
METHODS
published: 25 June 2020

doi: 10.3389/fgene.2020.00572

Frontiers in Genetics | www.frontiersin.org 1 June 2020 | Volume 11 | Article 572

Edited by:

Max A. Alekseyev,

George Washington University,

United States

Reviewed by:

Debnath Pal,

Indian Institute of Science (IISc), India

Laurent Noe,

Université de Lille, France

Giovanni Manzini,

University of Eastern Piedmont, Italy

*Correspondence:

Guillaume J. Filion

guillaume.filion@gmail.com

†Present address:

Guillaume J. Filion,

Department of Biological Sciences,

University of Toronto Scarborough,

Toronto, ON, Cananda

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 11 November 2019

Accepted: 11 May 2020

Published: 25 June 2020

Citation:

Filion GJ, Cortini R and Zorita E (2020)

Calibrating Seed-Based Heuristics to

Map Short Reads With Sesame.

Front. Genet. 11:572.

doi: 10.3389/fgene.2020.00572

Calibrating Seed-Based Heuristics to
Map Short Reads With Sesame
Guillaume J. Filion 1,2*†, Ruggero Cortini 1 and Eduard Zorita 1

1Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain, 2University

Pompeu Fabra (UPF), Barcelona, Spain

The increasing throughput of DNA sequencing technologies creates a need for faster

algorithms. The fate of most reads is to be mapped to a reference sequence, typically

a genome. Modern mappers rely on heuristics to gain speed at a reasonable cost for

accuracy. In the seeding heuristic, short matches between the reads and the genome

are used to narrow the search to a set of candidate locations. Several seeding variants

used in modern mappers show good empirical performance but they are difficult to

calibrate or to optimize for lack of theoretical results. Here we develop a theory to

estimate the probability that the correct location of a read is filtered out during seeding,

resulting in mapping errors. We describe the properties of simple exact seeds, skip seeds

and MEM seeds (Maximal Exact Match seeds). The main innovation of this work is to

use concepts from analytic combinatorics to represent reads as abstract sequences,

and to specify their generative function to estimate the probabilities of interest. We

provide several algorithms, which together give a workable solution for the problem

of calibrating seeding heuristics for short reads. We also provide a C implementation

of these algorithms in a library called Sesame. These results can improve current

mapping algorithms and lay the foundation of a general strategy to tackle sequence

alignment problems. The Sesame library is open source and available for download at

https://github.com/gui11aume/sesame.

Keywords: C library, probability, analytic combinatorics, seeding accuracy, heuristic algorithms

1. INTRODUCTION

1.1. Mapping Reads to Genomes
Say we use an imperfect instrument to sequence a small fragment of DNA. If we know its genome
of origin, how can we find the location of the fragment in this genome?

The advent of high-throughput sequencing has put this question at the center of countless
applications in genetics, such as discovering disease-causing mutations, selecting breeds of interest
in agriculture or tracing human migrations.

We will refer to this as the true location problem. The answer to the problem depends on the
length of the read, on the error rate of the sequencer and on one key feature of the genome: its
repeat structure. Most genomes contain repetitive sequences, i.e., relatively large subsequences that
are present at multiple locations. If the sequenced DNA fragment comes from a repetitive sequence,
it may be impossible to map the read with certainty.

In general, repetitive sequences are not identical but merely homologous—meaning that their
similarity is very unlikely to occur by chance. So if the sequenced DNA fragment originates from a
repetitive sequence, we can map the read only if we can rule out all the candidates except one. This,
in turn, depends on the similarity between the duplicates and on the error rate of the sequencer.

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00572
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00572&domain=pdf&date_stamp=2020-06-25
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:guillaume.filion@gmail.com
https://doi.org/10.3389/fgene.2020.00572
https://www.frontiersin.org/articles/10.3389/fgene.2020.00572/full
http://loop.frontiersin.org/people/624943/overview
http://loop.frontiersin.org/people/994257/overview
http://loop.frontiersin.org/people/907891/overview
https://github.com/gui11aume/sesame

Filion et al. Using Sesame for Seeding Heuristics

Since repetitive sequences play a central role in the problem,
we give the terms “targets” and “duplicates” a meaning that will
facilitate the exposition of the theory.

Definition 1. The target is the DNA fragment that was actually
sequenced. Duplicates are sequences of the genome that share
homology with the target (in genetics they are often referred to as
paralogs). In this article we will focus on short reads from complex
eukaryotic genomes, so for concreteness the reader can assume that
fragments are 30–300 bp long and that duplicates have above 75%
identity with the target.

The difficulty of the true location problem is due to sequencing
errors. Occasionally, the sequence of a DNA fragment can be
closer to one of the duplicates than to the target. So the true
location of a DNA fragment is not always the best (as measured
by the identity between the sequence and the candidate location).
This naturally leads to asking how we can identify the best
location of the fragment in the genome.

We will refer to this as the best location problem. It amounts
to finding the optimal alignment between two sequences, and for
this reason has received substantial attention in bioinformatics.
For the purpose of developing a theory rooted in statistics, our
main concern is to address the true location problem, but for
simplicity, we will assume that the true location is also the
best. When applicable, we will clarify the implications of this
hypothesis in the relevant sections, and we will see how it impacts
the theory as a whole in section 8.1.

1.2. Seeding Heuristics
Exact alignment algorithms were designed to solve the best
location problem (Needleman and Wunsch, 1970; Smith and
Waterman, 1981), but they are too slow to process the large
amount of data generated by modern sequencers. Instead, one
uses heuristic methods, i.e., algorithms that run faster but may
return an incorrect result (Waterman, 1984).

The most popular heuristic for mapping DNA sequences
is a filtration method called “seed-and-extend.” The principle
is to first identify seeds, defined as short regions of high
similarity between the read and the genome, and then use an
exact alignment algorithm at the seeded locations to evaluate
the candidates and identify the optimum. Exact alignment
algorithms, such as the Needleman-Wunsch (Needleman and
Wunsch, 1970) or the Smith-Waterman (Smith and Waterman,
1981) algorithms return the distance or the similarity between
two sequences according to some quantitative criterion. They are
exact in the sense that they always return the correct answer,
unlike heuristic algorithms. The seed-and-extend strategy was
first proposed in FASTA (Lipman and Pearson, 1985) and
BLAST (Altschul et al., 1990) to search for homology in sequence
databases of proteins and DNA.

There are efficient methods to extract seeds, so it is possible
to quickly hone in on a small set of candidates and to reduce the
search space of the alignment algorithm. The disadvantage is that
the target may not be in the candidate set, in which case the read
cannot be mapped correctly.

As a consequence, seeding methods induce a trade-off
between speed and accuracy: If the filtration is set to produce

a large candidate set, the target is likely to be discovered, with
the downside that checking all the candidates with an exact
alignment algorithm will take long. Conversely, if the filtration
is set to produce a small candidate set, the process will run faster
but the target is more likely to be missed.

Importantly, the trade-off depends on the seeding method.
This means that mapping algorithms can run faster at no cost
for accuracy if we can find better seeding strategies. Progress on
this line of research has largely benefited from the improvement
of computer hardware and from the development of optimized
data structures. There already exists a large body of literature
on the design of seeding algorithms; the interested reader can
find examples of those in references (Ma et al., 2002; Brejová,
2003; Li et al., 2004; Kucherov et al., 2005; Sun and Buhler, 2005;
Xu et al., 2006; Lin et al., 2008). Sun and Buhler (2006) and Li
and Homer (2010) present high-level comparisons of different
designs, and Navarro (2001) gives a global overview of filtration
methods in pattern matching.

1.3. The Two Types of Seeding Failure
Filtering heuristics are considered to fail whenever the target is
not in the candidate set, but here we must be more specific and
distinguish two kinds of failure: In the first kind, the candidate set
contains a duplicate of the target but does not contain the target
itself; in the second kind, the candidate set contains neither the
target nor any duplicate.

The distinction is important because the duplicates of the
target are similar to the read (due to their similarity to the target),
so a failure of the first kind often looks like a success. In contrast,
a failure of the second kind is easier to flag because in this case
the candidates are not similar to the read. We will simply assume
that seeding failures of the second kind are always detected (as
explained in section 8.3), so that we can focus on the more
difficult case of seeding failures of the first kind.

Before going further, we introduce three terms that will
simplify the exposition.

Definition 2. The output of the seeding step is the candidate set.
The candidate set is the list of genomic locations where the read can
be potentially mapped. The read is always mapped to one element
of the candidate set. The seeding step is said to be

(i) “on-target” if the candidate set contains the target,
(ii) “off-target” if the candidate set contains a duplicate but not the

target,
(iii) “null” if the candidate set contains neither.

In this article, we will always consider that a genomic location is in
the candidate set if and only if the read contains at least one seed
with a perfect match for this genomic location.

With our assumptions, a read is mapped to the wrong location
if and only if the candidate set is off-target. Indeed, if the
candidate set is null, the read is not mapped, and if the candidate
set is on-target, the correct location is discovered at the alignment
step. The equivalence is granted by the assumption that the true
location is also the best, reducing the mapping problem to a
seeding problem. That being said, the true location is not always
the best in practical applications. We will show in section 8.1 that

Frontiers in Genetics | www.frontiersin.org 2 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

off-target seeding can be responsible for most of the mapping
errors even without the assumption above, but for now we
maintain the strict equivalence between mapping errors and
off-target seeding.

Focusing on popular heuristics to map short reads, our aim
is to develop a method to estimate the probability that the
candidate set is off-target. Previous work pioneered a method
to compute seeding probabilities but it did not distinguish off-
target from null seeding (Filion, 2017, 2018), and therefore
did not provide a way to estimate the frequency of mapping
errors. Other authors investigated the reliability of mapping
algorithms (Menzel et al., 2013), but they focused on the
probabilities of random hits, recognizing that addressing the
problem of incorrect mapping requires taking into consideration
the repeat structure of the genome.

The rest of the article is organized as follows: section 2 presents
common seeding strategies used in bioinformatics, section 3
presents the basic concepts of analytic combinatorics that will be
required to compute seeding probabilities, sections 4 to 6 treat the
cases of exact seeds, skip seeds and MEM seeds, three common
seeding heuristic used for mapping, section 7 presents Sesame, a
C library implementing the main results of the theory, section 8
returns to the mapping problem and revisits the assumptions
of the model, and finally section 9 provides some perspectives
on the present work. Appendix A gathers for reference all the
definitions encountered in the text, and Appendix B contains
proofs and complements omitted from the main text.

2. SEEDS

The term “seed” has different meanings in computational
biology. It can designate a part of the read, a part of the genome,
a particular sequence motif, or a structured pattern of matches.
Also, a seed does not always refer to an exact match. For instance,
the algorithm PatternHunter (Ma et al., 2002) uses spaced seeds
that tolerate mismatches. To avoid any confusion, we will adopt
the convention below.

Definition 3. A seed is a subsequence of the read that has size at
least γ (defined by the context of the problem) and that has at least
one perfect match in the reference genome. Every genomic match of
every seed is in the candidate set.

When a seed matches a given location of the genome, we say
that it is a seed for that location. This is particularly useful in
expressions such as “seed for the target” or “seed for a duplicate.”

This definition presents a computational challenge: to know
if a given subsequence of a read is a seed we need to know if it
exists somewhere in the genome. This is a non trivial problem
in itself, but fortunately we can use practical methods to solve it,
even when the reference genome is very large.

These algorithms are crucial for the present theory, but
describing them in depth is outside the scope of this document.
Let us just mention that all the methods belong to a family known
as exact offline stringmatching algorithms, where “offline”means
that sequences are looked up in an index instead of the genome
itself. Online methods can be used when the reference genome
is not indexed (Faro and Lecroq, 2013), but this case is of little
relevance in the present context.

The index is usually a hash table or a variant of the so-called
FM-index (Ferragina and Manzini, 2000, 2005). Hash tables are
typically used to index k-mers, whichmakes them useful to search
for seeds of fixed size k (see Manekar and Sathe, 2018 for a recent
benchmark of k-mer hashing algorithms). In contrast, some text-
indexing structures have no set size so they can be used to search
for seeds of different lengths. This is the case of the FM-index,
a compact data structure based on the suffix array (Manber and
Myers, 1993) and on the Burrows-Wheeler transform (Burrows
and Wheeler, 1994), emulating a suffix trie with a much smaller
memory footprint (Ferragina and Manzini, 2000, 2005).

Other methods can be efficient (e.g., running a bisection on
the suffix array Dobin et al., 2013) but the FM-index is currently
the most popular choice for seeding methods. For MEM seeds
defined below, it is even the only practical option (Khan et al.,
2009; Vyverman et al., 2013; Fernandes and Freitas, 2014; Khiste
and Ilie, 2015). Overall, the detail is of little interest for the theory.
We simply assume that seeds are known at all times without
ambiguity because this problem has several practical solutions.

2.1. Exact Seeds
Exact seeds are seeds of fixed size γ . In other words, when
using exact seeds, the candidate set consists of all the genomic
locations for which there is a perfect match of size γ in the
read. This seeding heuristic was used in the first version of
BLASTN (Altschul et al., 1990), but it has become unpopular for
producing many short spurious hits.

Figure 1 shows the exact seeds from an example read with
three miscalled nucleotides. The sequenced DNA fragment has
three duplicates so the seeds can match four possible locations.

Observe that erroneous nucleotides can belong to exact seeds
because they sometimes match a duplicate. For instance, the first
sequencing error matches all the duplicates and belongs to an off-
target seed for the first duplicate. However, sequencing errors that
aremismatches for all the sequences cannot belong to a seed. This
is the case of the second sequencing error in the example, creating
a local deficit of seeds.

Note the clutter in the middle of the read, where consecutive
seeds match consecutive sequences at the same location. This
is typical for exact seeds and is considered a nuisance for the
implementation. Indeed, it is a waste of computer resources to
discover matches in sequences that are already in the candidate
set. In addition, this seeding method is not particularly sensitive
compared to spaced seeds (Ma et al., 2002) so it is used only in
a few specific applications. Nevertheless, it will be useful for the
development of the present theory.

2.2. Skip Seeds
Skip seeds have a fixed size γ , but unlike exact seeds they
cannot start at every nucleotide. Instead, a certain amount
of nucleotides is skipped between every seed. This is a way
to reduce the overlapping matches at the same location, at
the cost of sensitivity. This seeding heuristic is the core of
Bowtie2 (Langmead and Salzberg, 2012), where seeds have size
γ = 16 and are separated by 10 nucleotides (nine positions are
skipped). We will refer to seeds where n nucleotides are skipped
as “skip-n seeds.” For instance, Bowtie2 uses skip-9 seeds.

Frontiers in Genetics | www.frontiersin.org 3 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

FIGURE 1 | Exact seeding. A sequenced DNA fragment (Read) is shown above the actual molecule (Target), and above three paralogs of the target (Duplicates).

Sequencing errors are indicated by (all three are A misread as T). The mismatches between the genomic sequences and the read are indicated in bold. The exact

seeds of size γ = 7 are indicated as horizontal gray lines above the read. Matching regions in the genomic sequences are shadowed in gray. Several overlapping

seeds accumulate at the center of the read, which is typical of exact seeds.

FIGURE 2 | Example of skip seeds. The sequences and the annotations are the same as in Figure 1, but here we use skip-1 seeds. In other words, seeds can never

start at nucleotides 2, 4, 6 etc. To highlight the difference with Figure 1, the missing seeds are represented by dotted lines.

Figure 2 shows what happens when exact seeds are replaced
by skip-1 seeds on the read of Figure 1. Here the size is still
γ = 7 but 1 nucleotide is skipped between seeds. This amounts
to removing every second seed. The consequence is that there
are fewer overlapping matches at the center of the read, but the
only seed for the second duplicate is lost. This is a rather positive
outcome because there is one off-target location fewer in the
candidate set, but the same might happen to the target.

It is clear that skipping nucleotides reduces the sensitivity
of the seeding step, but to what extent? One could test this
empirically, but the answer depends on the seed length, the
number of nucleotides that are skipped, the error rate of the
sequencer and the size of the reads. The present theory will allow
us to make general statements about the performance of skip
seeds against exact seeds in different contexts.

2.3. MEM Seeds
MEM seeds (where MEM stands for Maximal Exact Match) are
somewhat harder to define. Unlike exact seeds and skip seeds,
their size is variable. They are used in BWA-MEM (Li, 2013)
where they give good empirical results. To describe MEM seeds,
let us first clarify the meaning of “Maximal Exact Match.”

Definition 4. A Maximal Exact Match (MEM) is a subsequence
of the read that is present in the reference genome and that cannot
be extended—either because the read ends or because the extended
subsequence is not in the genome.

A MEM seed is simply a MEM of size γ or greater. Figure 3
shows what happens when using MEM seeds on the read of
Figure 1. Observe that the clutter at the center of the read has
disappeared because consecutive matches are fused into a few
MEM seeds.

Two consecutive MEM seeds can overlap, in which case
they always match distinct sequences of the genome (otherwise
neither of them would be a MEM seed). There does not have to
be any overlap though, because a nucleotide can be a mismatch
against all the sequences, like the second read error for instance.

Note that a MEM does not always match a single subsequence
of the genome. For instance, the rightmost MEM seed matches
two distinct genomic subsequences. This case motivates the
following definition, which will play an important role later.

Definition 5. A strict MEM seed has a single match in the genome.
A shared MEM seed has several matches in the genome.

Compared to seeds of fixed size,MEM seeds have two counter-
intuitive properties. The first is that there are cases where there
cannot be any on-target seed, even when changing the minimum
seed size γ . Figure 4 shows such an example. Even though there
is a single sequencing error, the read has no MEM seed for the
target. Lowering γ does not change this, so there is no way to
discover the true location using MEM seeds (even though it is
the best location).

Frontiers in Genetics | www.frontiersin.org 4 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

FIGURE 3 | Example of MEM seeds. The sequences and the annotations are the same as in Figure 1, but here we use MEM seeds of minimum size γ = 7. The

clutter at the center of the read has disappeared and there is at least one seed for each sequence.

FIGURE 4 | Issues with MEM seeds: inaccessible targets. The read, the MEM seeds and the sequences are represented as in Figure 3. The MEM seeds matching

the two duplicates at the bottom effectively hide the target, so it cannot be discovered. This can occur even when the true location is the best candidate and when

there is a single error on the read.

FIGURE 5 | Issues with MEM seeds: too long reads. The read, the MEM seeds, and the sequences are represented as in Figure 3. There would be an on-target seed

(shared) if the read were two nucleotides shorter. The true location is hidden by the last two nucleotides.

