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We propose a novel two-stage analysis strategy to discover candidate genes associated
with the particular cancer outcomes in large multimodal genomic cancers databases,
such as The Cancer Genome Atlas (TCGA). During the first stage, we use mixed mutual
information to perform variable selection; during the second stage, we use scalable
Bayesian network (BN) modeling to identify candidate genes and their interactions.
Two crucial features of the proposed approach are (i) the ability to handle mixed data
types (continuous and discrete, genomic, epigenomic, etc.) and (ii) a flexible boundary
between the variable selection and network modeling stages — the boundary that can
be adjusted in accordance with the investigators’ BN software scalability and hardware
implementation. These two aspects result in high generalizability of the proposed
analytical framework. We apply the above strategy to three different TCGA datasets
(LGG, Brain Lower Grade Glioma; HNSC, Head and Neck Squamous Cell Carcinoma;
STES, Stomach and Esophageal Carcinoma), linking multimodal molecular information
(SNPs, mRNA expression, DNA methylation) to two clinical outcome variables (tumor
status and patient survival). We identify 11 candidate genes, of which 6 have already
been directly implicated in the cancer literature. One novel LGG prognostic factor
suggested by our analysis, methylation of TMPRSS11F type II transmembrane serine
protease, presents intriguing direction for the follow-up studies.

Keywords: The Cancer Genome Atlas, Bayesian networks, multimodal big data, variable selection, mixed mutual
information, methylation, genomic and epigenomic molecular data

INTRODUCTION

The Cancer Genome Atlas (TCGA) resource contains genomic data compiled for more
than 30 different types/subtypes of cancer (Tomczak et al., 2015). For each type, clinical
outcome/progression data (e.g., tumor status and patient survival) for a considerable number
of patients is matched to the large-scale molecular data. The latter is multimodal, ranging from
genetic (e.g., somatic mutations) to expression (e.g., RNA-seq gene expression) to epigenetic
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(e.g., promoter methylation) data. Not surprisingly, there is
substantial enthusiasm for causally linking the latter to the
former using various modeling and secondary data analysis
techniques (Jeong et al., 2015; Phan et al., 2016; Hou et al.,
2018; Tian et al., 2018; Xu et al., 2018). The ultimate
goals of these analyses are (i) to gain better mechanistic
understanding of the underlying molecular biology of cancer,
primarily by identifying important genes and their interactions;
(ii) to construct compact and efficient clinical predictors (e.g.,
prognostic scores, indices and signatures); (iii) to associate
the latter with the particular patient groups and subgroups,
in the context of personalized/precision medicine. One of the
more attractive and popular methods for such multivariate
analysis is Bayesian networks (BNs) (Heckerman, 1995), a well-
established fixture in computational systems biology (Friedman
et al., 2000). Among the BN advantages are their probabilistic
nature, model flexibility, ability to handle non-additive, higher-
order, interactions, and ease of the result interpretation. However,
applications of BNs to the TCGA (and TCGA-like) data (Gevaert
et al., 2006; Xu et al., 2012, 2014; Wang et al., 2013; Huang
et al., 2015; Zhu et al., 2015; Kaiser et al., 2016; Wu et al.,
2017) face two principal difficulties: combining mixed data
types in a single analysis framework, and achieving sufficient
(for genomic data) scalability, simultaneously. (These, of course,
are the two fundamental, and interconnected, BN modeling
challenges in general, not just in the TCGA application).
The latest developments in addressing these two challenges
encompass more efficient computational approaches (Gogoshin
et al., 2017; Ramsey et al., 2017), and mathematically rigorous
and robust methods for handling mixed data, such as mixed local
probability models and/or adaptive discretization (Gogoshin
et al., 2017; Andrews et al., 2018; Sedgewick et al., 2018).
Nevertheless, resolving both difficulties simultaneously in a
generalizable toolkit (seamlessly applicable, for example, across
the individual TCGA datasets) remains elusive. A promising
approach to devising such a toolkit would be to precede
the comparatively exhaustive NP-hard BN modeling with a
variable selection procedure [for example (Zhang et al., 2014)],
where the full dataset is pared down to a subset of variables
most relevant to a particular clinical outcome or phenotype.
While alleviating the scalability issue, this, however, could
potentially “throw away the wheat with the chaff,” especially
if the variable selection process (Blum and Langley, 1997;
Guyon and Elisseeff, 2003) is of a simplistic and overly too
restrictive kind (e.g., a statistically conservative univariate filter).
There are three possible ways to address this, namely: (i)
increase the scalability of the BN modeling to genomic data
levels (possible, but impractical for frequent/serial analyses), (ii)
incorporate higher-order interactions into the variable selection
step (thus “upgrading” it from the simple filter to the wrapper
[Kohavi and John, 1997; Guyon and Elisseeff, 2003; Leng et al.,
2010) — this is the solution implemented in Zhang et al.
(2014)], or (iii) adjust the transition boundary between the
variable selection step and the BN modeling step, depending
on the investigators’ computational resources and the nature
(dimensionality, sparseness, heterogeneity) of the actual data. It
is the third analytical strategy that we propose in this study,

