egger’s test indicated no sign of funnel plot asymmetry in any
of the genetic meta-analysis comparison models, suggesting that
there was no between-study bias within the included studies (p
> 0.24).

Meta-Analysis
Ten genetic variants from six different genes; COL1A1
(rs1800012), COL2A1 (rs412777), CTR (rs1801197), ESR1
(rs2234693 and rs9340799), LRP5 (rs3736228), and VDR
(rs10735810, rs7975232, rs731236, and rs1544410) were
replicated at least once in seven of the 10 eligible studies,
which constituted the quantitative meta-analysis. The summary
statistics for each genetic comparison model meta-analysis are
presented in Tables 3–6. Table 3 includes pooled analysis for all
participants (male and females) of included studies, whileTable 4
includes males and females from studies classified as good or
moderate quality only. No statistically significant overall effect
was found from the meta-analyses of any genetic model or SNP
(p > 0.06). Tables 5, 6 include summary statistics of male and
female only sub-group analysis, respectively. Sub-group analysis
identified a significant reduction of fracture risk in female
participants, with the T allele of the COL1A1 rs1800012 SNP
using the allele contrast model (OR = 0.48, 95% CI = 0.25–0.91,

p= 0.03, d= –0.18), however this was not statistically significant
in the recessive model (OR= 0.51, 95% CI= 0.24–1.06, p= 0.07,
d= –0.16).

Significant overall heterogeneity was observed between
studies in the COL1A2 rs412777, ESR1 rs9340799, and
VDR rs10735810 meta-analyses, with significant sub-group
heterogeneity found in the COL1A1 rs1800012, COL1A2
rs412777, and ESR1 rs2234693 SNPs. Exclusion of poor-quality
studies reduced the analysis to two genetic variants in two
different genes (COL1A1 rs1800012 and VDR rs1544410) from
three studies, but this did not change the overall effect in
these analyses.

DISCUSSION

The aim of this meta-analysis was to evaluate the findings of
candidate gene association studies on non-osteoporotic fracture
risk in physically active humans. Only ten SNPs from six different
genes were independently replicated, despite the 10 studies
eligible for meta-analysis including 39 SNPs from 14 different
genes. A sub-analysis indicated a sex-linked significant trivial
reduction of fracture risk for physically active females with the
T allele of the COL1A1 rs1800012 SNP using the allele contrast
model (p= 0.03, d=−0.18). However, no statistically significant
overall effect was observed from the pooled results of any SNP (p
> 0.05).

The discordance between the results of our pooled analysis
and that reported in individual studies, could be attributed
to differences in methodological rigor, participant ethnicity
and/or sex. The two studies that provided data for the COL1A2
PvuII (rs412777) analysis presented conflicting results, with one
reporting that the “PP” genotype halved fracture risk (Blades
et al., 2010), and the other suggesting that the P allele (either PP
or Pp genotype) increased fracture risk (Suuriniemi et al., 2003).
In the combined analysis performed herein, these contradictory
results lead to null effects, which found no significant overall
effect of the COL1A2 PvuII (rs412777) SNP with fracture risk.
The results of the studies may differ if two different proximal
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FIGURE 3 | Funnel plot of single nucleotide polymorphisms replicated in studies investigating genetic association with fracture risk in physically active participants

using the allele contrast model.

FIGURE 4 | Funnel plot of single nucleotide polymorphisms replicated in studies investigating genetic association with fracture risk in physically active participants

using the recessive model.
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FIGURE 5 | Funnel plot of single nucleotide polymorphisms replicated in studies investigating genetic association with fracture risk in physically active participants

using the homozygote contrast model.

PvuII sites in the COL1A2 gene have been assessed, only
Blades et al. (2010) report the specific reference SNP number
(rs412777); or if the intervention of the study on calcium
and vitamin D supplementation, from which Suuriniemi et al.
(2003) recruited their participants, influenced the effect of the
P allele. It should also be considered that due to the age of
participants in both studies, circa 11 years, that observed genetic
associations with fracture cases could have been confounded by
diseases which had yet to display symptoms or be diagnosed.
Nevertheless, the ethnicity of participants was not reported
by Suuriniemi et al. (2003) and may have differed from the
Caucasian participants studied by Blades et al. (2010). Allele
frequencies and baseline risk can vary across ethnic groups and
failing to account for this may result in spurious associations
with candidate genes (Pérez-Lezaun et al., 1997; Thomas and
Witte, 2002). The investigated SNPs included in this meta-
analysis may have no functional influence on fracture risk but
exist in linkage disequilibrium with other SNPs that do. These
patterns of linkage disequilibrium can differ across populations
and associations in one but not another may be a result of these
complex differences.