The second counter-intuitive property is that shortening a
read can sometimes generate a MEM seed for the target. Figure 5
shows an example of this case. There is no MEM seed for the
target, but there would be if the read were two nucleotides
shorter on the right side. Indeed, in this case there would be
a shared MEM seed matching the target and the first duplicate
(provided γ ≤ 12).

These examples show that MEM seeds can perform worse
than seeds of fixed size. MEM seeds yield fewer candidates and
therefore speed up the mapping process, but the question is at
what cost? The theory developed here will allow us to compute
the probability that a read has no MEM seed for the target and
thus that the true location is missed at the seeding stage.

2.4. Spaced Seeds
Originally introduced by Califano and Rigoutsos (1993) and
popularized by PatternHunter (Ma et al., 2002), spaced seeds
feature “don’t-care” positions allowing them to detect imperfect
matches. Spaced seeds are represented by models such as “11*11,”

here indicating that the seeds have length 5 and that the middle
position is disregarded. At index time, the genome is scanned
with the model so that nucleotides labeled “1” are concatenated
and indexed. At search time, the query is scanned with the model
and the concatenated nucleotides labeled “1” are looked up in
the index.

Spaced seeds of weight w (the number of 1 in the model) have
the same memory requirements as contiguous seeds of length
w but they are more sensitive (Li et al., 2006), making them
very attractive for homology search. They were used in the first
generation of short-read mappers (Jocham et al., 1986; Lin et al.,
2008; Chen et al., 2009; Rumble et al., 2009), but nowadays they
find more applications in genome comparisons (Kiełbasa et al.,
2011; Healy, 2016), metagenomics (Břinda et al., 2015; Ounit
and Lonardi, 2016), genome assembly (Birol et al., 2015), and
long-read mapping (Sovic et al., 2016).

The success of the mainstream mappers BWA-MEM (Li,
2013) and Bowtie2 (Langmead and Salzberg, 2012) is due in
part to the FM-index, which only supports contiguous seeds.

Frontiers in Genetics | www.frontiersin.org 5 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

Some workarounds are available for spaced seeds (Horton et al.,
2008; Gagie et al., 2017) but they increase the memory footprint,
explaining that short reads are typicallymapped using contiguous
seeds. More generally, computing the sensitivity of spaced seeds
is challenging (Kucherov et al., 2006; Li et al., 2006; Martin and
Noé, 2017). It is possible to do this using the tools introduced
below, as shown in section 3.5. However, to compute off-target
probabilities, the main purpose of this article, the complexity
rapidly becomes prohibitive.Wewill thus restrict our attention to
contiguous seeds because they are relevant for mapping problems
and fit tightly within the present theory.

3. MODEL AND STRATEGY

3.1. Sequencing Errors and Divergence of
the Duplicates
We now need to model the sequencing and duplication processes
so that we can compute the probabilities of the events of interest.
We assume that the sequencing instrument has a constant
substitution rate p, and that insertions and deletions never occur.
When a substitution occurs, we assume that the instrument
is equally likely to output any one of the remaining three
nucleotides. This corresponds more or less to the error spectrum
of the Illumina sequencing technology (Nakamura et al., 2011).

Next, we assume that the target sequence has N ≥ 0
duplicates, so that there are N off-target sequences. We further
assume that duplication happened instantaneously at some point
in the past and that all N + 1 sequences diverge independently
of each other at a constant rate. In other words, we ignore the
complications due to the genealogy of the duplication events.
Instead, we simply assume that at each nucleotide position, any
given duplicate is identical to the target with probability 1 − µ.
If it is not, we assume that the duplicate sequence can be any
of one the three remaining nucleotides (i.e., each is found with
probability µ/3).

Note that read errors are always mismatches against the target
(because we assume that the target is the true sequence), and they
match each duplicate with probability µ/3. Correct nucleotides
are always matches for the target, and they match each duplicate
with probability 1− µ.

Before going further, we also need to move a practical
consideration out of the way. Seeds can match any sequence
of the genome, not just the target or the duplicates. However,
we will ignore matches in the rest of the genome because
such random matches are unlikely to cause a mapping error
when seeding is off-target, contrary to matches in duplicates.
Neglecting those will greatly simplify the exposition of the
theory without loss of generality. We will explain in section 8.3
how to deal with this practical case and how to identify
those matches as off-target. Until then, we will consider that
the target and the duplicates are the only sequences in the
reference genome.

3.2. Weighted Generating Functions
The central object of analytic combinatorics is the generating
function, and for our purpose we will use a special kind known
as weighted generating function.

Definition 6. Let A be a set of combinatorial objects such that
a ∈ A has a size |a| ∈ N and a weight w(a) ∈ R

+. The weighted
generating function ofA is defined as

A(z) =
∑

a∈A

w(a)z|a|, (1)

Expression (1) also defines a sequence (ak)k≥0 such that

A(z) =
∞
∑

k=0

akz
k.

By definition ak =
∑

a∈Ak
w(a), where Ak is the class of objects of

size k inA. The number ak is the total weight of objects of size k.

To give an example, assume that a particular symbol, say
⇓, has a probability of occurrence equal to p. The weighted
generating function of words containing only this symbol is pz.
The weight of the word is its probability (here equal to p) and the
size is its length (here 1).

In this document we will focus on the weighted generating
function A(z) of the set A of reads that do not have on-target
seeds (i.e., reads for which seeding is either null or off-target). The
weight of a read is its probability of occurrence and the size k is its
number of nucleotides. The coefficient ak is thus the proportion
of reads of size k that do not have an on-target seed, which is the
quantity of interest.

Themotivation for introducing weighted generating functions
is that operations on combinatorial objects translate into
operations on their weighted generating functions. If A(z) and
B(z) are the weighted generating functions of two mutually
exclusive setsA and B, the weighted generating function ofA∪B
is A(z) + B(z), as evident from expression (1). Size and weight
can be defined for pairs of objects inA× B as |(a, b)| = |a| + |b|
and w(a, b) = w(a)w(b). In other words the sizes are added and
the weights are multiplied. With this convention, the weighted
generating function of the Cartesian product A × B is A(z)B(z).
This simply follows from expression (1) and from

A(z)B(z) =
∑

a∈A

w(a)z|a|
∑

b∈B

w(b)z|b| =
∑

(a,b)∈A×B

w(a)w(b)z|a|+|b|.

These two operations are all we need in order to compute the
weighted generating functions of the reads of interest. Addition
corresponds to creating a new family by merging reads from
families A and B. Multiplication corresponds to creating a new
family by concatenating reads from familiesA and B.

3.3. Analytic Representation
The analytic combinatorics framework relies on a strategy
referred to as the symbolic method (Sedgewick and Flajolet, 2013).
The idea is to combine simple objects into more complex objects.
Each combinatorial operation on the objects corresponds to a
mathematical operation on their weighted generating functions.
One can thus obtain the weighted generating function of complex
objects, whose coefficients ak (k ≥ 0) are the probabilities of

Frontiers in Genetics | www.frontiersin.org 6 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

interest (Régnier, 2000; Nicodeme et al., 2002; Sedgewick and
Flajolet, 2013).

As explained by Filion (2017, 2018), we recode the reads in
alphabets of custom symbols and we specify a construction plan
of the reads using a so-called transfer matrix M(z). The transfer
matrix specifies which types of “segments” can follow each other
in the reads of interest: the entry at coordinates (i, j) is the
weighted generating function of segments of type j that can be
appended to segments of type i.

M(z) contains the weighted generating functions of all
the reads that consist of a single segment. From the basic
operations on weighted generating functions, M(z)s contains
the weighted generating functions of all the reads that consist
of s segments. Therefore, the entry at coordinates (i, j) of
the matrix M(z) + M(z)2 + M(z)3 + . . . = M(z) · (I −
M(z))−1 is the weighted generating function of the reads
of any size and any number of segments, that end with a
segment of type j and that can be appended to a segment
of type i. The examples below will clarify the key steps of
this strategy.

A complete description of how to compute seeding
probabilities with the symbolic method is given by Filion
(2017, 2018). The interested readers can also find more about
analytic combinatorics in popular textbooks (Flajolet and
Sedgewick, 2009; Sedgewick and Flajolet, 2013).

3.4. Example 1: On-Target Exact Seeds
We highlight the strategy above with an example that will turn
out to be central for the development of the theory. In addition,
it is simple enough to provide a gentle introduction to the general
methodology. This example was described in detail by Filion
(2017, 2018), but we repeat it here with a different formalism to
fit the present article.

The first step is to note that the nucleotide sequence of the
read is irrelevant. Indeed, the read has an on-target seed if and
only if it contains a stretch of γ nucleotides without error.
For this reason, we recode reads as sequences of correct or
erroneous nucleotides.

We define the mismatch alphabet A0 = {�, |,⇓}, where
� represents a correct nucleotide, ⇓ represents an erroneous
nucleotide and | is a special symbol appended after the last
nucleotide to mark the end of the read. It is not associated with a
nucleotide and therefore has size 0.

This recoding allows us to partition the read in an
important way.

Definition 7. A terminator is any symbol that is different from the
symbol�. A segment is a sequence of 0 or more� symbols followed
by a terminator. The tail is the last segment of the read, where the
terminator is always the special symbol |.

Since the decomposition of the read in segments is unique,
we can view a read as a sequence of segments with a tail,
instead of a sequence of nucleotides. Figure 6 shows an example
of decomposition in segments. On-target seeds cannot contain
sequencing errors, therefore they must be completely embedded
in a segment. So the sizes of the segments indicate whether the
read contains an on-target seed or not.

The probability of occurrence of the symbol ⇓ is p (the error
rate of the sequencer) so the probability of occurrence of the �
symbol is 1− p = q. Both symbols have size 1, so their respective
weighted generating functions are pz and qz. Using the rule for
concatenation, we see that a segment of i symbols � followed by
a terminator has weighted generating function (qz)ipz. The final
symbol | has size 0, so a tail segment of i symbols � followed by
the symbol | has weighted generating function (qz)i.

The key insight is that the reads without on-target seed are
exactly the reads that are made of segments with fewer than γ
symbols �, where γ is the minimum seed size. The weighted
generating function of such segments is

(

1+qz+. . .+(qz)γ−1
)

pz,
and that of the tail is 1 + qz + . . . + (qz)γ−1. This gives a
construction plan that can be encoded in a transfer matrix.

Reads consist of only two kinds of objects: the segments
terminated by ⇓ (or ⇓-segments for short) and the tails, so the
dimension of the transfer matrix is 2 × 2. A ⇓-segment can be
followed by another ⇓-segment or by the tail. The tail cannot be
followed by anything. The expression of the transfermatrixM0(z)
is thus

⇓ |
[]

⇓
(

1+ qz + . . .+ (qz)γ−1
)

pz 1+ qz + . . .+ (qz)γ−1

| 0 0
,

where p is the error rate of the sequencer, q = 1− p and γ is the
minimum seed length. In the representation above, the different
types of segments are identified by their terminator, indicated in
the margins for clarity.

The entries ofM0(z) correspond to sequences of one segment
with no seed. Likewise, the entries of M0(z)s correspond to
sequences of s segments with no seed and the entries ofM0(z) +
M0(z)2 + . . . = M0(z) · (I −M0(z))−1 correspond to sequences

FIGURE 6 | The mismatch encoding. An example read is represented in the mismatch alphabet. The symbol ⇓ represents a mismatch against the target (an

erroneous nucleotide) and the symbol � represents a match (a correct nucleotide). The symbol | is appended to the end of the read. The symbolic sequence of the

target is represented below, where an open square stands for a match and a closed square stands for a mismatch.

Frontiers in Genetics | www.frontiersin.org 7 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

of any number of segments with no seed. The entry of interest is
the top right term, associated with terminators ⇓ and |. To see
why, observe that every read can be prepended by ⇓-segments
and only by those (not by a tail). Thus, reads are precisely the
sequences of segments that can follow the symbol ⇓ and that are
terminated by a tail, whose weighted generating function is the
top right entry of the matrix. In Appendix B.1, we show that this
term is equal to

1+ qz + . . .+ (qz)γ−1

1−
(

1+ qz + . . .+ (qz)γ−1
)

pz
. (2)

This function can be expanded as a Taylor series a0 + a1z +
a2z

2 + . . ., but the coefficients a0, a1, a2, . . . are unknown.
By construction, ak is the quantity of interest, i.e., it is the
probability that a read of size k does not contain an on-target
seed of minimum size γ , so we now need to extract the Taylor
coefficients from expression (2). There are several methods to do
so; the one we choose here is to build a recurrence equation. In
Appendix B.2, we show that

ak =

1 if k < γ ,

1− qγ if k = γ ,

ak−1 − pqγ · ak−γ−1 otherwise.

(3)

Note that for k < γ , the read is too short so the probability that
it contains no seed is 1; for k = γ , the read contains a seed if and
only if it has no error, which occurs with probability qγ .

The terms of interest can be computed recursively using
expression (3). This approach is very efficient because every
iteration involves at most onemultiplication and one subtraction.
Also, the default floating-point arithmetic on modern computers
gives sufficient precision to not worry about numeric instability
for the problems considered here (we rarely need to compute
those probabilities for reads above 500 nucleotides).

This example shows how the symbolic approach yields a non-
trivial and yet simple algorithm to compute the probability that a
read of size k does not contain an on-target exact seed.

3.5. Example 2: On-Target Spaced Seeds
The goal of our second example is to exhibit the mechanisms
of our strategy in a more complex setting. In this example we

⇓ ��⇓ ��⇓�⇓ ����⇓ |

⇓
(

1+ qz
)

pz
(

(qz)2 + (qz)3
)

pz 0
(

(qz)4 + (qz)5
)

pz F5(z)
��⇓ pz (qz)2pz qzpz 0 F2(z)

��⇓�⇓ pz 0 0 0 F0(z)
����⇓ pz 0 0 0 F0(z)
| 0 0 0 0 0

,

propose to compute the probability that a read of size k contains a
match for the spaced seed “11*1*1.” This problem has no concrete
application, but it illustrates in a relatively simple way the general
methodology to deal with spaced seeds.

Here we proceed exactly as in the previous section, replacing
nucleotides by the symbols from the mismatch alphabet A0 =

{�, |,⇓}. Recall that � represents a correct nucleotide, ⇓

represents an erroneous nucleotide and | is the special terminator
that marks the end of the read. As explained in the previous
example, the weighted generating functions of the symbols �, ⇓
and | are qz, pz, and 1, respectively, where p is the probability
of a sequencing error and q = 1 − p. We again decompose
reads into unique sequences of segments, where a segment is the
concatenation of zero or more� symbols with a terminator⇓, or
| for the last segment also called the tail.

So far everything is identical to the previous example, the
difference is howwe characterize reads that do not contain a seed.
This is where the transfer matrix comes in handy. We define four
abstract states that represent how the end of the segment matches
the seed model “11*1*1.” The states are represented as ⇓, �� ⇓,
�� ⇓ � ⇓, and ���� ⇓. All the states finish with ⇓ because
they correspond to the end of one or more internal segments,
which are always terminated by ⇓. To these states we add | for
the tail.

To fill the transfer matrix, we need to indicate how the
segments bring the read from a state to another. We illustrate
how this is done with the transitions from state ⇓. This state
indicates that the longest alignment of the previous segment with
the seed model has zero nucleotide. If the next segment is ⇓
or � ⇓, the longest alignment with the seed model will again
have length 0 and the state will remain ⇓. If the next segment
is �� ⇓ or ��� ⇓, the last three nucleotides align with the
beginning of the seed model “11*,” bringing the read to the state
�� ⇓. If the next segment is ���� ⇓ or ����� ⇓, the last
five nucleotides align with “11*1*,” bringing the read to the state
���� ⇓. Finally, segments with more than five � symbols are
disallowed because they create a match for the seed. In all of these
segments, the ⇓ terminator can be replaced by | to indicate the
end of the read.

Recall from the previous section that the weighted
generating function of a segment with i symbols � and a
terminator ⇓ is (qz)ipz, and that the weighted generating
function of a tail with i symbols � is (qz)i. With this
information we can fill the row of the transfer matrix that
corresponds to state ⇓. With the same logic, we can also fill
the other entries of the transfer matrix, making sure that
we exclude all the possible matches with the seed. Doing
this term by term, we obtain the transfer matrix M⋄(z)
equal to

where

Fi(z) = 1+ qz + . . .+ (qz)i.

The entries of M⋄(z) + M⋄(z)2 + . . . = M⋄(z) · (I − M⋄(z))−1

correspond to sequences of any number of segments with no
match for the seed. The entry of interest is the top right term,
associated with states⇓ and |. To see why, observe that every read

Frontiers in Genetics | www.frontiersin.org 8 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

can be prepended by segments finishing in state ⇓ and only by
those, otherwise the read would already match some part of the
seed before the first nucleotide.

The matrixM⋄(z) is simple enough thatM⋄(z) · (I−M⋄(z))−1

can be computed explicitly using a computer algebra system. The
weighted generating function of interest is found to be the ratio
of two polynomials P(z)/Q(z) where P has degree 9 and Q has
degree 10. From there, one can proceed as in Appendix B.2 to
obtain a recurrence of order 10 that gives the coefficient ak in the
Taylor expansion of P(z)/Q(z). By construction, this coefficient
ak is the probability that a read of length k does not contain
any match for the spaced seed “11*1*1.” Alternatively, one can
compute ak directly from the powers ofM⋄(z) as explained in the
next section.

This approach can be applied for any spaced seed. A seed
model with m don’t-care positions generates 2m possible states
and the dimension of the associated transfer matrix is 2m + 1
(one state is reserved for the tail). For large m it is impossible
to compute (I −M⋄(z))−1 analytically but one can still compute
the powers of M⋄(z) efficiently because the matrix is sparse. So
in general, the computational method introduced in the next
section is more adapted.

3.6. Example 3: On-Target Skip Seeds
Let us now go through an example that will be important later.
Here we devise a method to compute the probability that a read
contains no on-target skip seed. Using the same strategy as in
the previous example, we start by recoding the reads using a
specialized alphabet to solve this problem.

We need to know whether a nucleotide is a sequencing error,
but this time we also need to know its phase in the repeated
cycles of skipped positions. For this, we define the skip-n alphabet
An = {�, |,⇓0,⇓1, . . . ,⇓n}. Again, the symbol � represents a
correct nucleotide and the symbol | is a terminator added at the
end of the read. The symbols⇓j (0 ≤ j ≤ n) represent sequencing
errors and j indicates the number of nucleotides until the next
non-skipped position (i.e., j = 0 for nucleotides immediately
before a non-skipped position and j = n for nucleotides at a
non-skipped position).

