
fgene-11-00663 June 30, 2020 Time: 13:26 # 1

ORIGINAL RESEARCH
published: 30 June 2020

doi: 10.3389/fgene.2020.00663

Edited by:
Marcelo R. S. Briones,

Federal University of São Paulo, Brazil

Reviewed by:
Michael Poidinger,

Royal Children’s Hospital, Australia
Manal Said Fawzy,

Suez Canal University, Egypt

*Correspondence:
Wu Zhang

zhangwu516@zju.edu.cn
Xiangdong Cheng

chengxd@zcmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 09 March 2020
Accepted: 01 June 2020
Published: 30 June 2020

Citation:
Wei S, Lu J, Lou J, Shi C, Mo S,

Shao Y, Ni J, Zhang W and Cheng X
(2020) Gastric Cancer Tumor

Microenvironment Characterization
Reveals Stromal-Related Gene

Signatures Associated With
Macrophage Infiltration.

Front. Genet. 11:663.
doi: 10.3389/fgene.2020.00663

Gastric Cancer Tumor
Microenvironment Characterization
Reveals Stromal-Related Gene
Signatures Associated With
Macrophage Infiltration
Shenyu Wei1†, Jiahua Lu2,3,4†, Jianying Lou5, Chengwei Shi1, Shaowei Mo1,
Yaojian Shao1, Junjie Ni1, Wu Zhang6,7* and Xiangdong Cheng8*

1 Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China, 2 Division
of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang
University, Hangzhou, China, 3 NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China, 4 Key
Laboratory of Organ Transplantation, Hangzhou, China, 5 Department of Hepato-Pancreato-Biliary Surgery, The Second
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 6 Shulan Hospital Affiliated to Zhejiang Shuren
University Shulan International Medical College, Hangzhou, China, 7 School of Medicine, Zhejiang University, Hangzhou,
China, 8 Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou, China

The tumor microenvironment (TME) has attracted attention owing to its essential role in
tumor initiation, progression, and metastasis. With the emergence of immunotherapies
for various cancers, and their high efficacy, an understanding of the TME in gastric
cancer (GC) is critical. The aim of this study was to investigate the effect of various
components within the GC TME, and to identify mechanisms that exhibit potential as
therapeutic targets. The ESTIMATE algorithm was used to quantify immune and stromal
components in GC samples, whose clinicopathological significance and relationship
with predicted outcomes were explored. Low tumor mutational burden and high M2
macrophage infiltration, which are considered immune suppressive characteristics and
may be responsible for unfavorable prognoses in GC, were observed in the high stromal
group (HR = 1.585; 95% CI, 1.112–2.259; P = 0.009). Furthermore, weighted correlation
network, differential expression, and univariate Cox analyses were used, along with
machine learning methods (LASSO and SVM-RFE), to reveal genome-wide immune
phenotypic correlations. Eight stromal-relevant genes cluster (FSTL1, RAB31, FBN1,
ANTXR1, LRRC32, CTSK, COL5A2, and ENG) were identified as adverse prognostic
factors in GC. Finally, using a combination of TIMER database and single-sample gene
set enrichment analyses, we found that the identified genes potentially contribute to
macrophage recruitment and polarization of tumor-associated macrophages. These
findings provide a different perspective into the immune microenvironment and indicate
potential prognostic and therapeutic targets for GC immunotherapies.
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INTRODUCTION

Gastric cancer (GC) is the fifth most frequently diagnosed cancer
and the third leading cause of cancer-related deaths worldwide
(Bray et al., 2018). Advanced patients who are no longer eligible
for surgery are forced to resort to other therapies. In the past five
years, immunotherapy has emerged as the standard of care for
many advanced cancers (Lordick et al., 2017). In GC, positive
responses to immunotherapy are limited to a small fraction of
patients, and, owing to tumor heterogeneity, its efficacy remains
to be elucidated (Shi et al., 2012; Salati et al., 2019). Therefore, an
understanding of immunotherapy mechanisms is a priority for
the management and extension of positive responses to broader
target populations.