Five studies investigated the genetic association of stress
fracture risk in Caucasian, or predominantly Caucasian, male
adult military or athletic individuals. However, five additional
studies did not report participant ethnicity; three of which
provided the data for the VDR FokI (rs10735810) SNP
analysis (Chatzipapas et al., 2009; Korvala et al., 2010; Varley

et al., 2018). This suggests that the C allele had no overall
effect on fracture risk using the random effects meta-analysis
model. However, it has been argued that random effects
models are not more conservative if the relative contribution
of smaller low-quality studies on the overall effect are
increased (Sterne et al., 2011). A fixed effects model was
not considered appropriate for the VDR FokI (rs10735810)
analysis, as heterogeneity was significantly high (p = 0.006, I2

= 76%) and the participants’ ethnicity unknown. Nevertheless,
all three studies reported accordance with Hardy-Weinberg
equilibrium and a significant trivial increase of fracture risk
is associated with the C allele using a fixed effects model
(OR = 1.37, 95% CI = 1.03–1.81, p = 0.03, d = 0.07)
and ethnic variation across studies may have masked a valid
genetic association.

The genetic architecture and inter-individual variation of
complex traits, such as fracture risk, are determined by numerous
genetic variants with a range of effect sizes, which can be
very small (Gibson, 2009). Additionally, heterogeneity between
genetic association studies is often high, so several replication
attempts are required to determine the physiological effect of
genetic variants with confidence (Salanti et al., 2005). However,
the SNPs included in this meta-analysis had only been examined
in two to four studies, with many authors attempting to identify
novel variants, instead of examining previous findings from
GWAS or other candidate gene studies. The LRP5 and ESR1
genes, and the LRP5 rs3736228 SNP, have been associated
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TABLE 3 | Summary effects from the overall analyses of case-control association studies for genetic variants associated with fracture occurrence risk in physically active

participants including all studies and sex sub-groups.

Genetic variant and risk

comparison model

Sample size Test of heterogeneity Test of overall association

Participants Studies Overall Between sub-groups FE/RE OR (95% CI) P

Fracture/Control (risk

model frequency)

I2 P I2 P

COL1A1 Sp1(rs1800012)

Allele Contrast: T 772 (20%)/2514 (20%) 4 17% 0.30 67% 0.05 FE 0.95 (0.76–1.19) 0.66

Recessive: TT+TG 455 (32%)/1465 (31%) 4 1% 0.41 57% 0.10 FE 0.99 (0.77–1.27) 0.91

Homozygote Contrast: TT 455 (1.5%)/1465 (3%) 4 0% 0.70 0% 0.63 FE 0.58 (0.25–1.32) 0.19

COL1A2 PvuII (rs412777)

Allele Contrast: C 342 (49%)/607 (51%) 2 92% <0.001 92% <0.001 RE 1.81 (0.39–8.52) 0.45

Recessive: CC+CA 229 (62%)/393 (62%) 2 83% 0.02 82% 0.02 RE 1.81 (0.46–7.17) 0.40

Homozygote Contrast: CC 229 (11%)/393 (16%) 2 85% 0.009 85% 0.009 RE 0.87 (0.22–3.52) 0.85

CTR (rs1801197)

Allele Contrast: T 313 (90%)/767 (88%) 3 0% 0.56 0% 0.88 FE 1.27 (0.82–1.97) 0.29

Recessive: TT+TC 189 (92%)/477 (91%) 3 0% 0.68 0% 0.96 FE 1.23 (0.67–2.27) 0.51

Homozygote Contrast: TT 189 (57%)/477 (51%) 3 25% 0.26 38% 0.20 RE 1.23 (0.81–1.87) 0.33

ESR1 PvuII (rs2234693)

Allele Contrast: C 119 (76%)/1455 (73%) 2 0% 0.41 44% 0.18 FE 1.25 (0.80–1.95) 0.33

Recessive: CC+CT 80 (83%)/953 (79%) 2 0% 0.79 0% 0.49 FE 1.28 (0.69–2.35) 0.43

Homozygote Contrast: CC 80 (31%)/953 (32%) 2 48% 0.14 73% 0.05 RE 0.92 (0.43–1.98) 0.84