As per definition 7, segments in this alphabet are sequences
of 0 or more � symbols followed by any of the symbols ⇓j or
by the symbol |. Given that this decomposition is unique, we
can again view a read as a sequence of segments with a tail. The
example of Figure 6 is shown again in Figure 7, where segments
in the mismatch alphabet have been replaced by segments in the
skip-3 alphabet.

The probability of occurrence of a sequencing error is p, so
every symbol ⇓j has the same weighted generating function pz—
provided the next non-skipped position is at distance j, otherwise
the weighted generating function is 0. The weighted generating
function of the symbol � is again qz, so a segment with i
symbols � followed by the symbol ⇓j has weighted generating
function (qz)ipz—if the next non-skipped position is at distance
j, otherwise it is 0. As in the previous example, a tail segment with
i symbols � followed by the symbol | has weighted generating
function (qz)i.

This case is more complex than the previous one: reads
without on-target skip seed of minimum size γ can contain
segments with γ or more � symbols. For instance, the read
shown in Figure 7 contains a stretch of 9 nucleotides without
errors but it has no seed of minimum size γ = 9. More generally,
if there is a sequencing error i nucleotides before the next non-
skipped position, there can be up to γ + i − 1 symbols �

in a row.
Expressed in different words, it is possible to append segments

with up to γ + i − 1 symbols � after segments terminated
by ⇓i (⇓i-segments for short). Each of those γ + i possible
segments is associated with a different terminator, depending on
how far ahead the next non-skipped position lies. In Figure 7, for
instance, the second segment is terminated by⇓1 because there is
1 nucleotide before the next non-skipped position. If the segment
were 1 nucleotide longer, the terminator would have to be ⇓0.

The main issue is that segments of different lengths can be
terminated by the same symbol. Going back to Figure 7, the third
segment has length 10 and is terminated by ⇓3. It would also be
terminated by ⇓3 if it had length 2 or length 6. In the general
case, the entries of the transfer matrix show some periodicity
modulo n+ 1.

Denote Hi,j(z) the weighted generating function of ⇓j-
segments that can follow a ⇓i-segment. The total number of
segments that can follow a ⇓i-segment is γ + i. Among them,
the shortest ⇓j-segment has size ℓ0 to be determined below, and
the others have sizes ℓ0+(n+1), ℓ0+2(n+1), . . . , ℓ0+m(n+1),
for some integer m. This m is the largest number such that
ℓ0 + m(n + 1) ≤ γ + i, so m = ⌊(γ + i − ℓ0)/(n + 1)⌋, where
⌊. . .⌋ is the “floor” function.

Those segments follow a ⇓i-segment, so they start i
nucleotides before the next non-skipped position. The shortest
following segment that ends j nucleotides before a non-skipped
position has length ℓ0 = i − j if i > j, and n + 1 − j + i
otherwise. This is equivalent to defining ℓ0 as x + 1 where x
is the number of � symbols of the shortest ⇓j-segment, i.e.,
x = i− j− 1 (mod n+ 1).

With these notations, the shortest ⇓j-segment consists of x
symbols � followed by the ⇓j terminator, so it has weighted
generating function (qz)xpz. The other segments have a multiple
of n + 1 extra � symbols so their weighted generating functions
are (qz)x+(n+1)pz, (qz)x+2(n+1)pz, . . . , (qz)x+m(n+1)pz. Summing
over those cases, we finally obtain

Hi,j(z) = (qz)x
(

1+ (qz)n+1 + . . .+ (qz)m(n+1))pz,

where x = i− j− 1 (mod n+ 1), and

m =

⌊

γ + i− 1− x

n+ 1

⌋

. (4)

Denote Ji(z) the weighted generating function of tail segments
that can follow a ⇓i-segment. There are γ + i such tails, each
consisting of 0 to γ + i − 1 symbols � followed by the special |
terminator for the end of the read. The | symbol has size 0 so its
weighted generating function is 1. Once again summing over the
different cases, we obtain

Ji(z) = 1+ qz + (qz)2 + . . .+ (qz)γ+i−1. (5)

Frontiers in Genetics | www.frontiersin.org 9 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

FIGURE 7 | The skip encoding. The read of Figure 6 is represented in the skip-3 alphabet. The symbols ⇓j (j = 1, 2, 3) represent mismatches against the target (they

are erroneous nucleotides) and the � symbol represents a match (it is a correct nucleotide). The vertical bars indicate non-skipped positions (the potential start of a

seed). The number j in ⇓j indicates the number of nucleotides until the next non-skipped position. For j = 0 the next nucleotide is not skipped. Other features are as in

Figure 6.

Finally, the expression ofMn(z) the transfer matrix of reads in the
skip-n alphabet is

⇓0 ⇓1 . . . ⇓n |

⇓0 H0,0(z) H0,1(z) . . . H0,n(z) J0(z)
⇓1 H1,0(z) H1,1(z) . . . H1,n(z) J1(z)
...

...
...

. . .
...

...
⇓n Hn,0(z) Hn,1(z) . . . Hn,n(z) Jn(z)
| 0 0 . . . 0 0

, (6)

where p is the error rate of the sequencer, q = 1 − p, n is
the number of skipped nucleotides between potential seeds, γ is
the minimum seed length, and polynomials Hi,j(z) and Ji(z) are
defined in expressions (4) and (5).

In Appendix B.3, we present a transfer matrix with a simpler
expression that will prove useful in section 5. The version of
Appendix B.3 is simpler, but the expression above has some
advantages that will be explained below.

The weighted generating function of interest is the top right
entry of the matrix Mn(z) + Mn(z)2 + . . . = Mn(z) · (I −
Mn(z))−1. To see why, observe that, at the start of every read,
the next nucleotide is a non-skipped position, so every read can
be prepended by ⇓0-segments and only by those. Thus, reads are
precisely the sequences of segments that can follow the symbol
⇓0 and that are terminated by a tail, whose weighted generating
function is the entry of the matrix associated with terminators⇓0
and |.

By construction, the Taylor expansion of the top right term
in the matrix Mn(z) · (I − Mn(z))−1 contains the probabilities
of interest. More specifically, if the Taylor series of this term is
a0+ a1z+ a2z

2+ . . ., then ak is the probability that a read of size
k contains no skip-n seed of minimum size γ .

But Mn(z) is too complex to find a closed expression for
Mn(z) · (I −Mn(z))−1 or its top right term. Instead, we return to
the definition Mn(z) +Mn(z)2 + . . . and show in Appendix B.4

that the coefficient of interest, ak, only depends on the first k+ 1
terms of the sum. So for reads of size k or lower, we only need to
compute the matrixMn(z)+Mn(z)2 + . . .+Mn(z)k+1 and work
out the Taylor expansion of the top right term.

But we can do better: since we are only interested in
the coefficients up to order k, we can perform all algebraic

operations on truncated polynomials of order k, i.e., we discard
the coefficients of order k + 1 or greater when multiplying
two polynomials.

But we can do even better: a read with s+1 segments contains
s errors, so the top right entry of Mn(z)s+1 is the weighted
generating function of reads with s errors that have no seed of
minimum size γ . Computing the partial sumMn(z)+Mn(z)2 +
. . . + Mn(z)s instead of Mn(z) + Mn(z)2 + . . . + Mn(z)k+1

corresponds to neglecting reads with s or more errors. For s
sufficiently large, such reads are exceedingly rare so we can obtain
accurate estimates without computing all the powers ofMn(z) up
to order k.

The number of errors X in a read of size k has a Binomial
distribution X ∼ B(k, p). From Arratia and Gordon (1989) we
can bound the probabilities of the tail with the expression

Pr(X ≥ s) ≤ exp

(

(s− k) log
k− s

k(1− p)
− s log

s

kp

)

. (7)

Using the formula above, we can thus bound the probability that
a read has s+1 or more segments.We computeMn(z)+Mn(z)2+
. . . + Mn(z)s+1 where the weighted generating functions have
been replaced by truncated polynomials and we extract the top
right entry. When the right-hand side of expression (7) is lower
than a set fraction ε of the current value of ak, we stop the
computations. Typically ε = 0.01 so this method ensures that
the probabilities that a read of size k has no on-target skip seed
are accurate to within 1%.

With M∗n(z), the transfer matrix of Appendix B.3, the top
right entry of M∗n(z)

s+1 is not the weighted generating function
of reads with s errors, so (7) is not an upper bound for the
neglected terms of the sum. As a consequence, one would have
to compute more terms in the partial sum M∗n(z) + M∗n(z)

2 +

. . . + M∗n(z)
s+1 to reach the same accuracy. The transfer matrix

shown in expression (6) is not the simplest, but it has the benefit
of requiring fewer iterations.

Remark 1. Observe that when n = 0 the matrix Mn(z) is identical to the

matrix M0(z) of section 3.4. This is consistent with the fact that exact seeds

are skip-0 seeds.

Frontiers in Genetics | www.frontiersin.org 10 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

4. OFF-TARGET EXACT SEEDS

We now turn our attention to the problem of computing the
probability that the seeding process is off-target when using exact
seeds—recall from section 1.3 that off-target seeding means that
the candidate set contains a duplicate but not the target.

If there is no duplicate (i.e., N = 0), seeding cannot be off-
target, it can only be on-target or null. So from here we assume
that the target has N ≥ 1 duplicates. Let S0 denote the event that
there is an on-target seed and let Sj denote the event that there is
a seed for the j-th duplicate. We are thus interested in computing
P
(

S0 ∩ (S1 ∪ . . . ∪ SN)
)

, where Sj denotes the complement of the
event Sj. First observe that

P
(

S0 ∩ (S1 ∪ . . . ∪ SN)
)

= P(S0)− P
(

S0 ∩ S1 ∩ . . . ∩ SN
)

. (8)

Since the duplicates are assumed to evolve independently of each
other and through the same mutagenesis process, the events
Sj (1 ≤ j ≤ N) are independent and identically distributed
conditionally on S0. We can thus write

P(S0 ∩ . . . ∩ SN) = P(S0) · P(S1 ∩ . . . ∩ SN |S0)

= P(S0) · P(S1|S0)
N = P(S0) ·

(

P(S0 ∩ S1)

P(S0)

)N

.(9)

Combining the two equations above, we obtain

P
(

S0 ∩ (S1 ∪ . . . ∪ SN)
)

= P(S0)− P(S0) ·

(

P(S0 ∩ S1)

P(S0)

)N

.

(10)

Hence, the probability that seeding is off-target is a function
of just two quantities: P(S0) and P(S0 ∩ S1). The first is the
probability that the read has no seed for the target, which we have
already computed in section 3.4 using recursive expression (3).
We now need to find a way to compute P(S0 ∩ S1).

Remark 2. Observe that expression (9) is the probability of null seeding (the

read contains no seed for the target or any of its duplicates). Since it is also a

function of just P(S0) and P(S0 ∩ S1), it can be computed at no additional cost.

This probability is less relevant than the probabilities that the seeding process

is on-target or off-target, but at times, it may be useful to know the probability

that a read is not mappable, especially when reads are relatively short.

4.1. The Dual Encoding
P(S0 ∩ S1) is the probability that the read has no seed for the
target or for the first duplicate—numbering is arbitrary here,
the first duplicate can be any fixed duplicate. As in section 3,
we first recode the reads using a specialized alphabet to simplify
the problem.

It will be useful to consider a more general problem where
we have two sequences of interest labeled + and −. The +
sequence stands for the target and that the − sequence stands
for its duplicate. We then define the dual alphabet Ã0 =

{�, |,↓−/1 , ↓−/2 , . . . ,↓+/1,↓
+
/2, . . . ,⇓}. The symbols ↓−/j (j ≥ 1)

signify that the nucleotide is a mismatch against the − sequence

only, the symbols ↓+/j (j ≥ 1) signify that it is a mismatch
against the + sequence only, and the symbol ⇓ signifies that it
is a mismatch against both. As before, every other nucleotide is
replaced by the symbol�, and the terminator | is appended to the
end of the read. We again define reads as sequences of segments
(zero or more � symbols followed by a terminator), except that
now the terminators are the symbols ↓−/j , ↓

+
/j (j ≥ 1) and ⇓. The

tail, as usual, is terminated by the symbol |.
The index j in the symbol ↓−/j indicates the match length of the

+ sequence (note that this is not the same as the number of �
symbols in the segment). Likewise, the index j in the symbol ↓+/j
indicates the match length of the − sequence. For instance, the
symbol ↓−/7 indicates that the nucleotide is a mismatch against
the− sequence, that it is a match for the+ sequence, and that the
six preceding nucleotides were also a match for the + sequence
(but the nucleotide before that was a mismatch against the +
sequence). The terminators thus encode the local state of the read.

Figure 8 shows an example of read in the dual encoding. The
+ and − sequences are shown below the read, with matches
represented as open squares and mismatches as closed squares.
It is visible from this example that symbols ↓−/j and ↓

+
/j alternate

whenever the mismatches hit different sequences. The symbol ⇓
occurs only when a nucleotide is a double mismatch.

Let us assume that for each nucleotide, a is the probability
that the read matches both sequences, b is the probability that it
matches only the + sequence, c is the probability that it matches
only the − sequence and d is the probability that it matches
neither. Since there are no other cases, we have a+b+ c+d = 1.

With these definitions, the weighted generating functions of
the symbols �, ↓−/j , ↓

+
/j (j ≥ 1) and ⇓ are az, bz, cz, and dz,

respectively. The next sections clarify how this is used to compute
the weighted generating functions of interest.

4.2. Segments Following ⇓
After a ⇓ terminator, the match counter for both sequences is
reset; the following segment can thus have up to γ − 1 matches
for any of the two sequences. Each match corresponds to the �
symbol with weighted generating function az. The terminators
⇓ and | have respective generating function dz and 1 (recall that
the tail symbol has size 0), so if the next terminator is ⇓ or |, the
segments have weighted generating functions (1 + az + . . . +
(az)γ−1)dz or 1+ az + . . .+ (az)γ−1, respectively.

If the next terminator is ↓−/j , there is a match of length j for
the+ sequence, so the segment contains j−1 symbols� plus the
terminator (which also matches the + sequence). The weighted
generating function is thus (az)j−1bz. By the same rationale, if
the next terminator is ↓+/j , the weighted generating function of

the segment is (az)j−1cz.
The terminators ↓+/j and ↓

−
/j are disallowed for j ≥ γ because

this would create a seed for at least one of the sequences.

4.3. Segments Following ↓
+
/i

At a ↓+/i terminator, the match length of the + sequence is 0 and
the match length of the − sequence is i. The next segment can
thus have up to γ − 1 matches for the + sequence, but only

Frontiers in Genetics | www.frontiersin.org 11 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

FIGURE 8 | Example of dual encoding. An example of read is represented in the dual alphabet. The symbols ↓−
/j (j ≥ 1) represent a mismatch against the − sequence,

the symbols ↓+
/j (j ≥ 1) represent a mismatch against the + sequence, and the symbol ⇓ represents a mismatch against both. The index i is the match length of the

sequence that is not mismatched. The symbolic + and − sequences are represented below, where an open square stands for a match and a closed square stands

for a mismatch.

γ − i − 1 matches for the − sequence, lowering the maximum
size of the segment. If the next terminator is ⇓ or |, the segments
have weighted generating functions (1+ az+ . . .+ (az)γ−j−1)dz
and 1+ az + . . .+ (az)γ−j−1, respectively.

If the next terminator is ↓−/j , the weighted generating function

is (az)j−1bz as in the previous section. The difference is that the
terminators ↓−/j are allowed only for 1 ≤ j ≤ γ − i, otherwise this
would create a seed for the− sequence.

If the next terminator is ↓+/j , the situation is slightly more
complex because this imposes i < j ≤ γ − 1. Indeed, there were
already i matches for the − sequence at the terminator ↓+/i , and
there will be more at the end of the following segment because
it has no mismatch for the − sequence. Taking this into account,
we see that the weighted generating function of those segments is
(az)j−i−1cz with i < j ≤ γ − 1.

⇓ ↓+/1 . . . ↓+γ−1 ↓−/1 . . . ↓−/γ−1 |

⇓ Rγ−1(z) r+0 (z) . . . r+γ−2(z) r−0 (z) . . . r−γ−2(z) Fγ−1(z)
↓+/1 Rγ−2(z) Fγ−2(z)
↓+/2 Rγ−3(z) Fγ−3(z)
...

... Ã(z) B̃0(z)
...

↓+/γ−1 R0(z) F0(z)
↓−/1 Rγ−2(z) Fγ−1(z)
↓+/2 Rγ−3(z) Fγ−2(z)
...

... C̃0(z) D̃(z)
...

↓+/γ−1 R0(z) F0(z)
| 0 0 . . . 0 0 . . . 0 0

,

4.4. Segments Following ↓−
/i

We can find the weighted generating functions by just reversing
the + and − signs in the previous section. This way, we see that
the weighted generating function of the segments terminated by
⇓ or | are (1 + az + . . . + (az)γ−i−1)dz and 1 + az + . . . +
(az)γ−i−1, respectively.

Likewise, the weighted generating function of the segments
terminated by ↓+/j is (az)

j−1cz, where 1 ≤ j ≤ γ − i; and the

weighted generating function of the segments terminated by ↓−/j
is (az)j−i−1bz where i < j ≤ γ − 1.

4.5. Transfer Matrix
We now have all the elements to specify the transfer matrix
of reads with no seed for either sequence. Recall that a is the
probability of a double match, b is the probability of a mismatch
only against the − sequence, c is the probability of a mismatch
only against the + sequence and d is the probability of a double
mismatch. For notational convenience, we define

r+i (z) = (az)icz,

r−i (z) = (az)ibz,

Ri(z) =
(

1+ az + . . .+ (az)i
)

dz,

Fi(z) = 1+ az + . . .+ (az)i.

(11)

With these notations, the information from the previous sections
can be summarized in the transfer matrix M̃0(z) equal to

where γ is the minimum seed length, and where Ã(z), B̃0(z),
C̃0(z), and D̃(z) are matrices of dimensions (γ − 1) × (γ − 1)
that are defined as

Ã(z) =

↓+/1 ↓+/2 . . . ↓+/γ−2 ↓+/γ−1

↓+/1 0 r+0 (z) . . . r+γ−4(z) r+γ−3(z)
↓+/2 0 0 . . . r+γ−5(z) r+γ−4(z)
...

...
...

. . .
...