with the goal to achieve the optimal compromise between the
computational practicality and modeling exhaustiveness.

In our analysis pipeline, we start with the variable selection
procedure based on the mixed-type Mixed Mutual Information
(MMI) forward selection filter. We compute the MMI values
for all available gene-outcome (specifically, tumor status and
patient survival) pairs, and use the MMI frequency distribution
to select top variables/genes (or, alternatively, to remove
bottom variables/genes) before moving on to the BN modeling.
This mixed-type measure-based approach to gene selection
is the principal innovation of this paper. We then use the
maximum entropy (ME) – based discretization to construct
the mixed-type BNs using our previously reported scalable
BN modeling algorithm and software (Gogoshin et al., 2017).
Subsequently, we concentrate on the sub-networks centered
around the clinical outcome variables of interest, and identify
the molecular gene components belonging to these sub-
networks.

The proposed analysis strategy has been applied by us to
12 different TCGA cancer datasets. This allowed us to check
for robustness, scalability and generalizability. Here, we present
the results for the Brain Lower Grade Glioma (LGG), Head
and Neck Squamous Cell Carcinoma (HNSC) and Stomach
and Esophageal Carcinoma (STES) datasets (all three datasets
being reasonably well-populated and proportionally balanced
across the different outcomes and molecular data types). For the
purposes of this particular analysis, we decided to concentrate
on three types of molecular data, one discrete (somatic
mutations) and two – continuous (RNA-seq gene expression,
and promoter methylation). This selection is reflective of
the recent trends in multimodal cancer data analyses (Zhang
et al., 2014; Yoo et al., 2017), makes sense in the broad
cancer genetics context (Phipps et al., 2016; Fang et al.,
2017; Liang et al., 2017; Rajesh et al., 2017; Zhang C. et al.,
2017; Koch et al., 2018), and underscores the comparative
importance of the methylation molecular data (Koch et al.,
2018). While focusing solely on the gene-centric modalities
is inherently limiting (many disease-linked SNPs are localized
in the non-coding regions), one of the primary purposes of
this study was to showcase the MMI approach (enjoining
three different modalities in a single measure/score), which
necessitated the gene-centric analysis. In future, we plan
to generalize our analytical framework to other, non-gene-
centric, data.

We conclude by identifying a compact list of genes
potentially associated with cancer-related clinical phenotypes
(tumor status and patient survival), scrutinizing these genes in
light of the current literature, and discussing the generalizability
of our approach to the different datasets, diseases and
molecular data types.

MATERIALS AND METHODS

Data Preprocessing
The Cancer Genome Atlas, LGG, HNSC, and STES datasets
were downloaded for the clinical data [“Clinical_Pick_Tier1
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(MD5)”], SNP data [“Mutation_Packager_Calls (MD5)”],
expression data [“mRNAseq_Preprocess (MD5)”] and promoter-
centric methylation data [“Methylation_Preprocess (MD5)”].
Patients were further subdivided into (i) two disease progression
categories (according to the “tumor status” variable), and (ii)
two patient survival categories (high death risk, with survival
less than 2 years, and low death risk, with survival more than
2 years, which is a common cutoff point in recent cancer
literature). We further excluded patients with ambiguous
or missing outcome variable values (e.g., no survival status,
survival status as “living” with survival time less than 2 years,
tumor status neither “tumor-free” nor “with tumor,” etc.).
These clinical variables (“tumor status” and “2-year survival”)
were subsequently used for the variable selection purposes,
and, eventually, to extract “tumor status” and “survival” –
centered sub-networks from the full BNs. Expression data and
methylation data (designated by “E” and “M” below, for brevity)
were not discretized at this stage, as both variable selection and
BN construction tools in our computational pipeline can, by
design, accept mixed (continuous and discreet) variable types.
SNP (somatic mutation) data (designated by “S” below) were
compressed into a binary variable (presence or absence of at least
one non-synonymous mutation in at least one sample of the
particular gene).