ESR1 XbaI (rs9340799)

Allele Contrast: G 124 (89%)/1519 (86%) 2 68% 0.04 0% 0.81 RE 1.02 (0.35–3.00) 0.96

Recessive: GG+GA 80 (91%)/953 (90%) 2 33% 0.23 0% 0.80 RE 1.11 (0.40–3.09) 0.85

Homozygote Contrast: GG 80 (46%)/953 (49%) 2 4% 0.35 0% 0.49 FE 0.91 (0.57–1.45) 0.69

LRP5 (rs3736228)

Allele Contrast: T 345 (14%)/863 (13%) 2 0% 0.92 0% 0.99 FE 1.14 (0.78–1.65) 0.50

Recessive: TT+TC 195 (24%)/481 (22%) 2 0% 0.94 0% 0.89 FE 1.18 (0.78–1.77) 0.43

Homozygote Contrast: TT 195 (1%)/481 (1.6%)* 2* N/A N/A N/A N/A N/A N/A N/A

VDR FokI (rs10735810)

Allele Contrast: C 342 (60%)/774 (48%) 3 76% 0.006 0% 0.33 RE 1.60 (0.82–3.11) 0.17

Recessive: CC+CT 220 (69%)/494 (61%) 3 61% 0.05 0% 0.36 RE 1.49 (0.76–2.91) 0.25

Homozygote Contrast: CC 220 (24%)/494 (16%) 3 0% 0.71 0% 0.86 FE 1.49 (0.98–2.26) 0.06

VDR ApaI (rs7975232)

Allele Contrast: C 229 (71%)/588 (70%) 2 0% 0.83 0% 0.66 FE 1.07 (0.76–1.51) 0.71

Recessive: CC+CA 152 (78%)/387 (76%) 2 0% 0.89 0% 0.91 FE 1.09 (0.68–1.73) 0.72

Homozygote Contrast: CC 152 (29%)/387 (29%) 2 11% 0.32 43% 0.19 FE 0.92 (0.60–1.41) 0.70

VDR TaqI (rs731236)

Allele Contrast: C 332 (48%)/776 (48%) 3 41% 0.17 28% 0.24 RE 1.05 (0.72–1.53) 0.80

Recessive: CC+CT 218 (61%)/508 (60%) 3 10% 0.34 0% 0.41 FE 1.01 (0.72–1.41) 0.96

Homozygote Contrast: CC 218 (13%)/508 (13%) 3 0% 0.52 10% 0.29 FE 0.98 (0.60–1.60) 0.95

VDR BsmI (rs1544410)

Allele Contrast: T 389 (62%)/2,002 (70%) 4 47% 0.09 0% 0.54 RE 0.97 (0.68–1.39) 0.87

Recessive: TT+TG 264 (72%)/1,306 (77%) 4 0% 0.50 0% 0.90 FE 1.08 (0.79–1.49) 0.62

Homozygote Contrast: TT 264 (19%)/1,306 (30%) 4 25% 0.25 0% 0.94 RE 0.85 (0.60–1.21) 0.37

RE, random effects; FE, fixed effects; OR, odds ratio; CI, confidence interval. Sample size describes frequency of case and control counts for each model with risk variant frequency in

parentheses. *LRP5 (rs3736228) TT homozygotes present in only one of the two included studies. Values in bold indicate significant heterogeneity and/or associations with fracture risk.

with fracture risk (Trajanoska et al., 2018) or bone mineral
density (Kemp et al., 2017) in GWAS. However, these studies
have focused on osteoporotic fracture and/or non-athletic
individuals older than 18 and GWAS on fracture risk in young

physically active healthy individuals appear absent from the
literature. Many of the studies included in the current meta-
analysis were of poorer quality and required further verification.
Nevertheless, accurate replication would be challenging, as
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TABLE 4 | Summary effects from the overall analyses of case-control association studies for genetic variants associated with fracture occurrence risk in physically active

participants including only good and moderate quality studies with sex sub-groups.