...
↓+/γ−2 0 0 . . . 0 r+0 (z)
↓+/γ−1 0 0 . . . 0 0

,

Frontiers in Genetics | www.frontiersin.org 12 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

B̃0(z) =

↓−/1 ↓−/2 . . . ↓−/γ−2 ↓−/γ−1

↓+/1 r−0 (z) r−1 (z) . . . r−γ−3(z) r−γ−2(z)
↓+/2 r−0 (z) r−1 (z) . . . r−γ−3(z) 0
...

...
...

. . .
...

...
↓+/γ−2 r−0 (z) r−1 (z) . . . 0 0
↓+/γ−1 r−0 (z) 0 . . . 0 0

,

C̃0(z) =

↓+/1 ↓+/2 . . . ↓+/γ−2 ↓+/γ−1

↓−/1 r+0 (z) r+1 (z) . . . r+γ−3(z) r+γ−2(z)
↓−/2 r+0 (z) r+1 (z) . . . r+γ−3(z) 0
...

...
...

. . .
...

...
↓−/γ−2 r+0 (z) r+1 (z) . . . 0 0
↓−/γ−1 r+0 (z) 0 . . . 0 0

,

D̃(z) =

↓−/1 ↓−/2 . . . ↓−/γ−2 ↓−/γ−1

↓−/1 0 r−0 (z) . . . r−γ−4(z) r−γ−3(z)
↓−/2 0 0 . . . r−γ−5(z) r−γ−4(z)
...

...
...

. . .
...

...
↓−/γ−2 0 0 . . . 0 r−0 (z)
↓−/γ−1 0 0 . . . 0 0

.

As before, the term of interest is the top right entry of M̃0(z) · (I−
M̃0(z))−1. To see why, observe that every read can be prepended
by ⇓-segments and only by those (every other terminator would
imply that one of the two sequences has a nonzero match size at
the start of the read). Thus, reads are precisely the sequences of
segments that can follow the symbol⇓ and that are terminated by
a tail, the weighted generating function of which is the top right
entry of the matrix.

M̃0(z) is too complex to compute a closed expression of M̃0(z)·
(I − M̃0(z))−1. It is easier to proceed as in section 3.6 and to
compute the powers of M̃0(z) up to a finite value. This is done
once again using the arithmetic of truncated polynomials. Since
each segment except the tail contains a mismatch against at least
one sequence, the top right entry of M̃0(z)s+1 is the weighted
generating function of reads that contain s mismatches (where
double mismatches count as one). We thus define p̃ as the upper
bound on the probability of a mismatch, i.e. p̃ = max{b, c, d}. The
updated formula (7) now gives an upper bound of the probability
that a read of size k contains s or more mismatches as

Pr(X ≥ s) ≤ exp

(

(s− k) log
k− s

k(1− p̃)
− s log

s

kp̃

)

.

With this upper bound, we can compute the terms of the matrix
partial sums M̃0(z)+M̃0(z)2+. . .+M̃0(z)s until the ignored terms
become negligible, i.e. until we can be sure that the coefficient of
interest ak is accurate to within chosen ε.

Now returning to the problem of computing P(S0 ∩ S1), the
+ sequence is interpreted as the target and the− sequence as the
duplicate. Based on the assumptions of the error model presented
in section 3.1, this implies that a = (1− p)(1−µ), b = (1− p)µ,
c = pµ/3, and d = p(1− µ/3).

FIGURE 9 | Off-target seeding probabilities (exact seeds). The surfaces show

the probability that seeding is off-target as a function of the divergence rate µ

and of the number N of duplicates. The results are shown for exact seeds of

size γ = 19 and for reads of size k = 50 nucleotides sequenced with an error

rate p = 0.01. The divergence rate µ is defined as the probability that a given

duplicate differs from the target at any given position. Note the factor 1,000 in

the scale of the z-axis.

With these values, we can fully specify the matrix M̃0(z),
and compute its powers until the estimate of the coefficient of
interest ak is accurate enough, finally giving a numerical value
for P(S0 ∩ S1).

4.6. Illustration
We illustrate the strategy delineated above for reads of size k = 50
sequenced with an instrument with error rate p = 0.01, when
using exact seeds of size γ = 19.

Figure 9 shows the result for a number of duplicates N
from 1 to 10 and for a divergence rate µ from 0 to 0.20. The
first observation is that the probability that seeding is off-target
increases with N. This is also clear from expression (10). This
can also be understood intuitively because the probability of not
seeding the target is fixed and the probability of having an empty
candidate set decreases as N increases. As a result the probability
that the candidate set contains only invalid candidates increases
with N.

The second observation is that there exists a “worst” value of
µ situated around 0.070. When µ is much smaller, the duplicates
tend to be exactly identical to the target, making it impossible that
there is a seed for a duplicate but no seed for the target. When µ
is much larger, the duplicates are far from the target and they are
unlikely to be in the candidate set at all. In expression (10), the
only term that depends on µ is P(S0 ∩ S1), and it is clear that
the minimum of expression (10) corresponds to the maximum

Frontiers in Genetics | www.frontiersin.org 13 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

of P(S0 ∩ S1). This is why the worst value of µ is the same for
every N.

5. OFF-TARGET SKIP SEEDS

To compute the probability that the seeding process is off-target
when using skip seeds, we observe that the logic of section 4
can be transposed with few modifications. In particular, the
probability can be computed through expression (10), where S0
is the event that the read has a skip seed for the target (instead of
an exact seed) and S1 is the event that the read has a skip seed for
the first duplicate (instead of an exact seed).

We have already seen how to compute P(S0) in section 3.6,
we now need to find a way to compute P(S0 ∩ S1) when using
skip seeds.

5.1. The Skip Dual Encoding
As before, we recode the reads in a specialized alphabet. We
define the skip-n dual alphabet as Ãn = {�, ∗, |,⇓0,⇓1,⇓2
, . . . ,⇓n,↓

−
/1,↓

−
/2, . . . ,↓

+
/1,↓

+
/2, . . .}. The symbols �, |, ↓−/j and

↓+/j (j ≥ 1) have the same meaning as in the dual alphabet of
section 4.1, i.e., the � symbol stands for a double match, the |
terminator marks the end of the read, the ↓−/j symbol indicates
a mismatch against the − sequence with a match length of size
j for the + sequence, and conversely the ↓+/j symbol indicates a
mismatch against the + sequence with a match of length j for
the − sequence. The symbols ⇓j (0 ≤ j ≤ n) indicate that both
sequences have match length 0 and that the next non-skipped
position is j nucleotides further. The symbol ∗ indicates that it
does not matter whether the nucleotide is a match or a mismatch,
as we will explain below.

Figure 10 shows the read from Figure 8 represented in the
skip-3 dual encoding. It is important to note several differences
with Figure 8. The first is that the symbols ⇓j (0 ≤ j ≤ n)
are not always associated with double mismatches. For instance,
the symbol ⇓0 on the right side of the read corresponds to a
mismatch for the + sequence only. This happens whenever the
+ and the − sequences are mismatched in the same interval
between non-skipped positions (the mismatches do not need to
be on the same nucleotide).

Also observe that the symbol ⇓1 is followed by a ∗ symbol,
indicating that it does not matter whether the nucleotide is
a match or a mismatch for any of the two sequences. After
the ⇓1 symbol, both sequences have match length 0 and we
have to “wait” for a potential new seed one nucleotide further
downstream. As in Appendix B.3, the ⇓j symbols are followed
by j symbols ∗, unless the end of the read comes before the next
non-skipped position. After a sequence of ∗ symbols, the read is
either finished or at a non-skipped position. In the second case,
the is in the same state as after a ⇓0 symbol, so we can consider
that the ∗ symbol allows the terminators ⇓j (1 ≤ j ≤ n) to just
“fast forward” to either ⇓0 or |, as shown in Appendix B.3.

As in the previous section, let a, b, c, and d denote the
probabilities of a double match, a mismatch against −, a
mismatch against + and a double mismatch, respectively. With
these definitions, the weighted generating functions of the

symbols�, ↓−/j and ↓
+
/j (j ≥ 1) are az, bz, and cz, respectively. The

weighted generating function of the ∗ symbol is z, and that of the
symbols ⇓j (0 ≤ j ≤ n) will be worked out in the sections below.

5.2. Segments Following ⇓i (1 ≤ i ≤ n)
A ⇓i terminator is followed by up to i symbols ∗. If there are
fewer than i symbols ∗, the read is finished so the segment must
be a tail. Recall that the weighted generating function of the
| terminator is 1, so the weighted generating function of tail
segments is 1+ z + . . .+ zi−1.

If there are i symbols ∗, the sequence ends at a non-skipped
position, i.e. in the same state as after a ⇓0 terminator. This is
not a segment proper, because there is no terminator, but in the
transfer matrix the symbols ⇓i (1 ≤ i ≤ n) project directly to the
symbol ⇓0 with weighted generating function zi.

5.3. Segments Following ⇓0
After a ⇓0 symbol, all the counters are reset as in the beginning
of the read. If the next terminator is |, the segment is a tail and
we only have to make sure that it contains fewer than γ symbols
�, otherwise this would create a seed. The weighted generating
function of tail segments following ⇓0 is thus 1 + qz + . . . +
(qz)γ−1.

If the next terminator is a ↓−/j symbol (j ≥ 1), the segment
is a match of size j for the + sequence. This imposes j < γ

otherwise the segment would create a seed. Such segments consist
of j− 1 symbols � followed by the terminator, so their weighted
generating function is (az)j−1bz with 1 ≤ j < γ .

Conversely, if the next terminator is a ↓+/j symbol (j ≥ 1), we
can apply the same rationale to see that the weighted generating
function is (az)j−1cz, where 1 ≤ j < γ .

Finally, if the next terminator is a ⇓j symbol (0 ≤ j ≤ n), we
must not only make sure that the segment contains fewer than γ
symbols �, but also keep track of the position of the next non-
skipped position (stored in index j). Here we can follow verbatim
the rationale of section 3.6 where we replace the probability of
a match (previously q) by that of a double match (now a), and
the probability of a mismatch (previously p) by that a double
mismatch (now d). Replacing the symbols in expression (4), we
see that the weighted generating function is (az)x ·

(

1+ (az)n+1+

. . . + (az)(n+1)m
)

dz, where x = n − j (mod n + 1) and m =
⌊

(γ − 1− x)/(n+ 1)
⌋

.

5.4. Segments Following ↓−
/i

At a ↓−/i terminator (i ≥ 1), the read contains a match of length
i for the + sequence. If the next segment is a tail, we must make
sure that the match length for the + sequence does not exceed
γ −1. This means that we can have up to γ − i−1 symbols� and
thus that the weighted generating function of the tail segments is
1+ (qz)+ . . .+ (qz)γ−i−1.

If the next terminator is a ↓−/j symbol, we must have j > i

because there is no mismatch against the + sequence. In this
case, we must only make sure that the total match length for
the + sequence remains lower than γ . Such segments contain
j− i− 1 symbols� followed by the terminator so their weighted
generating function is (qz)i−j−1bz with i < j ≤ γ − 1.

Frontiers in Genetics | www.frontiersin.org 14 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

FIGURE 10 | Example of skip dual encoding. The read of Figure 8 is represented in the skip dual alphabet. The vertical bars above the read indicate non-skipped

positions. The symbols ↓−
/j and ↓

+
/j (j ≥ 1) have the same meaning as in the dual alphabet. The symbols ⇓j indicate that both sequences have match length 0 and that

the next non-skipped position is located j nucleotides downstream. Other features are as in Figure 8.

For the last two types of terminators, we must pay attention
to the fact that in general, a mismatch against + that follows a
mismatch against − can be represented by either a ⇓j symbol
(0 ≤ j ≤ n) or a ↓+/j symbol (j ≥ 1). The terminator is
⇓j if the two mismatches are within the same interval between
non-skipped positions because both sequences locally havematch
length 0. If the mismatch against + is in another interval, the
terminator is ↓+/j because in that case the − sequence has a
positive match length. For now, bear in mind that a mismatch
against the + sequence only can produce a ⇓j terminator (0 ≤
j ≤ n), this will be important later.

If the next terminator is ↓+/j (j ≥ 1), then it must be separated

from the preceding ↓−/i terminator by a non-skipped position,
which imposes a lower bound on the size of the segment. Since
at the ↓−/i terminator the match length for + was i, there must
be a non-skipped position i nucleotides before. The number of
nucleotides from the ↓−/i terminator to the next non-skipped
position is thus y = −i (mod n + 1), so the minimum segment
length is y + 1. There is also an upper bound on the size of the
segment because the match length for the + sequence cannot
become higher than γ − 1, imposing the length to be lower
than γ − i. The shortest segment is terminated by ↓+/1, and the

longest by ↓+/γ−y−i. Finally, the weighted generating function

of segments terminated by ↓+/j following the ↓−/i terminator is

(az)y+j−1cz with 1 ≤ j ≤ γ − y − i. Note that for some value
of i and y, no j can satisfy the last inequality.

Finally, if the next terminator is ⇓j (0 ≤ j ≤ n) we have
to distinguish two cases, depending on whether the segment
ends with a double mismatch or with a single mismatch against
the + sequence. For the first case we can apply the rationale
of section 3.6. Recall that the index j indicates the number of
nucleotides until the next non-skipped position. Let ℓ0 be the
length of the shortest possible segment. The lengths of the other
segments are of the form ℓ0+n+1, . . . , ℓ0+m(n+1), where the
integer m must be chosen so that the segment does not create a
seed. At the ↓−/i terminator, there is a match of length i for the +
sequence som is the largest integer such that i+ℓ0+m(n+1) < γ ,
i.e. m = ⌊(γ − i− ℓ0)/(n+ 1)⌋.

The ↓−/i terminator is y = −i (mod n + 1) nucleotides before
the next non-skipped position so the shortest segment has length
ℓ0 = y− j if y > j, and n+ 1− j+ y otherwise. This is equivalent
to defining ℓ0 as x + 1 where x is the number of � symbols in

the shortest segment, i.e., x = −i− j− 1 (mod n+ 1). Summing
the weighted generating functions of the individual segments, we
find (az)x(1+ (az)n+1 + . . .+ (az)m(n+1))dz.

The last remaining issue is that a mismatch against the
+ sequence only can produce a ⇓j terminator. This happens
when the preceding ↓−/i terminator is not separated from the
mismatch by a non-skipped position (in this case both sequences
locally have match length 0). The ↓−/i terminator is located
y nucleotides before the next non-skipped position, so if the
terminator is from ⇓0 to ⇓y−1 we need to add the term (az)xbz
to the previous weighted generating function. In conclusion, the
weighted generating function of segments terminated by ⇓j is

(az)x(1+ (az)n+1 + . . .+ (az)m(n+1))dz+ δ+i,j(z), where δ
+
i,j(z) =

(az)xbz if j < y and 0 otherwise.

5.5. Segments Following ↓
+
/i

We can find the weighted generating functions by just reversing
the + and − signs in the previous section. This way we can
see that the weighted generating function of tail segments is
1+ (qz)+ . . .+ (qz)γ−i−1.

Likewise, the weighted generating function of segments
terminated by ↓+/j is (qz)

i−j−1bz with i < j ≤ γ − 1.
The weighted generating function of segments terminated by

↓−/j is (az)
y+j−1dz with y = −i (mod n+1) and 1 ≤ j ≤ γ −y− i.

Finally, the weighted generating function of segments
terminated by⇓j is (az)x(1+(az)n+1+. . .+(az)m(n+1))dz+δ−i,j(z),

where δ−i,j(z) = (az)xcz if j < y and 0 otherwise.

5.6. Transfer Matrix
We now have all the elements to specify the transfer matrix of
reads with no skip-n seed for either sequence. Recall that n is the
number of skipped nucleotides, γ is the minimum seed length,
a is the probability of a double match, b is the probability of a
mismatch against the − sequence only, c is the probability of a
mismatch against the+ sequence only and d is the probability of
a double mismatch. For notational convenience we define

Ni(z) = 1+ z + . . .+ zi, (12)

Wj(z) = (az)x
(

1+ (az)n+1 + . . .+ (az)(n+1)m
)

dz, (13)

Frontiers in Genetics | www.frontiersin.org 15 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

where x = −j− 1 (mod n+ 1), andm =

⌊

γ − 1− x

n+ 1

⌋

,

Ui,j(z) =(az)
x(1+ (az)n+1 + . . .+ (az)(n+1)m

)

dz +

{

bz · (az)x if j < y,
0 otherwise

(14)

where x = −i− j− 1 (mod n+ 1), y = −i (mod n+ 1),

andm =

⌊

γ − 1− i− x

n+ 1

⌋

, (14)

Vi,j(z) = (az)x
(

1+ (az)n+1 + . . .+ (az)(n+1)m
)

dz +

{

cz · (az)x if j ≤ x,
0 otherwise

(15)

where x = −i− j− 1 (mod n+ 1),m =

⌊

γ − 1− i− x

n+ 1

⌋

.

With these notations, the information from the previous sections
can be summarized in the transfer matrix M̃n(z) equal to

⇓
0

⇓
1

..
.

⇓
n

↓
+ /
1

..
.

↓
+ γ
−
1

↓
− /
1

..
.

↓
− /
γ
−
1

|

⇓
0

W
0
(z
)

W
1
(z
)

..
.

W
n
(z
)

r+ 0
(z
)

..
.

r+ γ
−
2
(z
)

r− 0
(z
)

..
.

r− γ
−
2
(z
)

F
γ
−
1
(z
)

⇓
1

z
0

..
.

0
0

..
.

0
0

..
.

0
N
0
(z
)

. . .
. . .

. . .
. .
.

. . .
. . .

. .
.

. . .
. . .

. .
.

. . .
. . .

⇓
n

zn
0

..
.

0
0

..
.

0
0

..
.

0
N
n
−
1
(z
)

↓
+ /
1

U
1,
0
(z
)

U
1,
1
(z
)

..
.

U
1,
n
(z
)

F
γ
−
2
(z
)

. . .
. . .

. . .
. .
.

. . .
Ã
(z
)

B̃
n
(z
)

. . .
↓
+ /
γ
−
1

U
γ
−
1,
0
(z
)

U
γ
−
1,
1
(z
)

..
.

U
γ
−
1,
n
(z
)

F
0
(z
)

↓
− /
1

V
1,
0
(z
)

V
1,
1
(z
)

..
.

V
1,
n
(z
)

F
γ
−
2
(z
)

. . .
. . .

. . .
. .
.

. . .
C̃
n
(z
)

D̃
(z
)

. . .
↓
− /
γ
−
1

V
γ
−
1,
0
(z
)

V
γ
−
1,
1
(z
)

..
.

V
γ
−
1,
n
(z
)

F
0
(z
)

|
0

0
..
.

0
0

..
.