The tumor microenvironment (TME) is a repertoire of
ostensibly normal cells, recruited by cancer cells, that contribute
to cancer initiation, growth, and dissemination (Hanahan
and Weinberg Robert, 2011). Components of TME include
fibroblasts, immune cells, endothelial cells, along with their
secreted extracellular matrix (ECM) (Kobayashi et al., 2019).
With the understanding of the diversity and complexity of TME
in GC deepening, mounting evidence suggests its crucial role in
tumor initiation, progression, immune evasion, and its effect on
tumor response to immunotherapies (Lee et al., 2014). Prevalent
infection of Helicobacter pylori in GC patients underlies a chronic
inflammatory environment, which is considered a major risk for
GC development (Polk and Peek, 2010). In addition, patients with
intestinal metaplasia, gastric atrophy, and cancers demonstrated
an increased incidence of genetic alterations strongly correlated
with immune response (Lott and Carvajal-Carmona, 2018).
Therefore, through the systematic analysis of the heterogeneity
and complexity of GC TME, typical tumor characterization
could be identified, and our ability for guiding and predicting
immunotherapies could also be improved (Zeng et al., 2019).
Previously, tumor immune infiltration was mainly studied using
flow cytometry and immunohistochemistry (IHC), which require
large amounts of tissues and high sample quality (Mellors, 1968;
Melato, 1997). Nowadays, emerging computational methods
are supporting these analyses and rapidly revealing a broader
intra-tumoral immune landscape. Such methods are based on
gene expression profiles and immunological features, which
include Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data (ESTIMATE) and Cell-
type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIOBSORT) algorithms (Yoshihara et al., 2013;
Newman et al., 2015).

Consequently, on this basis, we performed a multi-
dimensional and multi-perspective analysis to reveal the

Abbreviations: CIOBSORT: Cell-type Identification By Estimating Relative
Subsets Of RNA Transcripts; DEGs: differentially expressed genes; ECM:
extracellular matrix; ESTIMATE: Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data; GC: gastric cancer; GS: gene
significance; HR: hazard ratio; LASSO: least absolute shrinkage and selection
operator; MEs: Module Eigengens; ssGSEA: single-sample gene set enrichment
analysis; SVM-RFE: support vector machine-recursive feature elimination; TAMs:
tumor-associated macrophages; TCGA: The Cancer Genome Atlas; TIMER:
Tumor Immune Estimation Resource; TME: tumor microenvironment; WGCNA:
weighted gene co-expression network analysis.

potential relationship between immune infiltration and the
genome in GC using various advanced bioinformatic algorithms.
In this study, we used weighted gene co-expression network
analysis (WGCNA) to build gene networks, through which
the connection between corresponding genes are identified
and weighted based on their expression. After transforming
the expression profiles into weighted networks, the genes are
clustered into modules with distinct clinical characteristics, in
which the genes are highly co-expressed. Compared with direct
screening of differentially expressed genes (DEGs), gene sets
identified with current methods are more biologically connected
and significant (Wang et al., 2019). Furthermore, machine
leaning methods including support vector machine-recursive
feature elimination (SVM-RFE) and least absolute shrinkage and
selection operator (LASSO) algorithms, were adopted for the
identification genes correlating with prognosis. The interactive
employment of the two methods ensures the hub genes with best
prognostic value and multiple characteristics. Additionally, the
potential relationship between immune features and hub genes
were subjected to single-sample gene set enrichment analysis
(ssGSEA) for second validation, which greatly enhanced the
reliability of our study.

Overall, we aimed to identify hub genes associated with
GC TME by combining WGCNA with immune and stromal
scores in The Cancer Genome Atlas (TCGA) database. Our
results established an optimized combination of various
advanced algorithms to identify TME-related genes and
revealed potential mechanisms by which the TME-related genes
promoted GC development. The workflow is summarized in
Supplementary Figure S1.

MATERIALS AND METHODS

Data Acquisition and Pre-processing
Gene expression data for 375 GC samples and 32 normal
samples were downloaded as level 3 RNA-seq FPKM datasets
from TCGA1. Ensembl IDs were converted into gene symbol
matrices using online datasets2. Expression values for the same
gene names were averaged. The mRNA expression matrix was
extracted from standardized data. GC sample somatic mutation
data were downloaded using the TCGAbiolinks R package and
portal mutect2 (Colaprico et al., 2016). The maftools R package
was used for mutational profile analysis and visualization. The
corresponding clinical information from patients with GC,
including data for age, gender, ethnicity, microsatellite instability,
pathologic stage, histologic grade, survival status, and survival
time were retrospectively collected from the TCGA database
(Supplementary Table S1).