Genetic variant and risk

comparison model

Sample size Test of Heterogeneity Test of overall association

Participants Studies Overall Between sub-groups FE/RE OR (95% CI) P

Fracture/Control (risk

model frequency)

I2 P I2 P

COL1A1 Sp1 (rs1800012)

Allele Contrast: T 561 (21%)/1,878 (21%) 3 36% 0.20 57% 0.10 RE 0.95 (0.66–1.36) 0.77

Recessive: TT+TG 333 (33%)/1,101 (33%) 3 33% 0.22 54% 0.11 RE 0.96 (0.65–1.42) 0.84

Homozygote Contrast: TT 333 (1.8%)/1,101 (3%) 3 0% 0.53 0% 0.47 FE 0.73 (0.28–1.91) 0.53

VDR BsmI (rs1544410)

Allele Contrast: T 179 (68%)/1,405 (77%) 2 41% 0.18 0% 0.93 RE 0.96 (0.59–1.56) 0.87

Recessive: TT+TG 118 (75%)/915 (83%) 2 0% 0.45 0% 0.90 FE 1.00 (0.62–1.62) 1.00

Homozygote Contrast: TT 118 (27%)/915 (36%) 2 0% 0.39 0% 0.45 FE 0.93 (0.59–1.47) 0.75

RE, random effects; FE, fixed effects; OR, odds ratio; CI, confidence interval. Sample size describes frequency of case and control counts for each model with risk variant frequency

in parentheses. Values in bold indicate significant heterogeneity and/or associations with fracture risk.

adequate reporting of participant characteristics was a common
limitation of studies. One study failed to report if Hardy-
Weinberg equilibrium was observed (Välimäki et al., 2005) and
three reported disequilibrium for certain SNPs which were not
included in the quantitative analysis (Yanovich et al., 2012;
Varley et al., 2015, 2016). Sample size was another frequently
observed limitation of included studies, with only two reporting
a-priori power calculations (Blades et al., 2010; Zhao et al., 2016).
As the effect of genetic variants may be small, a-priori power
calculations are strongly recommended in genetic association
studies (Salanti et al., 2005) and several authors suggest that
their studies may have been underpowered (Välimäki et al.,
2005; Korvala et al., 2010; Yanovich et al., 2012; Cosman et al.,
2013; Varley et al., 2016; Zhao et al., 2016). Some authors
also acknowledged the potential influence that differences in
nutritional status could have on bone health and thus fracture
risk (Blades et al., 2010; Korvala et al., 2010; Cosman et al.,
2013; Varley et al., 2018). However, none of the studies included
in this meta-analysis were able to control for dietary variation
between groups.

Although no overall effect of the included SNPs was
observed on fracture risk in this meta-analysis some genetic
variants, such as the COL1A2 PvuII (rs412777) and VDR FokI
(rs10735810) SNPs, may still warrant further investigation.
Indeed, genetic variants in LRP5 and ESR1 have been
associated with osteoporotic fracture risk and bone mineral
density in GWAS (Kemp et al., 2017; Trajanoska et al., 2018)
and genuine physiological genetic effects could have been
disguised by ethnicity dependent linkage disequilibrium with
other influential variants or insufficiently powered analysis.
Nevertheless, none of the included SNPs currently show a
significant overall effect on fracture risk in physically active
male and female combined analysis and could, indeed,
have no physiological influence. However, further high-
quality replication attempts would provide greater clarity
of the influence of genetic risk factors for fracture risk in
physically active participants. In the future, researchers

should ensure a-priori power calculations are conducted and
reported using clearly defined homogenous sample groups to
inform the understanding of potential gene-environment and
gene-gene interactions.

Only one of the studies included within this meta-analysis
included female only participants (Suuriniemi et al., 2003).
Six included both male and female participants, of these, five
reported both combined and sex specific analysis (Yanovich
et al., 2012; Cosman et al., 2013; Varley et al., 2015, 2016, 2018)
and one reported combined analysis only (Blades et al., 2010).
Males and females are often combined in genetic association
studies of injury risk, which will improve the sample size and
statistical power of the analysis (Posthumus et al., 2009; Blades
et al., 2010; Ficek et al., 2013). This approach is rationalized,
if the genetic variants are located on the autosomal regions
of the genome, by stating that the region of interest is not
linked to a specific sex. However, this explanation disregards
the significant differences in the relative risk of bone injuries
between the sexes (Arendt et al., 1999; Renstrom et al., 2008;
Wentz et al., 2011). The division of sex in this meta-analysis
identified more than five times the number of male than female
participants. This resulted in larger standard errors in the female
sub-groups with only the COL1A1 Sp1 (rs1800012) and VDR
BsmI (rs1544410) SNPs replicated in females in more than
one study. Stress fracture risk has been suggested to be three
times greater in physically active female military personnel and
50% higher in female athletes than their male colleagues, due
to biomechanical and physiological differences (Wentz et al.,
2011). Indeed, the prevalence of fracture cases in the current
meta-analysis was greater in females (27%) than males (21%).
Significant sub-group heterogeneity was observed between sexes
in the effect of the COL1A1 Sp1 (rs1800012), COL1A2 PvuII
(rs412777), and ESR1 PvuII (rs2234693) SNPs, highlighting
the potential for sex-specific associations. Epidemiological data
suggest that fracture incidence is greater in males between
the age 18 and 49 than females in the general population
(Curtis et al., 2016). However, the authors suggest this pattern
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TABLE 5 | Summary effects of case-control association studies for genetic variants associated with fracture occurrence risk in physically active males only.