0
0

..
.

0
0

.

The matrices Ã(z) and C̃(z) in the expression of M̃n(z) are the
same as in section 4.1. They are reproduced here for convenience.

Ã(z) =

↓+/1 ↓+/2 . . . ↓+/γ−2 ↓+/γ−1

↓+/1 0 r+0 (z) . . . r+γ−4(z) r+γ−3(z)
↓+/2 0 0 . . . r+γ−5(z) r+γ−4(z)
...

...
...

. . .
...

...
↓+/γ−2 0 0 . . . 0 r+0 (z)
↓+/γ−1 0 0 . . . 0 0

,

C̃0(z) =

↓+/1 ↓+/2 . . . ↓+/γ−2 ↓+/γ−1

↓−/1 r+0 (z) r+1 (z) . . . r+γ−3(z) r+γ−2(z)
↓−/2 r+0 (z) r+1 (z) . . . r+γ−3(z) 0
...

...
...

. . .
...

...
↓−/γ−2 r+0 (z) r+1 (z) . . . 0 0
↓−/γ−1 r+0 (z) 0 . . . 0 0

.

The matrices B̃n(z) and C̃n(z) are defined as

B̃n(z) =

↓−/1 ↓−/2 . . . ↓−/γ−2 ↓−/γ−1

↓+/1 s1,1(z) s1,2(z) . . . s1,γ−2(z) s1,γ−1(z)
↓+/2 s2,1(z) s2,2(z) . . . s2,γ−2(z) 0
...

...
...

. . .
...

...
↓+/γ−2 sγ−2,1(z) sγ−2,2(z) . . . 0 0
↓+/γ−1 sγ−1,1(z) 0 . . . 0 0

,

C̃n(z) =

↓+/1 ↓+/2 . . . ↓+/γ−2 ↓+/γ−1

↓−/1 t1,1(z) t1,2(z) . . . t1,γ−2(z) t1,γ−1(z)
↓−/2 t2,1(z) t2,2(z) . . . t2,γ−2(z) 0
...

...
...

. . .
...

...
↓−/γ−2 tγ−2,1(z) tγ−2,2(z) . . . 0 0
↓−/γ−1 tγ−1,1(z) 0 . . . 0 0

,

with

si,j =

{

cz · (az)y+j−1 if i+ j+ y ≤ γ

0 otherwise,

ti,j =

{

bz · (az)y+j−1 if i+ j+ y ≤ γ

0 otherwise,

where y = −i (mod n+ 1), in both cases.

Now returning to the problem of computing P(S0 ∩ S1), the +
sequence is interpreted as the target and the − sequence as the
duplicate. Based on the assumptions of the error model presented
in section 3.1, this implies that a = (1− p)(1−µ), b = (1− p)µ,
c = pµ/3, and d = p(1− µ/3).

The computation is performed as described in section 4.1.
We compute the successive powers of M̃n(z) in the arithmetic
of truncated polynomials and stop the iterations using the same

Frontiers in Genetics | www.frontiersin.org 16 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

criterion. The only modification is that the top right term of
M̃n(z)s+1 is not the weighted generating function of reads with
s mismatches (where double mismatches count as one). The
reason is that the sequences of ∗ symbols are not terminated by
a mismatch. However, there can be at most one sequence of ∗
symbols for each mismatch or double mismatch, so the reads
described by the top right term of M̃n(z)s+1 have at least ⌊s/2⌋
mismatches.

We thus define p̃ as the upper bound on the probability of a
mismatch, i.e., p̃ = max{b, c, d} and use the updated formula (7)
from section 4.5

Pr(X ≥ s) ≤ exp

(

(s− k) log
k− s

k(1− p̃)
− s log

s

kp̃

)

.

With this upper bound, we can compute the terms of the partial
sums M̃0(z)+ M̃0(z)2 + . . .+ M̃0(z)2s+1 until the ignored terms
become negligible, i.e. until we can be sure that the coefficient of
interest ak is accurate to within chosen ε.

Remark 3.Observe that when n = 0 the matrix M̃n(z) is identical to the matrix

M̃0(z) of section 4.1, again consistent with the fact that exact seeds are skip-0

seeds. The same applies to B̃n(z) and C̃n(z).

5.7. Illustration
We illustrate the strategy delineated above using the same settings
as in section 4.6 (reads of length k = 50, probability of
sequencing error p = 0.01 and seeds of minimum size γ = 19),
except that we replace exact seeds by skip-5 and skip-9 seeds.

Figure 11 shows the result for a number of duplicates N from
1 to 10 and for a divergence rate µ from 0 to 0.20. The surfaces
have the same general aspect as in Figure 9. The probability
that seeding is off-target increases with N and there is again a
worst value of µ, because the maximum of P(S0 ∩ S1) minimizes
expression (10) for every value of N. However, those values of
µ are not the same (they are approximately 0.065 and 0.060 for
skip-5 and skip-9 seeds, respectively).

Importantly, Figure 11 reveals that skipping 5 nucleotides
increases the chances that seeding is off-target by a factor
approximately 1.5, and skipping 9 nucleotides by a factor
approximately 1.8 (compare with Figure 9). Skipping nucleotides
seems to have little effect, but this is not a general conclusion.
Indeed, skipping nucleotides decreases the probability of on-
target seeding (skipping positions implies fewer on-target seeds)
but increases the probability of null seeding (skipping positions
implies fewer seeds overall), so the effects must be evaluated
on a case-by-case basis. Skipping nucleotides can even decrease
the probability that seeding is off-target. Concretely, for exact
seeds of size γ = 19 in reads of size k = 50 with N = 10
duplicates at divergenceµ = 0.1 with a sequencing error p = 0.1,
the probability of off-target seeding is approximately 0.178 with
exact seeds and 0.035 with skip-9 seeds, showing that skipping
nucleotides can have different effects.

This kind of information is critical for choosing the best
seeding strategy. Yet, the off-target seeding probability is not
the only criterion. Equally important considerations are the
probability of on-target seeding, the computational resources
required to implement a particular seeding strategy and other

sources of mapping errors (see discussion in section 8.1). The
benefit of a theory to compute seeding probabilities is to have
access to this knowledge.

6. OFF-TARGET MEM SEEDS

MEM seeds are substantially more complex than exact seeds and
skip seeds because we need to take into account all the duplicates
in the combinatorial construction.

6.1. Hard and Soft Masking
We first introduce two important notions that will be the key to
understanding the behavior of MEM seeds.

Definition 8. At a given position of the read, a duplicate is a hard
mask if its match length on the left side is strictly longer than the
match length of the target. A duplicate is a soft mask if it has the
same match length as the target.

Figure 12 gives a graphical intuition of hard and soft masks. It
is important to bear in mind that hard and soft masks depend on
the position of interest: a sequence can be a mask at the left end
of the read and not at the right end, or the opposite.

Hard and soft masks explain the counter-intuitive properties
of MEM seeds. For instance, in Figure 4 the target cannot be
discovered because every nucleotide of the read has a hard mask.
In Figure 5, the target could be discovered if the readwere shorter
because a hard mask would turn into a soft one.

From the definition, we see that the last nucleotide of every
strict on-target MEM seed is always unmasked. Conversely, an
unmasked nucleotide always belongs to exactly one strict on-
target MEM (not necessarily a seed because the size of the MEM
can be less than γ). Also, the last nucleotide of every shared
on-target MEM seed is always soft-masked, but a soft-masked
nucleotide does not always belong to a shared on-target MEM.

Since hard and soft masks inform us about the positions of
on-target MEM seeds, we construct an alphabet that encodes the
masking status of the nucleotides.

6.2. The MEM Alphabet
As before, we recode the reads as sequences of letters
from a specialized alphabet called the MEM alphabet A =

{�, |,↑/1 ,↑/2 , ↑/3 . . . ,↓/0,↓/1,↓/2, . . .}.
The symbols ↓/m (m ≥ 0) indicate that the nucleotide is a

sequencing error and m is the number of duplicates that match
the nucleotide. Since a sequencing error is always a mismatch
against the target, the symbol ↓/0 indicates that the nucleotide
is a mismatch against every sequence. The symbols ↑/i indicate
a change in masking status: the nucleotide is not masked but
the previous is—this happens when all the masks fail to extend
beyond this position. The index i ≥ 1 is the number of
nucleotides since the last mismatch or since the beginning of the
read. All the other nucleotides are represented by the symbol �,
implying that � symbols are never sequencing errors and always
match the target. The symbol | is appended to the end of the read
as before.

Note that in the symbols ↓/m and ↑/i, the numbers m and
i have different meanings. In the symbol ↓/m, the index m is a

Frontiers in Genetics | www.frontiersin.org 17 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

FIGURE 11 | Off-target seeding probabilities (skip seeds). The surfaces show the probability that seeding is off-target for skip-5 and skip-9 seeds of size γ = 19.

Read size and error rate are the same as in Figure 9, i.e., k = 50 and p = 0.01. The divergence rate µ is defined as the probability that a given duplicate differs from

the target at any given position. Note the factor 1,000 in the scale of the z-axis.

FIGURE 12 | Example of hard and soft masks. Genomic sequences are shown below a read where open squares represent nucleotides. In the sequences, the open

squares represent matches and the closed squares represent mismatches. The nucleotides contributing to the match length are represented as gray boxes. At the

focus position, the match length of the target is 7. The first duplicate is a hard mask because its match length is 13 > 7. The second duplicate is a soft mask because

its match length is 7, as the target. The third duplicate is not a mask because its match length is 2 < 7.

FIGURE 13 | The MEM encoding. The read of Figure 3 is represented in the MEM alphabet. The arrows departing from the numbers help understand their meaning.

The symbol ↓/m is indexed by the number m of sequences that match the nucleotide. The symbol ↑/i is indexed by the number i of nucleotides from the last error or

from the beginning of the read. The gray squares in the symbolic sequences represent MEM seed matches. Other features are as in Figure 8.

Frontiers in Genetics | www.frontiersin.org 18 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

number of sequences (0 ≤ m ≤ N where N is the number
of duplicates); in the symbol ↑/i, the index i is a number of
nucleotides. Figure 13 shows the encoding of a read in the
MEM alphabet.

The MEM alphabet captures the masking status of the
nucleotide: the symbol ↓/m indicates that the nucleotide has m
hard masks and N − m soft masks. The symbols ↑/i indicate
that the nucleotide is unmasked and that the previous nucleotide
is masked.

In the MEM alphabet, strict on-target MEM seeds are the
longest stretches of symbols containing some symbol ↑/i and not
containing any symbol ↓/m. Indeed, such a stretch is a match for
the target because it does not contain any symbol ↓/m, it only
matches the target because it contains at least one unmasked
nucleotide (marked by ↑/i), and it cannot be extended because
it is flanked by sequencing errors (symbols ↓/m) or by the ends
of the reads. Note that there is exactly one symbol ↑/i per strict
on-target MEM seed, and therefore two symbols ↑/i must be
separated by at least one symbol ↓/m.

Shared on-target MEM seeds are the longest stretches of
symbols � flanked by ↓/0, or by the ends of the read. Indeed,
such a stretch is a MEM seed because it matches the target and it
cannot be extended (↓/0 is a mismatch against every sequence).
Also, it cannot be a strict on-target MEM seed because it does
not contain any ↑/i symbol, so it must be a shared on-target
MEM seed.

As before, the read is converted from a sequence of symbols
to a sequence of segments that consist of 0 or more symbols
� followed by a terminator. We then specify the weighted
generating functions of those segments and fill the transfermatrix
◦

MN(z) of the reads that do not contain an on-target MEM
seed. We introduce the terms of the matrix by increasing order
of complexity.

6.3. Segments Following ↑/i
A segment terminated by ↑/i is the beginning of a strict on-target
MEM of size at least i. The MEM reaches the next sequencing
error or the end of the read, so the number of symbols � in the
next segment must be at most γ − i−1 and it must be terminated
by a ↓/m symbol or by the tail terminator |.

The following definition will simplify the notations.

Definition 9. Given the divergence rate µ and the number of
duplicates N, the probability that a symbol is ↓/m given that the
nucleotide is a read error is

ωm =

(

N

m

)

(

1− µ/3
)N−m(

µ/3
)m

. (16)

The expression for ωm is exact: if the nucleotide is an error, the
symbol is ↓/m for some m between 0 and N. Each duplicate is
a match with probability µ/3, so m has a Binomial distribution
with parameters (N,µ/3).

On this segment, the matches between the read and the
duplicates are irrelevant, so the weighted generating function of
a symbol � is simply qz (recall that p = 1 − q is the probability
of a sequencing error). The weighted generating function of the
terminator ↓/m is ωmpz, so the weighted generating function of
the ↓/m-segments following ↑/i is

Di,m(z) = ωmpz

γ−i−1
∑

j=0

(qz)j. (17)

And the weighted generating function of the tail segments
following ↑/i is.

Ei(z) =
γ−i−1
∑

j=0

(qz)j. (18)

6.4. Segments Following ↓/m
The symbol ↓/m signifies that the nucleotide has m hard masks
andN−m soft masks. If all the masks vanish before the first read
error, the next terminator will be a symbol ↑/j, otherwise it will
be the symbol | or a symbol ↓/m. We separate the cases based on
the terminator of the segment.

Case 1: The Terminator Is ↑/j

Definition 10. Given the divergence rate µ, the probability that a
given duplicate contains a mismatch in a sequence of j error-free
nucleotides is

ξj = 1− (1− µ)j. (19)

This is the probability that a hard or soft mask vanishes within j
correct nucleotides.

The expression for ξj is exact: every nucleotide of the duplicate
differs from the target with probability µ. In the absence of
sequencing errors, this is also the probability that a nucleotide
of the duplicate differs from the read. Given that there is no error,
the probability that j nucleotides in a row are identical to the read
is thus (1 − µ)j and the probability that at least one of them is
different is the complement 1− (1− µ)j.

With this notation, the probability that at least one ofN masks
survives a sequence of j error-free nucleotides is thus 1 − (ξj)N ,
and the probability that there remains a mask at the j − 1-th
but not at the j-th error-free nucleotide is (ξj)N − (ξj−1)N . From
this we conclude that the weighted generating function of the
segments terminated by ↑/j following a segment terminated by
↓/m is

Bj(z) =
(

(ξj)
N − (ξj−1)

N
)

(qz)j. (20)

The fact that the reads have no on-target seeds imposes j < γ .
Also note that this expression is the same for all symbols ↓/m (it
does not depend onm).

Case 2a: The Terminator | Comes Before the γ -th

Nucleotide

In this case there can be no on-target seed because the read
finishes too early. However, we must enforce the condition that
at least one of the N masks survives until the end, otherwise the
segment would be terminated by one of the symbols ↑/j. The
weighted generating function is:

γ−1
∑

i=0

(

1− (ξi)
N
)

(qz)i.

Frontiers in Genetics | www.frontiersin.org 19 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

Case 2b: The Terminator | Comes After the γ -th

Nucleotide

In this case, the soft masks do not hide the target. Even if a
duplicate survives until the end of the read, there will be an on-
target seed (shared in this case). To exclude on-target seeds, we
must enforce the condition that at least one hard mask survives
until the end of the segment (which is impossible if m = 0). The
weighted generating function is

∞
∑

i=γ

(

1− (ξi)
m
)

(qz)i.

Summing the expressions from cases 2a and 2b, we find that the
weighted generating function of the tail following ↓/m is:

Cm(z) =
γ−1
∑

i=0

(

1− (ξi)
N
)

(qz)i +
∞
∑

i=γ

(

1− (ξi)
m
)

(qz)i. (21)

Case 3a: The Terminator ↓/n Comes Before the γ -th

Nucleotide

In this case, there can be no on-target seed and we must only
exclude the terminators ↑/j. As we have seen above, this implies
that at least one of the N masks survives until the terminator.
For a read of size j + 1, this occurs with probability 1 − (ξj)N .
Including the terminator and summing over j + 1 ≤ γ , we see
that the weighted generating function is:

ωnpz

γ−1
∑

j=0

(

1− (ξj)
N
)

(qz)j. (22)

Case 3b: The Terminator ↓/n Comes After the γ -th

Nucleotide

This case is by far the most convoluted. Since the segment
contains at least γ error-free nucleotides, we must enforce the
condition that it does not contain an on-target seed. This will be
the case if any of the two following conditions is validated: (i) at
least one hardmask covers all the error-free nucleotides, or (ii) all
the hard masks vanish but at least one soft mask covers the whole
segment (including the terminator).

The two conditions are mutually exclusive by construction.
They are graphically represented in the diagram below. The
left panel corresponds to case (i) and the right panel to case
(ii). The top row represents the target, and the bottom rows
represent duplicates (using the same symbols as in Figure 13).

Whenever a hard mask (here the first duplicate) covers the
nucleotides as shown by the gray squares in the left panel, there
can be no on-target seed. The positions marked with a question
mark are irrelevant, they cannot change the fact that there is no
on-target MEM seed. If the hard masks vanish, as in the right

panel, then we need to look at the soft masks. If a soft mask
covers the whole segment as indicated by the gray squares, then
there can be no on-target seed. In all other cases there is an
on-target MEM seed.

For a segment of size j + 1, condition (i) has probability
(

1−(ξj)m
)

. Summing over j+1 > γ and including the terminator,
we see that the associated weighted generating function is

ωnpz

∞
∑

j=γ

(

1− (ξj)
m
)

(qz)j.

Condition (ii) is more convoluted, so we introduce some further
notations to solve this sub-case.

Definition 11. Given the divergence rate µ, the probability that
a duplicate sequence contains a mismatch in a sequence of j
error-free nucleotides followed by an error is

ηj = 1− (1− µ)jµ/3. (23)

This is the probability that a hard or soft mask vanishes within j
correct nucleotides followed by a sequencing error.

The expression for ηj is exact: the probability that there are
j matches between the duplicate and the target is (1 − µ)j. If
there are no sequencing errors, this is also the probability that
there are j matches between the duplicate and the read. The
probability that the duplicate matches the subsequent error is
µ/3, so the probability that there are j+ 1 matches including the
sequencing error is (1−µ)jµ/3. Finally, the probability that there
is a mismatch is the complement 1− (1− µ)jµ/3.

Let us for now consider a segment of fixed size j + 1. From
expressions (19) and (23), the probability of condition (ii) is

(ξj)
m
(

1− (ηj)
N−m

)

,

but we need to break up this term among all the possible
terminators ↓/n (0 ≤ n ≤ N) in order to fill the different entries
of the transfer matrix. For this, we split this term in the number
of soft masks that run until and including the terminator. From
expression (23), the probability that there are r ≥ 1 such soft
masks is

(

N −m

r

)

(1− ηj)
r(ηj)

N−m−r . (24)

For now we consider r fixed; we will compute the marginal
probability at the final stage. By construction, each of those r

soft masks matches the terminator, so the total number of
matches is r plus the number of sequences that also match the
terminator, among the remaining N − m − r soft masks and the
m hard masks.