After filtering out patient records with incomplete, partially
missing, or ambiguously labeled data, the final datasets consisted
of 4782 genes (LGG), 12516 genes (HNSC) and 16164 genes
(STES). 273 patient records were available for LGG/tumor status
analysis (140 patients with tumor, 133 without); 213 patients – for
LGG/survival (120 patients with survival less than 2 years, 93 with
long-term survival). Similarly, 260 patient records were available
for HNSC/tumor status analysis (94 patients with tumor, 166
without); 139 patients – for HNSC/survival (40 patients with
survival less than 2 years, 99 with long-term survival). Finally,
403 patient records were available for STES/tumor status analysis
(147 patients with tumor, 256 without); 258 patients – for
STES/survival (191 patients with survival less than 2 years, 67
with long-term survival).

Here we would like to re-emphasize that it is possible
to include other different molecular data types and outcome
variables, both continuous and discrete, into the proposed
framework without substantial alterations to the analysis
pipeline, except for some rudimentary data preprocessing.

Variable Selection
There are very few BN algorithms/software solutions that scale
up to (epi)genomic levels (tens to hundreds of thousands of
variables) (Gogoshin et al., 2017; Ramsey et al., 2017). Even
with these, exhaustive analyses require dedicated hardware
and weeks of processing time. This might be acceptable for
a one-off, “final” analysis, but is clearly impractical for the
exploratory research. This is why it is a common practice to
carry out variable selection (or feature selection, or feature
set reduction) in order to generate a comparatively compact
subset of variables to be subsequently fed into the network
modeling algorithm/software (Guyon and Elisseeff, 2003).
Variable selection approaches range from the very simple

(univariate filters) to increasingly more sophisticated; at some
point, the latter become essentially indistinguishable from the
multivariate modeling methods per se. Depending on the dataset
to be analyzed, different “couplings” of variable selection and
multivariate modeling methods might prove to be more or less
effective, and it is difficult to devise a priori the objectively
optimal combination for each new dataset. For a principally
network-centric data analysis approach (innate to the systems
biology), it would make sense to feed as many variables into
the network-building module as possible, thus “delegating” the
resolution of the higher-order / non-additive interactions and
conditional independence relationships to the BN algorithm
itself. Therefore, for the exploratory research, we suggest that the
investigators first define the upper BN scalability limit that they
are comfortable with (given the available software/hardware),
and then adjust the variable selection cutoff point accordingly.
For more “finalized” analysis, that limit should be raised higher
(and the variable selection process, consequently, be made
less restrictive).

In TCGA dataset (and other similar (epi)genomic resources),
there are tens of thousands of potentially predictive/relevant
variables (roughly proportional to the number of genes in the
human genome). The “hand off” point between the variable
selection and BN analysis steps should therefore vary between
100s of variables (for the exploratory and preliminary analyses)
and 1,000s of variables (for the final analyses). The actual number
might also depend on the shape of the variable selection curve, or
on the statistical significance criteria–we stop adding increasingly
less significant variables during the forward variable selection
process (or stop removing increasingly more significant variables
during the backward variable elimination process) when a certain
statistical significance cutoff point is reached (Rodin et al., 2009).
The above considerations were taken into account in the course
of this study, as detailed in the section “Results” below.

It is difficult to integrate the multimodal, mixed-type, data
into the variable selection process (filter or wrapper) as, until
recently, there has been a paucity of the usable mixed-type
metrics. In this study, a recently developed measure, Mixed
Mutual Information (MMI) (Gao et al., 2018), was used to
link the gene information (a mixed-type vector consisting of
the S, E, and M molecular data components for each gene)
to the clinical variable (tumor status or 2-year survival) in a
“forward-selection-filter” variable selection procedure. MMI is a
non-parametric and distribution-free measure [which makes it
more attractive than the alternatives, such as linear correlation –
especially in the biological networks context (Margolin et al.,
2006; Asur et al., 2007)] that is based on the entropy estimates
from k-nearest neighbor (k-NN) distances (Kraskov et al., 2004).
It is, therefore, sensitive to the choice of the k parameter. Lower
values of k (1–4) tend to lead to higher dispersion, while much
higher values (>20) are associated with unnecessarily increased
computational complexity and possible overfitting [, personal
communication from Gao et al. (2018)]. We have evaluated
different values of k on the actual TCGA datasets by measuring
the Jaccard index for the pairs of consecutive (in k) post-
selection variable sets as a function of k. The index appeared
to stabilize in the 8–20 range in 12 different TCGA datasets
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analyzed (see section “Results” below); therefore, k was set at 15
throughout this study.