Genetic variant and risk

comparison model

Sample size Test of heterogeneity Test of sub-group association

Participants Studies Within sub-group FE/RE OR (95% CI) P

Fracture/Control (risk model frequency) I2 P

COL1A1 Sp1(rs1800012)

Allele Contrast: T 362 (17%)/1,960 (19%) 3 0% 0.99 FE 0.96 (0.70–1.31) 0.80

Recessive: TT+TG 208 (28%)/1,138 (30%) 3 0% 0.93 FE 0.97 (0.68–1.37) 0.85

Homozygote Contrast: TT 208 (2%)/1,138 (3%) 3 0% 0.43 FE 0.87 (0.28–2.70) 0.81

CTR (rs1801197)

Allele Contrast: T 271 (90%)/706 (89%) 2 12% 0.29 FE 1.27 (0.80–2.08) 0.30

Recessive: TT+TC 163 (92%)/442 (91%) 2 0% 0.38 FE 1.22 (0.62–2.38) 0.51

Homozygote Contrast: TT 163 (58%)/442 (51%) 2 4% 0.31 FE 1.35 (0.94–1.95) 0.11

ESR1 PvuII (rs2234693)

Allele Contrast: C 83 (81%)/1,294 (73%) 2 0% 0.99 FE 1.53 (0.80–2.91) 0.14

Recessive: CC+CT 54 (85%)/849 (80%) 2 0% 0.96 FE 1.48 (0.69–3.20) 0.32

Homozygote Contrast: CC 54 (39%)/849 (32%) 2 48% 0.14 FE 1.32 (0.75–2.32) 0.34

ESR1 XbaI (rs9340799)

Allele Contrast: G 85 (91%)/1,351 (87%) 2 84% 0.01 RE 0.92 (0.13–6.62) 0.96

Recessive: GG+GA 54 (93%)/849 (90%) 2 67% 0.08 RE 0.96 (0.15–6.36) 0.97

Homozygote Contrast: GG 54 (50%)/849 (44%) 2 38% 0.21 RE 0.93 (0.43–2.01) 0.86

LRP5 (rs3736228)

Allele Contrast: T 303 (12%)/798 (12%) 2 0% 0.69 FE 1.14 (0.75–1.72) 0.54

Recessive: TT+TC 169 (21%)/443 (21%) 2 0% 0.73 FE 1.16 (0.75–1.81) 0.50

Homozygote Contrast: TT 169 (0.6%)/443 (1.1%)* 2* N/A N/A N/A N/A N/A

VDR FokI (rs10735810)

Allele Contrast: C 304 (59%)/710 (49%) 3 80% 0.006 RE 1.42 (0.64–3.15) 0.39

Recessive: CC+CT 194 (68%)/454 (60%) 3 68% 0.04 RE 1.32 (0.59–2.95) 0.50

Homozygote Contrast: CC 194 (25%)/454 (17%) 3 0% 0.51 FE 1.47 (0.95–2.28) 0.09

VDR ApaI (rs7975232)

Allele Contrast: C 191 (71%)/531 (71%) 2 0% 0.68 FE 1.03 (0.71–1.50) 0.86

Recessive: CC+CA 127 (78%)/347 (76%) 2 0% 0.64 FE 1.08 (0.65–1.78) 0.78

Homozygote Contrast: CC 127 (28%)/347 (31%) 2 0% 0.47 FE 0.82 (0.52–1.30) 0.40

VDR TaqI (rs731236)