Frontiers in Genetics | www.frontiersin.org 20 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

Let us start with the m hard masks. The probability that each
of them matches the terminator is simply µ/3.

The case of the N − m − r soft masks is more complicated
because they can vanish precisely on the terminator—recall that
in case (ii) all the hard masks are assumed to vanish before. If
the soft mask failed within the first j nucleotides, then the j + 1-
th nucleotide can be anything and it will match the terminator
with probability µ/3. But if the soft mask survived the first j
nucleotides, then itmust fail on the j+ 1-th and it cannot match
the terminator. From expressions (19) and (23), the probability
that a given soft mask fails within the first j nucleotides is
ξj/ηj—this is the conditional probability that it fails within the
first j nucleotides given that it fails within the segment. Finally
the probability that such a soft mask matches the terminator is
µ/3 · ξj/ηj.

↓/0 . . . ↓/N ↑/1 . . . ↑/γ−1 |

↓/0 A0,0(z) . . . A0,N(z) B1(z) . . . Bγ−1(z) C0(z)
...

...
. . .

...
...

. . .
...

...
↓/N AN,0(z) . . . AN,N(z) B1(z) . . . Bγ−1(z) CN(z)
↑/1 D1,0(z) . . . D1,N(z) 0 . . . 0 E1(z)
...

...
. . .

...
...

. . .
...

...
↑/γ−1 Dγ−1,0(z) . . . Dγ−1,N(z) 0 . . . 0 Eγ−1(z)
| 0 . . . 0 0 . . . 0 0

Summing the contributions of the hardmasks (m in total, each
matching the terminator with probability µ/3) and of the soft
masks (N − m − r in total, each matching the terminator with
probability µ/3 · ξj/ηj), the probability that the total number of
matches is n− r appears as the convolution product

(µ/3)n−r(1− µ/3)N−n

(ηj)N−m−r
ψj,m,n,r ,

where ψj,m,n,r =
∑

q≥0

(

m

q

)(

N −m− r

n− r − q

)

(ξj)
n−r−q.

Finally, we need to compute the marginal probability over the
number r of soft masks that survive until the end of the read.
Multiplying by the probability of r from expression (24) and
summing over r ≥ 1, the probability that n duplicate sequences
match the terminator appears as

∑

r≥1

(

N −m

r

)

(1− ηj)
r(µ/3)n−r(1− µ/3)N−nψj,m,n,r

= (µ/3)n(1− µ/3)N−n
∑

r≥1

(

N −m

r

)

(1− µ)rjψj,m,n,r

= ωn · ζj,m,n,

where

ζj,m,n =
∑

r≥1

(

N −m

r

)

(1− µ)rjψj,m,n,r

/(

N

n

)

. (25)

This is the probability that the terminator is the symbol ↓/n given
that the segment has size j+1 > γ , that the first sequencing error

occurs on the last nucleotide, that the preceding terminator was
↓/m and that them hard masks fail before the end of the segment.

Summing the terms from case 3a and from case 3b, we
find that the weighted generating function of the ↓/n segments
following ↓/m is:

Am,n(z) = ωnpz

γ−1
∑

j=0

(

1− (ξj)
N
)

(qz)j

+ωnpz

∞
∑

j=γ

(

1− (ξj)
m · (1− ζj,m,n)

)

(qz)j.

(26)

6.5. Transfer Matrix
Collecting and arranging the results above, we can verify that the

final expression of the transfer matrix
◦

MN(z) is

where

Am,n(z) =ωnpz

γ−1
∑

i=0

(

1− (ξi)
N
)

(qz)i

+ωnpz

∞
∑

i=γ

(

1− (ξi)
m · (1− ζi,m,n)

)

(qz)i
(26)

Bi(z) =
(

(ξi)
N − (ξi−1)

N
)

(qz)i (20)

Cm(z) =
γ−1
∑

i=0

(

1− (ξi)
N
)

(qz)i +
∞
∑

i=γ

(

1− (ξi)
m
)

(qz)i (21)

Dj,m(z) = ωmpz

γ−j−1
∑

i=0

(qz)i (17)

Ej(z) =

γ−j−1
∑

i=0

(qz)i (18)

and where

ωm =

(

N

m

)

(

1− µ/3
)N−m(

µ/3
)m

(16)

ξj = 1− (1− µ)j (19)

ηj = 1− (1− µ)jµ/3 (23)

ζj,m,n =
∑

r≥1

(

N −m

r

)

(1− µ)rjψj,m,n,r

/(

N

n

)

(25)

ψj,m,n,r =
∑

q≥0

(

m

q

)(

N −m− r

n− r − q

)

(ξj)
n−r−q.

Frontiers in Genetics | www.frontiersin.org 21 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

Remark 4. In the special case N = 0, the transfer matrix simplifies to the extent

that we can compute the weighted generating function of the reads without

on-target MEM seed in closed form. The result is

1+ qz + . . .+ (qz)γ−1

1− pz
(

1+ qz + . . .+ (qz)γ−1
) . (2)

Expression (2) was shown in section 3.4 to be the weighted generating function

of reads without on-target exact seed. This shows that when there are no

duplicates, MEM seeds have exactly the same properties as exact seeds.

6.6. Computing MEM Seeding Probabilities
The matrix

◦

MN(z) · (I −
◦

MN(z))−1 contains the weighted
generating functions of all the reads without on-target MEM
seeds. The term of interest, as usual, is the top right entry. Indeed,
every read can be prepended by ↓/0-segments and only by those,
otherwise the read would start with fewer than N soft masks.
Thus, reads without an on-target MEM seed are precisely the
sequences of segments that can be appended to the symbol ↓/0
and that are terminated by a tail.

To compute this term, we proceed as in section 3.6, i.e., we

compute the powers of
◦

MN(z) in the arithmetic of truncated
polynomials and we stop the iterations when the terms are
negligible. We bound the probability that the read contains more
than e sequencing errors using the expression

Pr(X ≥ e) ≤ exp

(

(e− k) log
k− e

k(1− p)
− e log

e

kp

)

, (7)

but here not every segment contains an error. There cannot be
two symbols ↑/j in a row, so a read with s + 1 segments must
contain a minimum number of sequencing errors which is e =

⌊s/2⌋. As before, we compute the powers of
◦

MN(z) until the upper
bound is less than a set fraction ε of the current value of ak.

If we call M0 the event that the read contains an on-target
MEM seed, the method above gives us P(M0). Calling Mj the
event that the read contains a MEM seed for the j-th duplicate,
we are interested in the probability

P
(

M0∩(M1∪. . .∪MN)
)

= P(M0)−P
(

M0∩M1∩. . .∩MN

)

. (8)

The key insight to compute P
(

M0 ∩M1 ∩ . . . ∩MN

)

is to realize
that there is some MEM seed, on-target or not, if and only if the
read contains a match of size γ or more for any of the N + 1
sequences. Therefore, this probability is the same as the term
P
(

S0 ∩ S1 ∩ . . . ∩ SN
)

computed in section 4.
In conclusion, the probability that the MEM seeding process

is off-target is

P(M0)− P(S0) ·

(

P(S0 ∩ S1)

P(S0)

)N

, (27)

where P(M0) is computed using
◦

MN(z) as explained in this
section, P(S0) is computed using a recursive equation as
explained in section 3.4, and P(S0 ∩ S1) is computed using M̃0(z)
as explained in section 4.1.

6.7. Monte Carlo Sampling
One potential difficulty in computing P(M0) is that the matrix
◦

MN(z) has dimension (N + γ + 1)× (N + γ + 1). The problem
can become computationally intractable because N can be very
large. For instance, the sequences called Alu have more than one
million duplicates in the human genome. There is no hope to

compute the powers of
◦

MN(z) in these conditions and we need
an alternative method.

The symbolic representation as MEM segments can be used to
design an efficient method to sample reads. Instead of generating
the nucleotides of the N + 1 sequences one by one, we can
generate a single sequence of segments. Since the number of
segments does not depend onN, we can obtain a fastMonte Carlo
method to samplemillions of reads and count the proportion that
contain an on-target MEM seed.

The principle is to proceed in cycles of two steps. We first
sample the position of the next sequencing error, which gives the
position of the next symbol ↓/m, where m will be determined at
a later stage. The second step is to determine whether there is a
symbol ↑/j before that. For this we sample the number of masks
that vanish before the symbol ↓/m. If they all vanish, the read
contains an on-target MEM seed, provided the next read error is
at a distance greater than γ . Otherwise, we sample the numberm
of hard masks at the sequencing error, and the process is repeated
until we generate an on-target MEM seed, or until the read has
size k or greater (in which case it has no on-target MEM seed).

The method is summarized in algorithm 1 below. It requires
efficient algorithms to sample from the geometric and from the
binomial distributions. Sampling from a geometric distribution
can be done by computing the logarithm of a uniform (0, 1)
random variable. Sampling from a binomial distribution can be
done by the method of Kachitvichyanukul and Schmeiser (1988).
Most importantly, the number of duplicatesN has little influence
on the running speed of algorithm 1.

Algorithm 1 is an important result. It gives a compact solution
to the problem of estimating the probability that a read can be
mapped when using MEM seeds. The algorithm is also much
faster than the naive approach of sampling every nucleotide
of every sequence, because it is equivalent to sampling the
nucleotide sequence of all the duplicates.

6.8. Illustration
We illustrate the strategy delineated above using the same settings
as in section 4.6 (k = 50, p = 0.01, and γ = 19), except that we
replace exact seeds by MEM seeds.

Figure 14 shows the result for a number of duplicates N from
1 to 10, for a divergence rate µ from 0 to 0.20 and for MEM
seeds of different minimum size γ . The surfaces have the same
general aspect as those of Figure 9. The probability that seeding
is off-target increases with N, as shown by expression (27).

There is again a worst value of µ in each plot, but it is much
lower than the previous two cases (it is close to 0.028 for γ = 14
and γ = 19, 0.030 for gamma = 27 and 0.035 for γ = 34).
In the case of MEM seeds, it is not obvious why the same value
of µ maximizes (27) for all values of N because both P(M0) and
P(S0 ∩ S1) depend on µ.

Frontiers in Genetics | www.frontiersin.org 22 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

Parameter: k is the size of the reads.
Parameter: p is the error rate of the sequencer

(substitutions only).
Parameter: N is the number of duplicates.
Parameter: µ is the nucleotide-wise probability that

duplicates differ.
Result: Sample a read at random. Return 1 if the read

contains a good MEM seed, otherwise return 0.
λ← 0 ; ⊲ Current read size.
m← 0 ; ⊲ Current number of hard masks.
while λ < k do

i← geom(p)− 1 ; ⊲ Error-free nucleotides.
if i ≥ k− λ then

if k− λ < γ then

return 0;
else

h← binom(m,(1− µ)k−λ) ⊲Surviving hard
masks.

return 1 if h = 0, otherwise return 0;
end

else

h← binom(m,(1− µ)i) ⊲ Surviving hard
masks.

s← binom(N−m,(1−µ)iµ/3)⊲ Surviving soft
masks.

if i ≥ γ and h = 0 and s = 0 then
return 1;

else

m← s+ binom(N − s,µ/3);
λ← λ+ i+ 1;

end

end

end

Figure 14 reveals that in this concrete case, MEM seeds
increase the chances that seeding is off-target by a factor 15
compared to exact seeds (see Figure 9). On this criterion,
MEM seeds are always inferior to exact seeds with the
same specifications. The reason is that a MEM seed always
contains at least one exact seed of size γ . MEM seeds
tremendously simplify the seeding process, but this comes
at the cost of an increase of the probability that seeding
is off-target.

Also note that the values change less than one might expect
when varying the minimum seed length γ . Part of the reason is
that MEM seeds are typically longer than their minimum size
γ . In any event, this example shows that reducing γ to gain
sensitivity provides very modest benefits, with potentially high
costs in terms of short spurious hits.

7. THE SESAME LIBRARY

We implemented the methods and algorithms presented here in
an open-source C library to compute seeding probabilities. The

library is called Sesame and is available at https://github.com/
gui11aume/sesame.

7.1. Main Features of Sesame
Sesame contains functions to compute the seeding probabilities
described here. All the functions were tested against simulations
to ensure that the implementation is accurate and the code was
checked extensively by static analysis and unit testing.

Computing seeding probabilities can take up to a few
seconds, even when replacing iterative methods by Monte Carlo
simulations. This is incompatible with the speed requirements
of modern mappers, so Sesame has an interface for this type
of application. In this mode, Sesame computes the results
only the first time and stores them in memory for reuse on
subsequent calls.

Storing the results in memory is an efficient strategy because
three parameters are constant throughout the sequencing run:
the minimum seed size γ , the read size k and the error rate
of the sequencer p (and for skip seeds, the number of skipped
nucleotides n is also constant). Only two parameters depend on
the read: the number of duplicates N and their divergence rate
µ. In this mode, Sesame automatically switches to Monte Carlo
sampling whenN is large to save time. Also, the input parameters
are “snapped” to a predefined grid of set values for N and µ, so
that few computations are performed and most of the calls are
actually memory lookups. Sesame can thus be integrated in short
read mappers without being a bottleneck.

Alternatively, the probabilities of interest can be computed
offline, saved to disk and loaded at run time. This is particularly
useful if the sequencing runs follow some standard conditions
with a known error rate, because the computations can be
recycled between runs.

Finally, Sesame also has an offline interface, where seeding
probabilities are computed exactly as requested by the users, i.e.,
without modifying the algorithm or the parameters, and also
without storing the results in memory.

The Sesame manual, available from the repository, contains
additional information and explains in detail how to use
the library.

7.2. Using Sesame to Compare Seeding
Strategies
As a tool to compute seeding probabilities, Sesame can be
used to compare the merits of different strategies. The kind
of insight that we can gain from such calculations was already
showcased in Figures 9, 11, 14, where the numbers were
computed using Sesame.

To further showcase the potential benefits of computing
seeding probabilities, we use Sesame to compare the
default seeding strategies of BWA-MEM (Li, 2013) and
Bowtie2 (Langmead and Salzberg, 2012). Note that both mappers
use advanced techniques to refine the seeds, so this comparison
does not reflect the true performance of the mappers. It is
nevertheless useful to know the baseline of each strategy. The
default of BWA-MEM is to use MEM seeds of minimum size 19;
that of Bowtie2 is to use skip-9 seeds of size 16.

Frontiers in Genetics | www.frontiersin.org 23 June 2020 | Volume 11 | Article 572

https://github.com/gui11aume/sesame
https://github.com/gui11aume/sesame
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

FIGURE 14 | Off-target seeding probabilities (MEM seeds). The surfaces show the probability that seeding is off-target for MEM seeds of indicated minimum size γ .

Read size and error rate are the same as in Figure 9, i.e., k = 50 and p = 0.01. The divergence rate µ is the probability that a given duplicate differs from the target at

any given position. Note the factor 1,000 in the scale of the z-axis.

The probabilities that seeding is off-target for different read
sizes k and different number of duplicates N are plotted in
Figure 15. The left panel shows the results for MEM seeds
and the right panel shows the results for skip seeds. Here
the error rate p is set to 1%, close to the specifications
of the Illumina platform (Nakamura et al., 2011), and the
divergence rate between duplicates µ is set to an arbitrary value
of 6%.

The behaviors of the two types of seeds are dramatically
different. Let us start with MEM seeds. For every value of N, the
probability initially increases with the read size, and then drops
exponentially. The initial increase is a hallmark of MEM seeds; it
is due to the fact that duplicates can mask the target. Note that
the asymptotic decay depends on the number of duplicates N
because each duplicate can mask the target and thereby reduces
the probability that it is discovered. Overalł, these results show

that the performance of MEM seeds is poor when the target has
more than approximately 20 duplicates.

Turning to skip seeds, we see that the curves have a staircase
look with a drop every 10 nucleotides. This is so because
seeding probabilities remain unchanged until there is space
for another seed of size 16 on the read. The curves are
otherwise decreasing with a steady exponential trend where the
asymptotic decay does not depend on the number of duplicates
N. The reason is that duplicates do not prevent the target
from being discovered, they merely fool the mapper when the
target was not found. This property makes the asymptotic decay
of skip seeds substantially faster that of MEM seeds when N
is large.

Those properties are self-evident in retrospect, but they are
not necessarily obvious from the definitions of MEM seeds and
skip seeds. The main limitations of the MEM seeds are best

Frontiers in Genetics | www.frontiersin.org 24 June 2020 | Volume 11 | Article 572

Filion et al. Using Sesame for Seeding Heuristics

FIGURE 15 | Comparing seeding strategies with Sesame. (Left) MEM seeds with γ = 19 and µ = 0.06. (Right) Skip-9 seeds with γ = 16 and µ = 0.06. The

probabilities that seeding is off-target were computed using Sesame. Each curve represents the probability for a given number of duplicates (N). Estimates using

iterative methods (MEM seeds where N ≤ 20) were computed to within 1% accuracy. Estimates using Monte Carlo sampling (MEM seeds where N > 20) were

computed as the average of 500 million simulations.

understood by keeping in mind that their asymptotic decay
depends on N.

Figure 15 suggests that skip-9 seeds of size 16 are just better
than MEM seeds of size 19. However, the gain in sensitivity
comes at the cost of a larger candidate set, slowing down
the mapping process. To remain competitive, Bowtie2 further
filters the candidate set using a priority policy. But since some
candidates are not checked, the probability that seeding is off-
target is larger than shown in Figure 15. Also, we will show in
section 8.1 that the higher sensitivity of skip seeds is not as big
an advantage as it looks because seeding is not the only source of
mapping errors.

7.3. Key Insights About MEM Seeds
At least two key insights about MEM seeds can be gained from
Figure 15. The first is that it is not worth it for a MEM-based
mapper to check all the candidate loci when there are more than
approximately 20 of them. The mapper may find the correct
location, but even if this is the case, the mapping quality will
remain low because the prior chances of failure were high. A
better strategy is to either bail out to not waste time, or to switch
to a more sensitive seeding method (BWA opts for the second
and uses a re-seeding policy). It is also important to note that this
decision should be based on an estimated value of N and not, for
instance, on the size of the seed or some other variable.