Bayesian Networks Modeling
Bayesian networks modeling, in its basic form, reconstructs a
sparse graphical representation of a joint multivariate probability
distribution of random variables from a “flat” dataset. Nodes in
the network represent random variables, edges – dependencies.
Absence of an edge between the two nodes indicates conditional
independence between them. Recent work in BN methodology
refinement led to significant progress in scalability – our latest
BN modeling software implementation (Gogoshin et al., 2017)
easily processes datasets up to ∼ 1 mln variables × 1 mln
datapoints. Handling mixed variable types (both continuous and
discrete, in a typical application) is still not entirely seamless;
it was recently suggested (Gogoshin et al., 2017; Andrews
et al., 2018) that adaptive discretization (of continuous variables)
might be preferable to forcing mixed local probability models.
Consequently, we were using maximum entropy – based three-
bin discretization throughout this study – expression data
(“E” molecular data component) and methylation data (“M”
molecular data component) were discretized into three bins –
which has attractive mathematical properties, and has been
shown by us earlier to maintain near-optimal over/under-fitting
balance (Gogoshin et al., 2017).

Detailed description of the BN methodology in general
and of our implementation (including applications to other
types of high-dimensional biological data) in particular can
be found in Gogoshin et al. (2017), Zhang X. et al. (2017);
here we will only note that (1) our BN implementation uses
a hybrid “sparse candidates” + “search-and-score” graduate
descent algorithm coupled with various model scoring metrics
and maximum entropy-based adaptive discretization; (2)
in the resulting BN visualizations, numbers next to the
edges and edge “thickness” indicate relative edge strengths
(the numbers are the model scores’ ratios for the models
with/without corresponding edges, which are proportional
to the marginal likelihood ratios); (3) directionality in the
network (arrow points attached to the edges, when present)
does not necessarily imply the causality flow, and is used
predominantly for the mathematical convenience (to avoid cyclic
dependencies); (4) when deciphering conditional dependence
and independence patterns, it is useful to concentrate on the
immediate Markov neighborhood (MN) of a particular variable
of interest (such as a clinical outcome). This neighborhood
can be roughly defined as all the nodes that are in immediate
contact with (“one degree of separation” from) the node
representing the aforementioned variable of interest. Under
certain conditions, given its MN, the variable of interest is
conditionally independent of the remaining variables (rest
of the network). Therefore, deriving a MN for a variable
of interest is analogous to the variable selection activity,
specifically of the embedded variety (Guyon and Elisseeff,
2003). The central step in our computational analysis pipeline
is using full BN reconstruction to generate the MN for the
clinical outcome variable, and then ascertaining the interplay
of the (small number of) gene-related variables (S, E and M

molecular data components) within that MN. (It should be noted
that MN is a simplification of the more rigorous concept of
Markov Blanket – meaning, for our purposes, that sometimes
“two degrees of separation” are needed for encapsulating a
variable/node of interest).

RESULTS

Figure 1 depicts the variable selection process for six possible
combinations of two clinical variables (“tumor status” and
“survival”) and three TCGA cancer datasets (LGG, HNSC,
and STES). MMI (mixed mutual information) between (S, E,
M) and tumor status/survival was computed for 4782 genes
(LGG), 12516 genes (HNSC), and 16164 genes (STES). (All
six gene lists, with corresponding MMI values, are available in
Supplementary Tables S1–S6). The histogram representation of
the MMI distribution, as shown in Figure 1, is convenient, as it
allows to evaluate (both visually and quantitatively) the relative
predictive values of the top-ranking genes with respect to the
outcome variable classification. For the purposes of this study,
and to make the resulting full BNs “observable,” we have chosen
the “top genes” cutoff value of 99.5% MMI CDF (cumulative
distribution function), which leads to the selection of 24 genes
(72 future BN nodes/variables in total, comprising 24 S, 24 E,
and 24 M components) out of 4728 for two LGG networks, 63
genes (189 nodes/variables) out of 12516 for two HNSC networks,
and 81 genes (243 nodes/variables) out of 16164 for two STES
networks. Note that the S, E, and M components of each gene
vector were considered as the separate nodes/variables in the
subsequent BN construction, as at this time we do not have a
BN scoring function that can incorporate mixed multivariate
distance measures. It should also be noted that although MMI,
intuitively, should not be negative, due to the way it is computed
it can get into the negative range when (i) continuous variables
are involved, and (ii) the number of dimensions is more than
two (four, in our case). This said, all the negative MMI values
in Figure 1 reside well within the allowed algorithmic negative
deviation range, and should not influence the variable rankings
[personal communication from Gao et al. (2018)].