Allele Contrast: C 295 (47%)/719 (48%) 3 43% 0.17 RE 0.96 (0.65–1.44) 0.85

Recessive: CC+CT 193 (60%)/470 (60%) 3 25% 0.27 RE 0.96 (0.63–1.47) 0.85

Homozygote Contrast: CC 193 (12%)/470 (13%) 3 0% 0.70 FE 0.90 (0.54–1.52) 0.70

VDR BsmI (rs1544410)

Allele Contrast: T 313 (61%)/1,780 (70%) 4 67% 0.03 RE 0.89 (0.54–1.48) 0.65

Recessive: TT+TG 213 (71%)/1,162 (77%) 4 30% 0.23 RE 1.00 (0.64–1.56) 0.98

Homozygote Contrast: TT 213 (18%)/1,162 (30%) 4 47% 0.13 RE 0.84 (0.47–1.50) 0.54

RE, random effects; FE, fixed effects; OR, odds ratio; CI, confidence interval. Sample size describes frequency of case and control counts for each model with risk variant frequency in

parentheses. *LRP5 (rs3736228) TT homozygotes present in only one of the two included studies. Values in bold indicate significant heterogeneity and/or associations with fracture risk.

reflects the increased prevalence of young males in high trauma
events such as road traffic accidents (Curtis et al., 2016).
Nevertheless, physically active females consistently demonstrate
an increased risk of fracture when compared to their male
counterparts (Kaufman et al., 2000;Wentz et al., 2011;Waterman
et al., 2016). Therefore, the relative contribution of genetic
susceptibility to fracture risk, and potential of preventative
strategies, is likely to be greater in physically active females
than males.

The COL1A1 Sp1 (rs1800012) SNP, located in the 1st intron
of the COL1A1 gene, is one of the most extensively investigated
genetic variants in the injury risk literature. Sub-group analysis
within the current meta-analysis indicated a trivial reduction in
fracture risk for the T allele of the COL1A1 rs1800012 SNP in
physically active females, but not males. However, the T allele
was not associated with fracture risk when males and females
were combined (Blades et al., 2010; Cosman et al., 2013; Varley
et al., 2018), nor inmales only (Korvala et al., 2010). The observed
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TABLE 6 | Summary effects of case-control association studies for genetic variants associated with fracture occurrence risk in physically active females only.

Genetic variant and risk

comparison model

Sample size Test of heterogeneity Test of sub-group association

Participants Studies Within sub-group FE/RE OR (95% CI) P

Fracture/Control (risk model frequency) I2 P

COL1A1 Sp1(rs1800012)

Allele Contrast: T 92 (15%)/242 (26%) 2 0% 0.64 FE 0.48 (0.25–0.91) 0.03

Recessive: TT+TG 52 (25%)/144 (38%) 2 0% 0.49 FE 0.51 (0.24–1.06) 0.07

Homozygote Contrast: TT 52 (2%)/144 (6%) 2 0% 0.53 FE 0.41 (0.07–2.33) 0.31

VDR BsmI (rs1544410)

Allele Contrast: T 76 (66%)/222 (70%) 2 0% 0.69 FE 1.13 (0.63–2.05) 0.68

Recessive: TT+TG 51 (75%)/144 (77%) 2 0% 0.90 FE 1.14 (0.52–2.48) 0.75

Homozygote Contrast: TT 51 (24%)/144 (31%) 2 6% 0.30 FE 0.87 (0.40–1.89) 0.73

RE, random effects; FE, fixed effects; OR, odds ratio; CI, confidence interval. Sample size describes frequency of case and control counts for each model with risk variant frequency

in parentheses. Values in bold indicate significant heterogeneity and/or associations with fracture risk.

reduction in fracture risk associated with the T allele in females
was not independently reported by the two studies included,
which provided data for this meta-analysis (Cosman et al., 2013;
Varley et al., 2018).Whilst it should be acknowledged that despite
pooling data from these two studies this finding is only based on
196 females in total the T allele has been consistently associated
with increased risk of osteoporotic fracture due to reduced bone
mineral density in elderly post-menopausal females (Mann et al.,
2001; Mann and Ralston, 2003). Nevertheless, the T allele has
been repeatedly associated with reduced ligament injury risk in
physically active mixed sex (Khoschnau et al., 2008; Posthumus
et al., 2009; Ficek et al., 2013) and male participants (Stepien-
Słodkowska et al., 2013). These previous findings in addition to
those of the current meta-analysis suggest the T allele could be
associated with protection against some sport and exercise related
injuries but further research is still required.