A second insight is that for MEM seeds, the off-target rate
is always above 10−3 for reads of 50 nucleotides or fewer. Here
it is important to mention that the value µ = 0.06 is not
even the worst for reads of this size when p = 0.01 (according
to Figure 14, the worst value is around 0.02–0.03). So if µ is
unknown and one wishes to be conservative, it seems that reads

of 50 nucleotides cannot be mapped with confidence better than
1/1, 000.

However, this is not true for the reason that it is practically
impossible to map an Illumina read of size 50 to the wrong
location whenN = 0 (see section 8.3). Indeed, incorrect locations
are unrelated sequences in this case, and it is easy to recognize
that two sequences of size 50 are not homologous. This means
that the highest impact one can have on the mapping quality is to
check whether N is 0, or in other words, whether the target is a
unique sequence.

These insights suggest that there is a way to make MEM seeds
more useful for short read mappers. Following these principles,
we have implemented a prototype mapper based on Sesame that
shows good overall performance (Zorita et al., 2020).

8. PRACTICAL CONSIDERATIONS

8.1. True vs. Best Location
Early in the development of the theory, we distinguished the true
location from the best location. We swiftly assumed that they are
identical in order to eliminate some practical considerations that
would otherwise clutter the exposition. Throughout the article
we have developed a framework to compute the probability
that the true location is in the candidate set. We have not
mentioned anything about the probability that the best location
is in the candidate set, so our results do not address the best
location problem. It remains to establish how they contribute to
addressing the true location problem.

The issue at hand is that the candidates are tested with an
alignment algorithm that returns the best location. So even
if the true location is in the candidate set, the read may be

Frontiers in Genetics | www.frontiersin.org 25 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

TABLE 1 | Simulations of mapping errors with MEM seeds.

k N Not seeded Seeded, not best Relative error

50 1 9.2 · 10−4 8.4 · 10−5 1.09

50 10 9.0 · 10−3 7.9 · 10−4 1.09

50 100 8.1 · 10−2 5.1 · 10−3 1.06

100 1 2.4 · 10−5 7.3 · 10−6 1.30

100 10 2.9 · 10−4 6.9 · 10−5 1.24

100 100 5.5 · 10−3 5.7 · 10−4 1.10

Ideal reads were randomly generated 1,000,000 times with sequencing error rate

p = 0.01, divergence rate µ = 0.06, varying the read size k and number N of duplicates

as indicated, using MEM seeds of minimum size γ = 19. Not seeded shows how often

the read had no seed for the target, Seeded, not best shows how often the read had a

seed for the target but the target was not the best candidate, and Relative error shows

the factor between the probability that the read is not mapped to the true location and

the probability that seeding is off-target.

TABLE 2 | Simulations of mapping errors with MEM seeds.

k N Not seeded Seeded, not best Relative error

50 1 1.7 · 10−4 4.9 · 10−4 3.9

50 10 1.6 · 10−3 4.7 · 10−3 3.9

50 100 7.9 · 10−3 4.4 · 10−2 6.6

100 1 4.4 · 10−8 2.3 · 10−5 523.7

100 10 3.5 · 10−7 2.3 · 10−4 658.1

100 100 1.0 · 10−6 2.3 · 10−3 2301.0

Ideal reads were randomly generated 1,000,000 times with sequencing error rate

p = 0.01, divergence rate µ = 0.06, varying the read size k and number N of duplicates

as indicated, using skip-9 seeds of size γ = 19. The meanings of the columns are the

same as in Table 1.

mapped somewhere else because some other candidate has a
better alignment score. The question is how often this happens. If
this is a rare event, our results give a good approximation of the
probability that a read is mapped to the true location. Otherwise
the estimates may not be so useful in practice.

The answer depends on the seed type. We start with MEM
seeds because they will allow us to highlight an important
phenomenon. The key insight is that MEM seeds tend to exclude
the target from the candidate set if it is not the best location. To
develop an intuition as to why this is the case, consider a read
with a single sequencing error. The only way a candidate can have
a better score is to be a perfect match for the read. But in this case
the true location is hard-masked (see definition 8) and it is not in
the candidate set.

Excluding ties, there are two possibilities: either the true
location is the best, in which case it is seeded and the read is
correctly mapped; or the true location is not the best, in which
case it is not seeded and the read is mapped incorrectly. The read
is mapped to the true location if and only if seeding is on-target.
In practice there are ties, and reads can have more than one error,
but this is a general trend for MEM seeds.

Table 1 shows the results of simulations with MEM seeds
where we dissociate the true from the best location. In each tested
condition, we record how often the reads are mapped incorrectly
because seeding was off-target. Importantly, we also record the
cases where reads are mapped incorrectly despite the fact that
seeding was on-target. The results show that the second case

TABLE 3 | Simulations of seeding errors with MEM seeds.

k N Sesame Simulation Ratio

50 1 4.5 · 10−4 3.8 · 10−4 1.18

50 10 4.5 · 10−3 4.4 · 10−3 1.02

50 100 4.0 · 10−2 4.2 · 10−2 0.95

100 1 3.7 · 10−5 3.5 · 10−5 1.05

100 10 4.2 · 10−4 4.1 · 10−4 1.02

100 100 8.9 · 10−3 8.6 · 10−3 1.03

Realistic Illumina HiSeq 2,000 reads were randomly generated 1,000,000 times varying

the read size k and number N of duplicates as indicated, and fixing the divergence rate to

µ = 0.06 and using MEM seeds of minimum size γ = 19. Sesame shows the probability

that seeding is off-target as computed with Sesame, Simulation shows this probability

estimated by the simulation, and Ratio shows their ratio.

occurs a minor fraction of the time, meaning that the probability
that seeding is on-target is close to the probability that the read is
mapped to the true location.

For exact and skip seeds, the conclusions are different. The
situation is even the opposite if we consider reads with a single
sequencing error. In this case the target is always in the candidate
set (if the read size is greater than 2γ , where γ is the minimum
seed length), so mapping errors are never due to failures of the
seeding heuristic. Instead, mapping errors happen only when the
true location is not the best.

Table 2 shows the results of similar simulations with skip-9
seeds. In all the tested cases the probability that the true location
is not the best is substantially higher than the probability that
seeding is off-target. As a result, the Sesame estimates are very
far from the probability that the read is not mapped to the true
location. The results for exact seeds are omitted, but they are
qualitatively similar to those obtained for skip-9 seeds.

In conclusion, the off-target probabilities computed by Sesame
are close to the probability that the read is not mapped to the true
location when using MEM seeds. In contrast, the estimates are
very far when using exact seeds and skip seeds. In this case, it is
more accurate to use an estimate of the probability that the true
location is not the best, which is relatively easy to compute given
the error rate of the sequencer p, the number of duplicates N and
their divergence rate µ.

8.2. Realistic Sequencing Errors
In order to make the model tractable, we had to make some
simplifying assumptions regarding the distribution of errors
(section 3.1). In particular, we assumed that sequencing errors
are uniform on the read, which is known to not be the case with
current instruments. The errors are typically more frequent at the
ends of the reads (Nakamura et al., 2011), meaning that seedsmay
be longer than expected, impacting the probability that seeding is
off-target.

To test whether this is the case, we used the ART
simulator (Huang et al., 2012) to emulate the error distribution
of Illumina reads as per technology standards of 2016. We used
the settings for the Illumina HiSeq 2000 and generated random
reads of size 50 and 100 from the human genome. We estimated
the probability that seeding is off-target from simulations and
compared the results to calculations performed by Sesame (ART

Frontiers in Genetics | www.frontiersin.org 26 June 2020 | Volume 11 | Article 572

Filion et al. Using Sesame for Seeding Heuristics

TABLE 4 | Simulations of seeding errors with skip-9 seeds.

k N Sesame Simulation Ratio

50 1 4.5 · 10−5 4.5 · 10−5 1.00

50 10 4.2 · 10−4 3.9 · 10−4 1.07

50 100 2.1 · 10−3 1.9 · 10−3 1.11

100 1 < 10−6 < 10−6 NA

100 10 3 · 10−6 2 · 10−5 1.50

100 100 8 · 10−6 6 · 10−4 1.33

Realistic Illumina HiSeq 2,000 reads were randomly generated 1,000,000 times varying

the read size k and number N of duplicates as indicated, and fixing the divergence rate to

µ = 0.06 and using MEM seeds of minimum size γ = 19. The meanings of the columns

are the same as in Table 3.

suggests error rates p = 0.0052 and p = 0.0075 for reads of size
50 and 100, respectively).

Table 3 shows the results for MEM seeds of minimum size
γ = 19. The discrepancy with Sesame estimates is always within
a factor 1.2. Table 4 shows the same type of comparison for skip-
9 seeds of size γ = 19. The values are substantially lower than
for MEM seeds because skip-9 seeds are more sensitive. In these
conditions, the discrepancy with the Sesame estimates is within
a factor 1.5, but it is important to highlight that simulations are
unreliable for events with very low probability.

Overall, these results suggest that the relatively strong
assumptions regarding the distribution of errors are not a
major issue in practice. The answer of course depends on the
type of sequencer that is used and on the particulars of the
mapping problem.

In practical applications, it is likely that other factors will
be more detrimental for the precision of the estimates. For
instance, the number of duplicates N and their divergence rate
µ are unknown, introducing an uncertainty that propagates
to the Sesame estimates. Importantly, we assumed that
duplicates evolve independently of each other and with uniform
substitutions even in the simulations featured in Tables 3, 4
because more realistic models are tedious to implement. The
burden of this assumption on the precision of the estimate in
practical settings is difficult to gauge. Overall, Sesame estimates
should be considered approximate in all applications with real
biological data.

8.3. Spurious Random Hits
We have assumed that seeds can match only the target or one of
its duplicates. In reality, seeds have a small chance to match any
sequence of the genome.

We have assumed throughout that all the genomic sequences
that have a perfect match for a seed are considered candidate
locations. The hope is that spurious random matches are shorter
than the minimum seed length γ , but this is not always the
case. And as mentioned above, every candidate location must be
verified by an exact alignment algorithm.

Such random hits can be problematic for two reasons: First,
the time spent verifying them is wasted. Second, they can cause
false positives. Fortunately, both issues can be addressed.

To save time during the alignment phase, we can prioritize
the seeds so that the best location is likely to be discovered first,
allowing us to bail out from other alignments as early as possible.
In some cases, it is even possible to give an upper bound on the

alignment score of a candidate location so that the alignment
can be skipped altogether. These considerations depend on the
implementation of themapper so we will not develop this further.
What matters is that random hits do not impose a significant
burden on the time needed to verify the candidates.

The second issue is that random hits can generate false
positives. Such cases occur when seeding is null (meaning that
there is no seed for either the target or any of its duplicates).
Even when seeding is null, the candidate set is in general not
empty because of spurious random hits. But since such hits are
not homologous to the read, the alignment score is noticeably
low, and this case is easy to detect.

Indeed, if the candidate location is random, mismatches occur
with probability 3/4. If it is the true location, mismatches occur
with probability p. We discard the seed because it is an automatic
match of size γ (and possibly larger in the case of MEM seeds).
Say that there remain L nucleotides and that m of them are
mismatches for the candidate location. From Bayes formula, the
probability that the location is random given the number of
mismatches is

1

1+ 4L(p/3)mqL−m(1− β)/β
, (28)

where q = 1 − p and β is the prior probability that the hit
is spurious.

The value of β has little importance if p is small. To give an
example, say that p = 0.01 and that a read generates a hit in
the genome such that 33 nucleotides need to be aligned after
seeding. If the hit is random there is a 99.99% chance that at least
15 are mismatches. For m = 15, the denominator of expression
(28) is approximately 1 + 4.3 · 10−18(1 − β)/β . So unless β <

10−17, the support for the hypothesis that the hit is random is
overwhelming. Conversely, if the hit is not random, there is a
99.99% chance that 4 or fewer nucleotides are mismatches. For
m = 4, the denominator is approximately 1+ 6.8 · 109(1− β)/β ,
so unless 1 − β < 10−9, the support for the hypothesis that the
hit is not random is overwhelming. In summary, if p is small, we
do not need to worry about the value of β , one can choose for
instance β = 1/2 so that the term (1 − β)/β disappears from
expression (28).

Since the probability that the best candidate is a random
sequence is either very small or very large, it has no influence in
the first case, and it dominates the probability of a false positive
in the second case. Checking the value of expression (28) after
mapping reveals whether the hit should be discarded and the read
should be considered unmapped.

In summary, spurious random hits occur regularly, but it
is possible to minimize their computational burden. Also, they
are no cause for concern regarding false positives because
they can easily be detected using Bayes’ formula, as shown in
expression (28).

9. DISCUSSION

We have devised a set of methods to compute the probability
that seeding heuristics fail and commit the mapping process
to an error. We have also implemented the algorithms as an

Frontiers in Genetics | www.frontiersin.org 27 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

open source C library to perform the computations. This fills a
knowledge gap to understand and calibrate the performance of
the seeding heuristics. The pillars of our strategy are borrowed
from analytic combinatorics (Régnier, 2000; Nicodeme et al.,
2002; Flajolet and Sedgewick, 2009; Sedgewick and Flajolet,
2013), even though we do not follow the complete programme.
Constructing generating functions usually serves the purpose of
finding their singularities in order to approximate the solution.
In our case, however, the weighted generating functions cannot
be computed so this strategy is not applicable.

To find the probabilities of interest in the absence of a fully
specified weighted generating function, we compute only the first
terms of the Taylor series using iterative methods as explained
in section 3.6, or using Monte Carlo sampling as explained in
section 6.7. In this regard, the breakthrough is the encoding of
reads as segments in different alphabets, which is an implicit form
of Markov imbedding (Fu and Koutras, 1994).

Our strategy relies on the knowledge of two essential
parameters: the number of duplicatesN and their divergence rate
µ. These quantities can be estimated efficiently using the FM-
index (Ferragina and Manzini, 2005) as shown in our related
work on a prototype mapper based on the concepts developed
in this article (Zorita et al., 2020).

The method presented here is general, but it is important
to clearly state the assumptions it depends on. First and most
importantly, we have ignored insertions and deletions. We
assume that the sequencing errors are substitutions only, which
makes the method adapted to the Illumina technology, but not
to deletion-prone instruments such as the Oxford Nanopore
technology. We also assume that insertions and deletions never
occur among duplicated sequences. This is obviously incorrect,
but our initial tests with real data suggest that this is a minor
impediment. Incorporating insertions and deletions would make
the theory intractable, so it is presently unclear how to deal with
this type of error.

The second assumption is that the candidate set consists of all
the genomic locations that have a perfect match for at least one
seed, and that all the elements of the candidate set are tested with
an exact sequence alignment algorithm. This is possible, but it
is important to note that for plant and animal genomes, a single
seedmay have tens of thousands of hits. Therefore, most mappers
impose a limit on the number of alignments per read, opening
the possibility that the best hit is seeded but not aligned. It is clear
that in this case, the probability that the target is in the candidate
set has little to do with the probability that the read is mapped
correctly. This is again a minor impediment, since the probability
of mapping such reads correctly is low either way. Mappers can
have a lower range of confidence score when the candidate set is
too large to check every sequence.

The third assumption is that all the duplicate sequences evolve
independently of each other and at the same rate. This is again
incorrect because duplication events can happen continuously,
creating complex ancestry relationships. It is possible to infer the
ancestry using tree reconstruction techniques, but it would be
challenging to incorporate this information in the present theory.
The symbols of the alphabets developed above implicitly assume
that the sequences are exchangeable and the complexity of the
calculations explodes if it is not the case.

The last assumption is that seeds can match only the target or
its duplicates. This does not hold in general because the candidate
set usually contains spurious random hits, but we have shown
how to deal with this possibility a posteriori in section 8.3.

We have not computed off-target probabilities for spaced
seeds. In section 3.5 we highlighted the general strategy
to compute on-target probabilities with our approach.
Traditionally, such on-target probabilities have been computed
using finite automata (Buhler et al., 2005; Kucherov et al.,
2005), with the caveat that such automata can contain a very
large amount of states. There is thus an interest in developing
methods to reduce the number of states so that computations
can be performed fast (Martin and Noé, 2017). Interestingly,
the method presented in section 3.5 generates 2m + 1 states
(this is the size of the transfer matrix), where m is the number
of don’t-care positions in the seed model. This is typically
lower than the number of states in the automata, but proper
benchmarks would be required to know if our method brings
real benefits.

Computing the off-target probabilities for spaced seeds can be
done with the strategy presented in section 4, but this brings the
dimension of the transfer matrix to 4m + 1. To give a concrete
idea, the seed of PatternHunter (Ma et al., 2002) has 7 don’t-
care positions, meaning that the transfer matrix would have
16,385 rows and columns. Even though the matrix is sparse, the
computation time can be expected to be prohibitive.

Being able to compute seeding probabilities revealed some
interesting facts (sections 4.6, 5.7, and 6.8). The first is that
the seeding schemes considered here have a worst case scenario
for a particular value of µ, the divergence between duplicates.
Importantly, the worst value varies between different seeding
methods, so it is possible in theory to construct opportunistic
seeding strategies that pick the best method for every read,
depending on the value of µ. Another interesting fact is that skip
seeds can have better performance than exact seeds in the sense
that they can yield lower off-seeding probabilities (section 5.7).
However, this always comes at the cost of accuracy because
skipping nucleotides reduces the probability of on-target seeding.

We also observed that MEM seeds have a significantly higher
off-target seeding rate compared to exact seeds and skip seeds
(section 6.8). This does not mean that MEM seeding is a bad
strategy (it is usually faster than the other methods), but it is good
practice to keep an eye on performance and switch methods or
even skip the read altogether if the chances of discovering the
target are too low. We also showed in section 8.1 that for MEM
seeds, the on-target seeding rate is close to the probability that
the read is mapped to the true location, which was not the case
for exact seeds and skip seeds. In this regard, the present theory
is most useful when using MEM seeds.

Regarding the methodology, the Monte Carlo approach of
algorithm 1 is relatively straightforward, so one may wonder
why the approach with weighted generating functions would be
necessary at all for MEM seeds. The only reason is precision. To
estimate the frequency of an event by Monte Carlo sampling,
this event must occur at least a few times in the simulation. For
instance, with 1 million rounds of sampling, frequencies around
1/100, 000 or lower cannot be measured accurately. When one is
interested only in frequent events, it is thus a reasonable strategy.

Frontiers in Genetics | www.frontiersin.org 28 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

On the other hand, for N < 20, the probability that MEM
seeding is null or off-target is relatively small, so we need a
method that is accurate in this range. Fortunately, the transfer

matrix method is fast because the dimension of the matrix
◦

MN(z)
is small and the computations are not prohibitive for small
values of N.