Interestingly, every histogram in Figure 1 has a heavy right
tail, which sometimes appears to follow a clear “knee point” – for
example, at MMI ∼ = 0.08 in Figures 1A–C. This suggests that
MMI >0.08 could also be used as a “natural” cutoff value, at least
in these three datasets.

The variable selection distributions shown in Figure 1 were
derived with the MMI parameter k set at 15. Figure 2 illustrates
the motivation behind that choice, using the LGG/survival
dataset example. Shown is the plot of the Jaccard index (JI, a.k.a.
set “Intersection over Union,” which is a common measure of
sample set similarity) comparing the gene/variable sets resulting
from the above variable selection procedure, with cutoff set at
99.5% MMI CDF, where JI(k) compares the sets obtained with k
and k+1. It is clear that as k reaches ∼15, the set composition
somewhat stabilizes; further increase in k does not seem to
offer any advantages. (JI plots for the other datasets exhibit a
similar pattern).
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FIGURE 1 | Variable selection process for six combinations of two clinical outcome variables (“tumor status” and “survival”) and three TCGA cancer datasets (LGG,
HNSC, STES). MMI between the (S, E, M) molecular data vector and tumor status/survival was computed for 4782 genes (LGG), 12516 genes (HNSC) and 16164
genes (STES). The histogram representation of the MMI distribution is shown with the selection of “top” (i.e., with the MMI CDF >99.5%) genes superimposed on the
right tail of the MMI frequency distribution. (A) LGG/tumor status; (B) LGG/survival; (C) HNSC/tumor status; (D) HNSC/survival; (E) STES/tumor status;
(F) STES/survival.
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Figures 3, 4 depict the full BNs obtained from the LGG/tumor
status and LGG/survival datasets. Supplementary Data Sheets
S1–S6 depict, in PDF format, the full BNs obtained from
the LGG/tumor status, LGG/survival, HNSC/tumor status,
HNSC/survival, STES/tumor status, and STES/survival datasets,
respectively. Six corresponding DOT (standard network /
causal graphical models format) files can be found in the
Supplementary Tables S7–S12.

While the resulting full BNs, in PDF format, are zoom-
able and searchable, and the DOT files can be exported into
the specialized network-oriented software, the full BNs tend to
be visually overwhelming for the number of variables/nodes
>100. Consequently, Figures 5–10 depict the immediate
MNs of the clinical variables/nodes in the corresponding six
BNs: LGG/tumor status (Figure 5), LGG/survival (Figure 6),
HNSC/tumor status (Figure 7), HNSC/survival (Figure 8),
STES/tumor status (Figure 9) and STES/survival (Figure 10).

It is noticeable in Figures 5–10 that all three molecular data
components (S, E, and M) are represented in the MNs. This
testifies to the efficacy and proportionality of both the MMI
measure (during the variable selection stage) and the maximum
entropy - based discretization (during the BN construction stage).
Also of note, for some genes, more than one component is
present (HTR4 E and S for STES/tumor status, CHIA E and
S for LGG/tumor status, AFP E and S for LGG/tumor status).
Conversely, some genes are associated with both tumor status
and survival (MUC4 for HNSC, TMPRSS11F, SLC6A18, and
DEFB119 for LGG).

The performance of our BN reconstruction algorithm or
software is discussed in general terms in Gogoshin et al.
(2017); here, we will evaluate the statistical significance of
the resulting MNs. While the edge strength estimates in
Figures 5–10 are useful in the relative sense, they do
not immediately translate into the statistical significance
measurements (such as p-values). Therefore, we have augmented
the edge strengths with the p-values obtained via two-sample
Kolmogorov–Smirnov (KS) probability distribution equality test
(for continuous E and M molecular component variables)
and two-sided Fisher’s exact test (for discrete S molecular
component variable). To illustrate the KS test application,
Figure 11 shows CDFs, separately for two “tumor status”
groups, for seven continuous variables present in the MN
depicted in Figure 5 (LGG/tumor status), in order of decreasing
edge strength (Figure 11A, MMP1_M; Figure 11B, DDX4_E;
Figure 11C, AFP_E; Figure 11D, CHIA_E; Figure 11E,
TMPRSS11F_M; Figure 11F, KERA_E; Figure 11G, MUC16_E).
Only MMP1_M and DDX4_E appear to be statistically
highly significant, with TMPRSS11F_M being arguably a
borderline case.