Tumor Mutational Burden Calculation
TMB, the number of somatic missense mutations per
megabase of a patient’s genome, is a potential biomarker
for prediction of response to immunotherapy (Rizvi et al., 2015;

1https://portal.gdc.cancer.gov/
2http://asia.ensembl.org/index.html
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Goodman et al., 2017). In this study, 38 Mb was used as the
estimated whole exome size (Chalmers et al., 2017). We
determined TMB using the equation: TMB = Si×1,000,000

I
(I represents the number of exonic bases with a coverage
depth ≥100×, and Si represents the absolute number of
somatic mutations).

WGCNA
The genes with upper 25% median absolute deviation were
selected to guarantee data heterogeneity and accuracy of
WGCNA analysis. We calculated the Pearson correlation
coefficient between each paired gene using their absolute
transcript expression values, defined as: Lij =

∣∣cor(xi, xj)
∣∣ (L

represents the Pearson correlation coefficient between gene i
and j). We presented this value in a co-expression similarity
matrix. We exponentiated the correlation coefficient to reflect
the continuous nature of the genes with potential co-expression.
To maintain scale independence and mean connectivity balanced
in a topology network, we calculated thresholding powers from
1 to 20. An appropriate power value was selected to emphasize
strong correlations and to penalize the weak ones to achieve
a scale-free topologic network. Next, the weighted adjacency
matrix was constructed in power operation: ast = lβst (where
a is the adjacency between genes s and t). The topological
overlap matrix (TOM) was converted from the adjacency matrix
to reflect the sum of direct and indirect correlations between
genes in the network. Then, we performed hierarchical clustering
based on the TOM-based dissimilarity value (1-TOM) and
obtained module dendrograms. The minimum genome size of
the module was set as 40.

Gene significance (GS) represents the correlation between
gene expression and clinical characteristics. Module eigengenes,
the first principal components, were calculated to identify the
gene expression signature landscape of each module. Module
eigengenes were correlated with clinical traits in a heatmap.
To merge similar modules and augment the capacity of the
modules, the cutoff value was set as 0.25. Clinical characteristics
were analyzed with the gene modules. After identifying modules
most related with interesting phenotypes, GS was correlated with
module membership (MM), defined as the similarity between a
gene expression profile and the module in which it belongs.

Functional Enrichment Analysis and
Screening Differentially Expressed
Genes
For genes in the module being examined, we used the
clusterProfile R package for gene ontology functional annotations
with a false discovery rate (FDR) threshold less than 0.05. The
limma R package was used to identify genes aberrantly expressed
in GC, with the selection criteria of |log2 FC| > 0.3 and
FDR < 0.05 (Yu et al., 2012).

Immune Infiltration Evaluation in GC
Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data was used to evaluate the
concentration of infiltrating non-tumor cells within the TME

(Yoshihara et al., 2013). The proportions of infiltrating-stromal
and immune cells in GC samples were quantified by stromal and
immune scores using gene expression signatures.

Tumor Immune Estimation Resource (TIMER)3, is an open
source server for comprehensive analysis of tumor-infiltrating
immune cells across various cancers (Li et al., 2017). We
explored the association between the expression of selected
genes and the infiltration of six major immune cells in
GC: CD4+ T cells, CD8+ T cells, B cells, neutrophils,
macrophages, and dendritic cells. This same analysis was used
to explore the correlation between hub genes and specific
immune cell markers. The immune gene markers were selected
based on the CellMarker online database4 and prior studies
(Mlecnik et al., 2011; Tse and Kwong, 2015; Danaher et al., 2017).

CIBERSORT was used to predict the proportion of cells within
the 22 human immune cell subsets in GC samples (Newman
et al., 2015). The algorithm was suitable for microarray data
analysis; therefore, we used the voom R package to correct
mRNA expression values. CIBERSORT was run using the LM22
signature (downloaded from website https://cibersort.stanford.
edu) and 1000 permutations, with output values of P < 0.05
preserved. The results were generated as a violin plot using the
ggplot2 R package.