The proposedmethodsmeet the demand for speed. One needs
to compute the probabilities only once for a given value of N and
µ (the error rate p is known and constant). For N > 20, the
iterative method is usually too slow and we need to use Monte
Carlo sampling instead. The running time depends on p, on the
size of the reads k, and on the desired number of iterations. Since
those are constant throughout the sequencing run, the method
always takes the same amount of time (around 1-10 seconds for
1,000,000 simulations of reads of size around 100 nucleotides
on modern hardware). The values of N and µ can be binned in
intervals so that there are only around 100 pairs for a total cost of
a fewminutes per run. Considering that mappers seem to process
at most 10, 000 reads per second per core, the time of mapping
a sequencing run of 250 million reads is over 7 h per core, two
orders of magnitude larger than the time required to estimate the
probabilities of error.

Finally, one may wonder if our approach has any advantage
over methods based on machine learning. Such algorithms have
already proved useful (Lee et al., 2014) and the rapid progress
in the field of deep learning suggests that it is possible to train
algorithms to accurately estimate mapping quality. In time, such
algorithms may prove faster and/or more robust because they
could learn intrinsic biases of the mapping algorithms. Yet, the
main benefit of our approach will remain: the combinatorial
constructions are a direct access to the nature of the problem.
For instance, viewing MEM seeds through the lens of hard and
soft masks turns a seemingly intractable process into a relatively
simple one (see algorithm 1). The combinatorial stance is that
there is value in the models themselves.

In conclusion, we presented a practical solution to the
problem of estimating the probability of false positives when
using seeding heuristics. This solution is adapted for mapping
short reads sequenced with the Illumina technology. Being able
to calibrate the seeding heuristic not only allows the user to
choose how to balance speed versus accuracy, but also opens new

applications. For instance, one canmap reads from contaminated
samples in pools of closely related genomes (e.g., modern human
and Neanderthal) in order to assign the reads to the organism
they belong to. In this case, the probabilities of false positives give
the right level of confidence in the assignment.

More generally, the analytic combinatorics programme is a
very powerful tool to address problems in bioinformatics. Here
we have seen how this strategy can be useful even when the
generating functions cannot be computed. Using the same ideas,
one could calibrate heuristics used in other alignment methods,
especially in the expanding field of long-read technologies.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
manuscript/Supplementary Files.

AUTHOR CONTRIBUTIONS

GF designed the theory, wrote the C library, and wrote the
manuscript. RC and EZ contributed to the theory and edited
the manuscript.

ACKNOWLEDGMENTS

We acknowledge the financial support of the Spanish Ministry of
Economy, Industry and Competitiveness (Centro de Excelencia
Severo Ochoa 2013–2017, Plan Estatal PGC2018-099807-B-I00),
of the CERCA Programme/Generalitat de Catalunya, and of
the European Research Council (Synergy Grant 609989). RC
was supported by the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement 608959. We also
acknowledge support of the Spanish Ministry of Economy and
Competitiveness (MEIC) to the EMBL partnership.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00572/full#supplementary-material

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.
(1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
doi: 10.1016/S0022-2836(05)80360-2

Arratia, R., and Gordon, L. (1989). Tutorial on large deviations
for the binomial distribution. Bull. Math. Biol. 51, 125–131.
doi: 10.1016/S0092-8240(89)80052-7

Birol, I., Chu, J., Mohamadi, H., Jackman, S. D., Raghavan, K., Vandervalk, B. P.,
et al. (2015). Spaced seed data structures for de novo assembly. Int. J. Genomics

2015:196591. doi: 10.1155/2015/196591
Brejová, B., Brown, D. G., and Vinař, T. (2003). “Vector seeds: an extension to

spaced seeds allows substantial improvements in sensitivity and specificity,” in
International Workshop on Algorithms in Bioinformatics (Springer), 39–54.

Břinda, K., Sykulski, M., and Kucherov, G. (2015). Spaced seeds improve
k-mer-based metagenomic classification. Bioinformatics 31, 3584–3592.
doi: 10.1093/bioinformatics/btv419

Buhler, J., Keich, U., and Sun, Y. (2005). Designing seeds for similarity search
in genomic DNA. J. Comput. Syst. Sci. 70, 342–363. doi: 10.1016/j.jcss.200
4.12.003

Burrows, M., and Wheeler, D. (1994). A Block-Sorting Lossless Data Compression

Algorithm. Digital SRC Research Report. Citeseer.
Califano, A., and Rigoutsos, I. (1993). “Flash: a fast look-up algorithm for string

homology,” in Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, 353–359.
Chen, Y., Souaiaia, T., and Chen, T. (2009). PerM: efficient mapping of short

sequencing reads with periodic full sensitive spaced seeds. Bioinformatics 25,
2514–2521. doi: 10.1093/bioinformatics/btp486

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S.,
(2013). Star: ultrafast universal rna-seq aligner. Bioinformatics 29, 15–21.
doi: 10.1093/bioinformatics/bts635

Faro, S., and Lecroq, T. (2013). The exact online string matching problem:
a review of the most recent results. ACM Comput. Surveys 45:13.
doi: 10.1145/2431211.2431212

Frontiers in Genetics | www.frontiersin.org 29 June 2020 | Volume 11 | Article 572

https://www.frontiersin.org/articles/10.3389/fgene.2020.00572/full#supplementary-material
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0092-8240(89)80052-7
https://doi.org/10.1155/2015/196591
https://doi.org/10.1093/bioinformatics/btv419
https://doi.org/10.1016/j.jcss.2004.12.003
https://doi.org/10.1093/bioinformatics/btp486
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1145/2431211.2431212
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Filion et al. Using Sesame for Seeding Heuristics

Fernandes, F., and Freitas, A. T. (2014). slaMEM: efficient retrieval of maximal
exact matches using a sampled LCP array. Bioinformatics 30, 464–471.
doi: 10.1093/bioinformatics/btt706

Ferragina, P., and Manzini, G. (2000). “Opportunistic data structures with
applications,” in Proceedings of 41st Annual Symposium on Foundations of

Computer Science, 390–398.
Ferragina, P., and Manzini, G. (2005). Indexing compressed text. J. ACM 52,

552–581. doi: 10.1145/1082036.1082039
Filion, G. J. (2017). Analytic combinatorics for bioinformatics I: seeding methods.

bioRxiv. 11:205427. doi: 10.1101/205427
Filion, G. J. (2018). Analytic combinatorics for computing seeding probabilities.

Algorithms 11:3. doi: 10.3390/a11010003
Flajolet, P., and Sedgewick, F. (2009). Analytic Combinatorics. Cambridge

University Press.
Fu, J. C., and Koutras, M. V. (1994). Distribution theory of runs: a Markov chain

approach. J. Am. Stat. Assoc. 89, 1050–1058.
Gagie, T., Manzini, G., and Valenzuela, D. (2017). Compressed spaced suffix arrays.

Math. Comput. Sci. 11, 151–157. doi: 10.1007/s11786-016-0283-z
Healy, J. (2016). “Flak: Ultra-fast fuzzy whole genome alignment,” in Interna- tional

Conference on Practical Applications of Computational Biology & Bioinformatics

(Springer), 123–131.
Horton, P., Kielbasa, S. M., and Frith, M. C. (2008). “Dislex: a transformation

for discontiguous suffix array construction,” in Proceedings of the Workshop

on Knowledge, Language, and Learning in Bioinformatics, KLLBI. Pacific Rim

International Conferences on Artificial Intelligence (PRICAI), 1–11.
Huang, W., Li, L., Myers, J. R., and Marth, G. T. (2012). ART: a

next-generation sequencing read simulator. Bioinformatics 28, 593–594.
doi: 10.1093/bioinformatics/btr708

Jocham, D., Schmiedt, E., Baumgartner, R., and Unsöld, E. (1986).
Integral laser-photodynamic treatment of multifocal bladder carcinoma
photosensitized by hematoporphyrin derivative. Eur. Urol. 12(Suppl. 1), 43–46.
doi: 10.1159/000472699

Kachitvichyanukul, V., and Schmeiser, B. (1988). Binomial random variate
generation. Commun. ACM 31, 216–222.

Khan, Z., Bloom, J. S., Kruglyak, L., and Singh, M. (2009). A practical algorithm
for finding maximal exact matches in large sequence datasets using sparse suffix
arrays. Bioinformatics 25, 1609–1616. doi: 10.1093/bioinformatics/btp275

Khiste, N., and Ilie, L. (2015). E-MEM: efficient computation of maximal
exact matches for very large genomes. Bioinformatics 31, 509–514.
doi: 10.1093/bioinformatics/btu687

Kiełbasa, S. M., Wan, R., Sato, K., Horton, P., and Frith, M. C. (2011).
Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493.
doi: 10.1101/gr.113985.110

Kucherov, G., Noé, L., and Roytberg, M. (2005). Multiseed lossless
filtration. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2, 51–61.
doi: 10.1109/TCBB.2005.12

Kucherov, G., Noé, L., and Roytberg, M. (2006). A unifying framework for seed
sensitivity and its application to subset seeds. J. Bioinform. Comput. Biol. 4,
553–569. doi: 10.1142/S0219720006001977

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie
2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Lee, W. P., Stromberg, M. P., Ward, A., Stewart, C., Garrison, E. P.,
and Marth, G. T. (2014). MOSAIK: a hash-based algorithm for accurate
next-generation sequencing short-read mapping. PLoS ONE 9:e90581.
doi: 10.1371/journal.pone.0090581

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. [arXiv preprint] arXiv:1303.3997.

Li, H., and Homer, N. (2010). A survey of sequence alignment algorithms
for next-generation sequencing. Brief. Bioinformatics 11, 473–483.
doi: 10.1093/bib/bbq015

Li, M., Ma, B., Kisman, D., and Tromp, J. (2004). Patternhunter II: highly
sensitive and fast homology search. J. Bioinform. Comput. Biol. 2, 417–439.
doi: 10.1142/S0219720004000661

Li, M., Ma, B., and Zhang, L. (2006). “Superiority and complexity of the spaced
seeds,” in Symposium on Discrete Algorithms: Proceedings of the Sev- enteenth

Annual ACM-SIAM Symposium on Discrete Algorithm, Vol. 22, 444–453.
doi: 10.1007/978-1-4939-2864-4_803

Lin, H., Zhang, Z., Zhang, M. Q., Ma, B., and Li, M. (2008).
ZOOM! Zillions of oligos mapped. Bioinformatics 24, 2431–2437.
doi: 10.1093/bioinformatics/btn416

Lipman, D. J., and Pearson, W. R. (1985). Rapid and sensitive protein similarity
searches. Science 227, 1435–1441. doi: 10.1126/science.2983426

Ma, B., Tromp, J., and Li, M. (2002). PatternHunter: faster and
more sensitive homology search. Bioinformatics 18, 440–445.
doi: 10.1093/bioinformatics/18.3.440

Manber, U., and Myers, G. (1993). Suffix arrays: a new method for on-line string
searches. SIAM J. Comput. 22, 935–948.

Manekar, S. C., and Sathe, S. R. (2018). A benchmark study of k-mer
counting methods for high-throughput sequencing. Gigascience 7.
doi: 10.1093/gigascience/giy125

Martin, D. E. K., and Noé, L. (2017). Faster exact distributions of pattern statistics
through sequential elimination of states. Ann. Inst. Stat. Math. 69, 231–248.
doi: 10.1007/s10463-015-0540-y

Menzel, P., Frellsen, J., Plass, M., Rasmussen, S. H., and Krogh, A. (2013).
On the accuracy of short read mapping. Methods Mol. Biol. 1038, 39–59.
doi: 10.1007/978-1-62703-514-9_3

Nakamura, K., Oshima, T., Morimoto, T., Ikeda, S., Yoshikawa, H., Shiwa, Y., et al.
(2011). Sequence-specific error profile of Illumina sequencers. Nucleic Acids

Res. 39:e90. doi: 10.1093/nar/gkr344
Navarro, G. (2001). A guided tour to approximate string matching. ACM Comput.

Surv. 33, 31–88. doi: 10.1145/375360.375365
Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.

48, 443–453. doi: 10.1016/0022-2836(70)90057-4
Nicodeme, P., Salvy, B., and Flajolet, P. (2002). Motif statistics. Theor. Comput. Sci.

287, 593–617. doi: 10.1016/S0304-3975(01)00264-X
Ounit, R., and Lonardi, S. (2016). Higher classification sensitivity of short

metagenomic reads with CLARK-S. Bioinformatics 32, 3823–3825.
doi: 10.1093/bioinformatics/btw542

Régnier, M. A (2000). unified approach to word occurrence probabilities.
Discrete Appl. Math. 104, 259–280. doi: 10.1016/S0166-218X(00)
00195-5

Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., and Brudno, M.
(2009). SHRiMP: accurate mapping of short color-space reads. PLoS Comput.

Biol. 5:e1000386. doi: 10.1371/journal.pcbi.1000386
Sedgewick, R., and Flajolet, P. (2013)An Introduction to the Analysis of Algorithms.

Addison-Wesley.
Smith, T. F., and Waterman, M. S. (1981). Identification of common molecular

subsequences. J. Mol. Biol. 147, 195–197. doi: 10.1016/0022-2836(81)9
0087-5

Sovic, I., Šikic, M., Wilm, A., Fenlon, S. N., Chen, S., and Nagarajan, N. (2016).
Fast and sensitive mapping of nanopore sequencing reads with GraphMap.Nat.
Commun. 7:11307. doi: 10.1038/ncomms11307

Sun, Y., and Buhler, J. (2005). Designing multiple simultaneous seeds for DNA
similarity search. J. Comput. Biol. 12, 847–861. doi: 10.1089/cmb.2005.12.847

Sun, Y., and Buhler, J. (2006). Choosing the best heuristic for seeded alignment
of DNA sequences. BMC Bioinformatics 7:133. doi: 10.1186/1471-210
5-7-133

Vyverman, M., Baets, B. D., Fack, V., and Dawyndt, P. (2013). essaMEM: finding
maximal exact matches using enhanced sparse suffix arrays. Bioinformatics 29,
802–804. doi: 10.1093/bioinformatics/btt042

Waterman, M. S. (1984). General methods of sequence comparison. Bull. Math.

Biol. 46, 473–500.
Xu, J., Brown J., Li, M., and Ma, B. (2006). Optimizing multiple

spaced seeds for homology search. J. Comput. Biol. 13, 1355–1368.
doi: 10.1089/cmb.2006.13.1355

Zorita, E. V., Cortini, R., and Filion, G. J. (2020). Mapping short reads, faithfully.
BioRxiv. doi: 10.1101/2020.02.10.942599. [Epub ahead of print].

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Filion, Cortini and Zorita. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 30 June 2020 | Volume 11 | Article 572

https://doi.org/10.1093/bioinformatics/btt706
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1101/205427
https://doi.org/10.3390/a11010003
https://doi.org/10.1007/s11786-016-0283-z
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1159/000472699
https://doi.org/10.1093/bioinformatics/btp275
https://doi.org/10.1093/bioinformatics/btu687
https://doi.org/10.1101/gr.113985.110
https://doi.org/10.1109/TCBB.2005.12
https://doi.org/10.1142/S0219720006001977
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1371/journal.pone.0090581
https://doi.org/10.1093/bib/bbq015
https://doi.org/10.1142/S0219720004000661
https://doi.org/10.1007/978-1-4939-2864-4_803
https://doi.org/10.1093/bioinformatics/btn416
https://doi.org/10.1126/science.2983426
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1093/gigascience/giy125
https://doi.org/10.1007/s10463-015-0540-y
https://doi.org/10.1007/978-1-62703-514-9_3
https://doi.org/10.1093/nar/gkr344
https://doi.org/10.1145/375360.375365
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/S0304-3975(01)00264-X
https://doi.org/10.1093/bioinformatics/btw542
https://doi.org/10.1016/S0166-218X(00)00195-5
https://doi.org/10.1371/journal.pcbi.1000386
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1038/ncomms11307
https://doi.org/ 10.1089/cmb.2005.12.847
https://doi.org/10.1186/1471-2105-7-133
https://doi.org/10.1093/bioinformatics/btt042
https://doi.org/10.1089/cmb.2006.13.1355
https://doi.org/10.1101/2020.02.10.942599
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Calibrating Seed-Based Heuristics to Map Short Reads With Sesame
	1. Introduction
	1.1. Mapping Reads to Genomes
	1.2. Seeding Heuristics
	1.3. The Two Types of Seeding Failure

	2. Seeds
	2.1. Exact Seeds
	2.2. Skip Seeds
	2.3. MEM Seeds
	2.4. Spaced Seeds

	3. Model and Strategy
	3.1. Sequencing Errors and Divergence of the Duplicates
	3.2. Weighted Generating Functions
	3.3. Analytic Representation
	3.4. Example 1: On-Target Exact Seeds
	3.5. Example 2: On-Target Spaced Seeds
	3.6. Example 3: On-Target Skip Seeds

	4. Off-Target Exact Seeds
	4.1. The Dual Encoding
	4.2. Segments Following "322B37F
	4.3. Segments Following "3223379 /i+
	4.4. Segments Following "3223379 /i-
	4.5. Transfer Matrix
	4.6. Illustration

	5. Off-Target Skip Seeds
	5.1. The Skip Dual Encoding
	5.2. Segments Following "322B37F i (1 i n)
	5.3. Segments Following "322B37F 0
	5.4. Segments Following "3223379 /i-
	5.5. Segments Following "3223379 /i+
	5.6. Transfer Matrix
	5.7. Illustration

	6. Off-Target MEM Seeds
	6.1. Hard and Soft Masking
	6.2. The MEM Alphabet
	6.3. Segments Following "3222378 /i
	6.4. Segments Following "3223379 /m
	Case 1: The Terminator Is "3222378 /j
	Case 2a: The Terminator | Comes Before the γ-th Nucleotide
	Case 2b: The Terminator | Comes After the γ-th Nucleotide
	Case 3a: The Terminator "3223379 /n Comes Before the γ-th Nucleotide
	Case 3b: The Terminator "3223379 /n Comes After the γ-th Nucleotide

	6.5. Transfer Matrix
	6.6. Computing MEM Seeding Probabilities
	6.7. Monte Carlo Sampling
	6.8. Illustration

	7. The Sesame Library
	7.1. Main Features of Sesame
	7.2. Using Sesame to Compare Seeding Strategies
	7.3. Key Insights About MEM Seeds

	8. Practical Considerations
	8.1. True vs. Best Location
	8.2. Realistic Sequencing Errors
	8.3. Spurious Random Hits

	9. Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