Table 1 lists the p-values for all 55 potentially predictive
molecular gene components present in six MNs depicted in
Figures 5–10, in order of decreasing edge strength for each
network / MN. 12 gene components were found to be statistically
significant (marked with an asterisk in Table 1), however, we
decide to exclude LCT_S (marked with ∗∗ in Table 1) from
further scrutiny because of the very low mutation counts in both
survival groups.

FIGURE 2 | Jaccard index (JI) (“Intersection over Union”) comparing the
gene/variable sets resulting from the LGG/survival dataset variable selection
with the cutoff set at 99.5% MMI CDF. JI(k) compares the sets obtained with k
and k+1.

Subsequently, we performed manual literature / database
search to ascertain if any of the remaining 11 genes were
previously reported in the cancer context. The following
resources were used: GeneCards (Stelzer et al., 2016) and
DisGeNET (Pinero et al., 2017) databases, PubMed, and Google
Scholar. Six genes were found to be implicated in cancer etiology
/ progression / clinical outcomes with high degree of certainty:
MMP1, DDX4, TRPM3, DPP6, KCNA1, and MUC17 (Senapati
et al., 2010; Saied et al., 2012; Lallet-Daher et al., 2013; Kawal
et al., 2016; Park et al., 2016; Schudrowitz et al., 2017). Four genes
(SLC7A14, LRRIQ, SLCO1B3, and SLC9A4) were supported by
weaker, circumstantial evidence (Chan-On et al., 2013; Matullo
et al., 2013; Fridley et al., 2016; Tanaka et al., 2017). One
gene, TMPRSS11F, has not been discussed in the cancer context
before, to the best of our knowledge [see also (Kataoka et al.,
2018)]. However, increased expression levels of a similar type II
transmembrane serine protease, TMPRSS11D, were found to be
a significant non-small cell lung cancer survival predictor (Cao
et al., 2017). Therefore, we suggest that TMPRSS11F should be
further investigated as a strong predictive factor playing a role
in LGG patients’ clinical characteristics – survival, especially.
Lower TMPRSS11F methylation values correspond to a poorer
long-term (2-year) survival. One possible mechanism is via the
proteolysis of extracellular matrix which, in turn, is linked to the
metastatic processes (Cao et al., 2017).

In summary, our analysis framework confirmed six well-
known cancer-related genes, supplied additional evidence
to support four other suspected cancer-related genes, and
identified one novel potentially strongly predictive factor,
methylation of TMPRSS11F.

DISCUSSION

Systems biology approach to the complex genetic and epigenetic
cancer data analysis is arguably superior to the simpler single-
gene (or even single-data type) alternatives. However, it is
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FIGURE 3 | Full BN derived from the LGG/tumor status data. “Tumor_Status” node in the BN is self-explanatory. Other nodes in the networks correspond to the
genes/molecular components (gene name_S/E/M). Edges in the network correspond to the dependencies between the nodes. Directionality of the edge (arrow) is
for mathematical convenience only and does not imply causation. “Boldness” of the edge is proportional to the dependency strength, also indicated by the number
shown next to the edge. Note that the BN pdf image files are searchable (using gene manes), and that all the BN pdf and source files (in DOT format) are included as
part of the Supplementary Material.

intrinsically linked to the fundamental, interrelated, challenges –
scalability, “curse of dimensionality,” accounting for non-
additive, higher-order interactions, and visualization of the
results (i.e., translation of the massive network graphs into
concrete biomedical insights). In this study we propose a
flexible and generalizable approach to the BN-based systems
biology analysis of the multi-modal cancer data, using the
TCGA database as an example. It consists of the variable
selection step (which is not computationally demanding) and the
BN reconstruction step (which is substantially computationally
demanding). Ideally, the investigators would simply feed the
complete dataset (all variables) into the BN software, obtain

the full graphical model (no matter how large and complex),
and then “zoom in” on the MN of the variable(s) of
interest, such as a clinical outcome or a cancer phenotype.
However, this is impractical for most real datasets and available
hardware configurations.

Consequently, we propose starting with the variable selection
step to select a (relatively) small subset of genes that are
associated with the variable(s) of interest (tumor status and 2-
year survival in the present study). The principal novelty of our
approach lies in using the MMI measure for the variable/gene
selection, in which all possible types of molecular information
(discrete and continuous, genetic and epigenetic) are considered
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FIGURE 4 | Full BN derived from the LGG/survival data. “Survival” node in the BN is self-explanatory. Other designations are as in Figure 3.