LASSO and SVM-RFE Algorithms
Univariate cox analysis was used to identify potential hub genes
with prognostic value. Then, we used LASSO and SVM-RFE
algorithms to screen the genes with the best prognostic prediction
value in GC. SVM-RFE and LASSO logistic regression was
performed using the glmnet and e1071 packages, respectively
(Friedman et al., 2010; Huang et al., 2014). LASSO regression
was employed to minimize extra redundancy and irrelevance.
SVM-RFE is a feature selection algorithm that ranks the features
according to the recursive feature deletion sequence based on the
support vector machine. Overlapping genes identified using these
two algorithms were regard as hub genes.

Verification of Predictive Performance
and Differential Expression
The prognostic performance of the eight hub genes in GC
patients was verified using the Kaplan–Meier plotter database5

(Lanczky et al., 2016). The Kaplan–Meier plotter can assess the
significance of more than 50,000 genes for survival in nearly
1500 GC samples, based on the HGU133 Plus 2.0 array. The
online web server Oncomine6 was used to examine hub gene
expression levels across diverse cancer types and corresponding
normal tissues. The threshold was set as P-value = 1E-4, fold
change = 2, gene rank = 10%, data type = mRNA. We also selected
GSE54129 and GSE79973 from the Gene Expression Omnibus
(GEO) database7 to compare differences in hub gene expression
between GC and normal gastric tissues.

3http://timer.cistrome.org/
4http://biocc.hrbmu.edu.cn/CellMarker/
5http://kmplot.com/analysis
6https://www.oncomine.org
7https://www.ncbi.nlm.nih.gov/geo/
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ssGSEA
Single-sample gene set enrichment analysis, a deconvolution
algorithm based on gene set enrichment analysis (GSEA),
transforms gene expression profiles into quantified immune cell
fractions in single tumor samples. We used the GSVA R package
to evaluate the proportion of 24 innate and adaptive immune
cell subtypes in each GC sample. These cell types included
natural killer (NK) cells, neutrophils, T effector memory (Tem),
Tgd, mast cells, eosinophils, plasmacytoid dendritic cells (pDC),
immature DCs (iDC), dendritic cells (DCs), macrophages, T
follicular helper (TFH), T central memory cells (Tcm), Th2,
Th17, CD56dim NK cells, regulatory T (Treg) cells, activated
DCs (aDCs), cytotoxic cells, T cells, and B cells (Hanzelmann
et al., 2013). The specific immune gene signatures were previously
described (Bindea et al., 2013). We divided the immune cell
infiltrating patterns of each sample into low-, median-, and high-
infiltration groups using hierarchical agglomerative analyses
based on Ward’s linkage and Euclidean distance. The relationship
between the observed immune infiltrating patterns and overall
survival in GC patients was also compared. Finally, we verified
the correlation between hub gene expression and immune
infiltrating levels in GC.

Statistical Analysis
The statistical analysis was mainly performed in R version
3.5.1. Differences between groups were assessed using an
independent t-test. Benjamini and Hochberg method was used
for multiple correction test. Survival curves were generated
using the GraphPad Prism 7 software and Kaplan–Meier plots
databases. Survival analysis results were displayed as P-values and
hazard ratios (HRs) from a log-rank test. Spearman’s correlation
analysis was performed to evaluate the correlation between gene
expression and immune infiltrating level. P-values < 0.05 were
considered to indicate statistically significant results.

RESULTS

Stromal Scores Identified as an Immune
Indicator Associated With Prognosis in
GC
Gastric adenocarcinoma mutation data were analyzed based on
whole-exome sequencing. The 20 genes with the most significant
mutations in GC samples were identified using the MutSigCV
algorithm. The clinical profiles including ethnicity, tumor grade,
and gender of the patients with GC that provided each sample
are listed in Figure 1A. MUC16 is one of the most significantly
mutated genes in the GC cohorts. To explore its association
with prognosis and TMB in patients with GC, we calculated the
TMB for each GC sample. GC patients with MUC16 mutations
were significantly associated with a higher TMB (P < 0.001)
and better survival outcomes (HR = 1.792, P = 0.002) than
patients without MUC16 mutations (Figures 1B,C). Based on the
median value of TMB, we found that the high-TMB group was
significantly associated with better survival prognosis than the
low-TMB group (HR = 1.648, P = 0.031) in GC (Figure 1D).