The T allele of the rs1800012 COL1A1 SNP is associated with
greater Sp1 binding affinity and COL1A1 production, which is
similar betweenmale and female carriers (Mann et al., 2001). This
results in an increased relative abundance of type 1 procollagen
formed exclusively from COL1A1 polypeptides, which has been
suggested to be weaker than the normal COL1A1/ COL1A2
combination (Mann et al., 2001). However, this is based on the
increased osteoporotic fracture risk associated with the T allele
in the elderly and is contradicted by the protective effect of the T
allele observed in this meta-analysis and other studies of sport
and exercise related ligament injuries (Khoschnau et al., 2008;
Posthumus et al., 2009; Ficek et al., 2013; Stepien-Słodkowska
et al., 2013). Participants included in this meta-analysis and in
the injury risk literature include physically active individuals,
who are much younger than those studied in association with
osteoporotic fracture. Mechanical loading of the musculoskeletal
system is increased during sport and physical activity (Launay,
2015; Meardon et al., 2015; Bacon and Mauger, 2017; Schuh-
Renner et al., 2017). Therefore, the T allele may result in
mechanically stronger type 1 collagen, which is protective against
ligamentous and bone injuries at younger ages in physically active
individuals. The T allele may increase osteoporosis susceptibility
in the elderly due to other pathogenic factors, such as excessive

bone resorption. Alternatively, differences in the mechanical
properties of bone and ligament may explain the observed
variations in injury susceptibility and further investigation of the
influence of the T allele on fracture risk in young physically active
participants is needed.

Genetic variants do not necessarily result in dichotomous
injured or non-injured states and genetic penetrance describes
the probability that a carrier of a risk allele will express the
disease/injury trait (Cooper et al., 2013). The genetic penetrance
of the COL1A1 rs1800012 SNP with fracture risk may be sex-
specific and influenced by age. Therefore, it is possible that the T
allele of the COL1A1 rs1800012 SNP is concurrently associated
with a reduced risk of bone fracture in young physically
active females and an increased risk of osteoporotic fracture in
elderly females. This finding is based on a total of 204 female
participants (53 fractures and 151 controls), 10 of which were
TT homozygotes. This is lower than expected (∼5%) considering
the overall size of the sample as the minor T allele is present
in ∼16–19% of Europeans and 9–13% of individuals globally.
It may be that no association was observed in the recessive and
homozygote contrast models or the individual studies (Cosman
et al., 2013; Varley et al., 2018) as the number of T homozygotes,
and overall participants, was low. Pooling the results of multiple
genetic association studies becomes highly valuable to improve
the statistical power of the analysis but the effect of the COL1A1
rs1800012 SNP T allele on fracture risk should be replicated in a
large group of physically active females in order to examine the
finding of this meta-analysis.

The aim of the current meta-analysis was to synthesize
the findings and quality of genetic case-control association
studies on fracture risk in physically active participants. Sex-
specific analysis indicated a protective effect of the COL1A1
(rs1800012) T allele in females despite previous associations
with increased risk of osteoporotic fracture in the elderly. This
suggests that the genetic penetrance of the T allele is influenced
by sex/age and is not ubiquitously detrimental to bone strength
as has been previously suggested. The null effects observed
in the overall analyses of SNPs included in this meta-analysis
should not be considered finite due to potential limitations
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of the included studies. Pediatric participants, only present
in the COL1A1 (rs1800012) and COL1A2 PvuII (rs412777)
combined sex analyses, are more likely to include individuals
with undiagnosed asymptomatic diseases which could influence
the genetic association results. Nevertheless, the overall findings
COL1A1 (rs1800012) combined sex analyses do not change
if pediatric participants are removed. However, the COL1A2
PvuII (rs412777) analyses is comprised exclusively of pediatric
participants and should, therefore, be considered specific to this
population and with the limitations discussed. Readers should
also consider the potential influence that nutritional differences
which could interact with the exposure of physical activity
and genetic predisposition to mediate susceptibility to fracture
occurrence in the included studies. Overall review of study
designs indicated several recommendations for consideration
in future research such as the inclusion of a-priori power
calculations, sex-specific analysis, and greater clarity in the
reporting of participant ethnicity. Consequently, further high-
quality investigation of the COL1A1 (rs1800012), COL1A2 PvuII
(rs412777), and VDR FokI (rs10735810) SNPs with fracture
risk in a homogenous sample of physically active participants
is warranted.
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