FIGURE 5 | MN of the “Tumor_Status” node in the LGG/tumor status BN.

FIGURE 6 | MN of the “Survival” node in the LGG/survival BN.

Frontiers in Genetics | www.frontiersin.org 8 June 2020 | Volume 11 | Article 648

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00648 June 16, 2020 Time: 19:15 # 9

Wang et al. New Multimodal Analysis Framework

FIGURE 7 | MN of the “Tumor_Status” node in the HNSC/tumor status BN.

FIGURE 8 | MN of the “Survival” node in the HNSC/survival BN.

FIGURE 9 | MN of the “Tumor_Status” node in the STES/tumor status BN.

FIGURE 10 | MN of the “Survival” node in the STES/survival BN.

simultaneously. The other innovative aspect of our approach
lies in the adjustability of the “hand-off” point between the
variable selection and BN modeling steps. This hand-off point
can depend on the investigators’ computational resources, the
shape of the variable selection curves, or the predefined statistical
cutoff points. For example, ∼20 K genes can be reduced to
100–200 genes for the subsequent BNs construction, in which
case the complete analysis takes less than an hour on a mid-
level PC. When feeding the complete datasets (10,000–15,000
genes, in case of TCGA and similar genomic resources) into our
BN software (Gogoshin et al., 2017), without the preliminary
variable selection step, it takes about 3 days to build a full
BN on a dedicated multi-core workstation. Therefore, the
investigators can choose the appropriate balance depending on
whether they are interested in a quick, exploratory analysis or a
finalized, exhaustive one.

In our analyses, the final predictive gene sets (such as
shown in Table 1) were different from the sets (of comparable
sizes) of “top” genes obtained in the variable selection step
alone (otherwise there would be no need to invoke the
computationally expensive BN modeling step). This was to be

expected, because BN modeling is a multivariate modeling tool
(which aims to reconstruct the most fitting pattern of conditional
independencies in the MN of a clinical variable), while MMI
ranking is a univariate variable selection “filter” that does not
account for the dependencies between the (top) genes. Another
reason that the two corresponding gene sets tend to be different
has to do with the fact that the first analysis stage is gene-
centric, whereas the second analysis stage separates the three
molecular modalities. Limiting our analysis pipeline to just
the first stage (MMI filter/ranking) would therefore miss the
strong one-modality (but week multiple-modalities) predictors.
In future, we plan to study the extent of intersection of such
two sets as a function of the “hand-off” point (between MMI
pre-ranking and full BN analysis) parameter.

Our computational pipeline is inherently generalizable, as it
can be directly applied to any large multimodal genetic/epigenetic
dataset with minimal preprocessing. The only two changeable
parameters are the aforementioned variable selection / BN
modeling hand-off point, and the BN discretization mechanism.
The latter is currently set as the 3-bin maximum entropy-based
discretization coupled with the multinomial local probability
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FIGURE 11 | CDFs, shown separately for two “tumor status” groups, for seven continuous variables present in the MN depicted in Figure 5 (LGG/tumor status), in
order of decreasing edge strength. (A) MMP1_M; (B) DDX4_E; (C) AFP_E; (D) CHIA_E; (E) TMPRSS11F_M; (F) KERA_E; (G) MUC16_E. P-values for the
two-sample Kolmogorov-Smirnov test are shown in each chart.

model (Gogoshin et al., 2017). This is not the most elegant, or
universally applicable, solution. In future, we plan to develop a
novel BN model scoring function derived from a mixed distance
measure (such as the MMI), or a similar metric that expresses
divergence between the current network model and the data via

mixed-type distances. The resulting two-stage analytical strategy
will thus fully automatically deal with the mixed variables, in
both of its stages. This has not been done before, so we plan
to implement and test the MMI-based BN algorithm alongside
the more established mixed-type BN solutions (hybrid local
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TABLE 1 | P-values for 55 potentially predictive molecular gene components
present in six MNs depicted in Figures 5–10, subdivided by six datasets, in order
of decreasing edge strength for each dataset/MN.

(A)

Gene_component BN edge strength p-value

LGG/tumor status

MMP1_M 14.13 0.0001*

DDX4_E 12.19 0.0003*

AFP_E 4.41 0.8208

CHIA_E 4.09 0.9813

TMPRSS11F_M 2.76 0.1330

KERA_E 2.23 0.8928

MUC16_E 0.66 0.7521

AFP_S 0.61 0.4985

SLC6A18_S 0.51 ∼1.0

VIL1_S 0.45 0.2364

DEFB119_S 0.44 0.4872

C16orf11_S 0.41 ∼1.0

CHIA_S 0.41 ∼1.0

(B)

LGG/survival

TMPRSS11F_M 6.92 0.0003*

PKHD1L1_S 1.83 0.5818

FCRL5_S 1.55 0.1895

DEFB119_S 0.28 ∼1.0

SLCO6A1_S 0.28 ∼1.0

ABCG8_S 0.24 0.4366

TRPM1_S 0.02 0.1895

(C)

HNSC/tumor status

SLC7A14_E 14.48 2.1230e-05*

MUC7_M 13.98 0.3432

ASB4_M 10.05 0.2832

CSMD1_S 5.07 ∼1.0

CNTNAP5_M 2.73 0.5261

MUC4_S 1.85 0.1496

CDH10_S 0.52 ∼1.0

WDR49_S 0.44 ∼1.0

(D)

HNSC/survival

FLG_M 6.07 0.2427

MUC4_S 5.42 0.4103

LCT_S 2.84 0.0226**

PCDH10_S 1.82 0.3544

KRT24_S 1.3 0.4942

ERN2_M 0.99 0.4832

CDH19_S 0.53 0.5787

(E)

STES/tumor status

LRRIQ_E 20.15 0.0004*

HTR4_E 7.18 0.2960

(Continued)

TABLE 1 | Continued

Gene_component BN edge strength p-value

DSG1_M 6.73 0.1204

TRPM3_S 3.80 0.0245*

APOB_S 3.50 0.2723

CNTNAP4_S 2.76 0.7784

KPRP_S 2.69 ∼1.0

DUSP27_S 1.72 0.5480

PCDHA1_S 1.72 0.8074

SBSN_S 1.54 0.6248

PNLDC1_S 1.43 ∼1.0

LOC100190940_S 0.83 ∼1.0

KCNV1_S 0.45 ∼1.0

HTR4_S 0.19 0.3594

CHRNA4_S 0.16 0.3968

ZNF716_S 0.10 ∼1.0

(F)

STES/survival

SLITRK1_M 7.12 0.1082

DPP6_S 4.37 0.0280*

SLCO1B3_S 2.95 0.0059*

PCLO_S 2.28 0.7238

LPA_S 2.25 0.0549

SLC9A4_S 1.96 0.0059*

KCNA1_S 1.93 0.0108*

COL11A1_E 1.83 0.2016

PGLYRP3_S 1.83 0.1119

PGC_S 1.43 0.4527

C20orf114_S 1.32 ∼1.0

MUC17_S 1.13 0.0008*

FAM83C_S 1.10 0.6515

DCDC1_S 0.87 0.2051

KRT6B_S 0.64 ∼1.0

Twelve gene components were found to be statistically significant (marked with *);
LCT_S (marked with **) was excluded from further analysis because of the very
low mutation counts (zero mutations in >2-year survival group, three mutations in
<2-year survival group).

probability models, adaptive discretization), and use both real
and simulated data to investigate which method is preferable.

Another limitation of the present study has to do with its
primary focus on the clinical outcomes / phenotypes; at this time,
we decided to largely concentrate on the MNs of the clinical
variables/nodes. In future, we intend to analyze the resulting
full BNs more “holistically,” paying attention to the general
network topological properties, gene clusters, hub and bottleneck
genes, etc. Consequently, one useful extension of our analytical
framework would be to incorporate multiple clinical outcomes /
phenotypes into the network analyses, to see if the inter-outcome
dependencies are reflected in the resulting networks, and if they
are mediated by other nodes/variables.

Application of our pipeline to TCGA data resulted in the
identification of a number of candidate genes for the different
clinical cancer characteristics, via varied molecular components.
It is well known that epigenetic processes / DNA methylation play
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an important role in many cancers’ diagnosis, progression, and
outcome; our results support that notion, as many of the most
statistically significant predictors generated in the present study
were in fact the methylation molecular components (Table 1).
Notably, the one novel candidate gene pinpointed in this study,
TMPRSS11F, likely would not have been identified via any other
(non-epigenetic) modality. Our results, therefore, underscore the
essentiality of the simultaneous analysis of different molecular
modalities, including the epigenetic ones, for the precision or
personalized medicine to be effective in cancer treatment.
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