To investigate the correlation between the TME and TMB in
GC, we calculated stromal and immune scores, and tumor purity
of each sample using the ESTIMATE algorithm. GC cohorts were
divided into two groups based on the median value of each index.
The low-TMB group tended to have higher stromal and immune
scores but lower tumor purity (P < 0.05), indicative of a negative
correlation between stromal scores and TMB (Figures 1E–G). In
Kaplan–Meier survival analysis, the high stromal scores group
had significantly poorer prognosis (HR = 1.585, P = 0.009)
than did the low stromal group in GC (Figure 1H). The
survival outcome was not statistically significant in the different
immune (P = 0.178) and ESTIMATE (P = 0.115) scores groups
(Figures 1I,J). These results suggest that TMB is negatively
correlated with stromal scores, and the underlying molecular
mechanisms in GC warrant further investigation.

Identification of Stromal Scores Relevant
Gene Modules Using WGCNA
To identify gene modules with the most significant
immunological features and to elucidate the mechanisms
underlying the role of the TME in GC development and
prognosis, we constructed a weighted gene co-expression
network. After eliminating 23 outlier samples (Supplementary
Figure S2A), genes with the highest 75% variance were placed in
a cluster dendrogram. To satisfy a scale-free network (R2 = 0.94),
the soft threshold β was set at 4 and the topology model fit index
was set at 0.9 (Figures 2C,D). After identifying the eigengenes of
each module, 14 merged modules were obtained (Figures 2A,B).

The correlation between the modules and clinical phenotypes
including survival status, age, gender, histologic grade, pathologic
stage, stromal scores, immune scores, ESTIMATE scores, tumor
purity, TMB, TP53 mutation status, and MUC16 mutation status
were calculated and shown as a heatmap based on MMs and
GS (Figure 2E and Supplementary Figure S2B). The brown
and yellow modules strongly correlated with tumor immune-
microenvironment-related phenotypes, and contained 273 and
272 genes, respectively. The brown module was most significantly
associated with stromal score (Cor = 0.82, P = 2e-77) and its
correlation coefficients with immune scores and tumor purity
were 0.37 and −0.66, respectively (P < 0.001). Additionally, the
brown module was negatively correlated with TMB (Cor =−0.21,
P = 2e-4). The yellow module correlated with immune score
(Cor = 0.78, P = 4e-65). Our previous analyses suggested a
significant prognosis difference between different stromal scores
and TMB groups. Therefore, we chose the brown module as
the module of interest for further analysis. We performed
correlation analysis between MM of the brown module and
GS of different clinical phenotypes (Figure 2F). The correlation
between MM and stromal score GS showed a favorable linear
fitting (Cor = 0.93, P = 8.3e-120).

Functional Enrichment Analysis for the
Module of Interest
GO analysis was used to reveal the underlying biological
mechanisms in the brown module using the “clusterProfile” R
package. Consistent with WGCNA results, functional annotation
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FIGURE 1 | (A) The top twenty genes that were most frequently mutated in gastric cancer (GC) are displayed based on their mutation frequency in a waterfall plot.
The corresponding gene mutation patterns and clinical status (ethnicity, grade, and gender) of the stomach adenocarcinoma (STAD) cohort are shown in the
comment bar. (B) Kaplan–Meier survival analysis stratified by MUC16 mutation status. (C) Association of tumor mutation burden (TMB) with MUC16 mutation status.
(D) Survival curves show that the low-TMB group had poorer overall survival (OS) than the high-TMB group. (E) Differences in stromal scores between low- and
high-TMB groups. (F) Differences in immune scores between low- and high-TMB groups. (G) Differences in tumor purity between low- and high-TMB groups.
(H) Kaplan–Meier survival analysis divided by stromal scores. (I) Kaplan–Meier survival analysis divided by immune scores. (J) Kaplan–Meier survival analysis divided
by ESTIMATE scores. ****P < 0.0001; **P < 0.01.
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FIGURE 2 | Weighted gene co-expression network analysis. (A) Hierarchical clustering of 14 module eigengenes (B) The gene cluster dendrogram is generated
according to the dissimilarity measure. Each branch of the cluster dendrogram represents a gene and corresponds to 14 different co-expression modules. (C) The
scale-free fit index and mean connectivity are calculated with different soft-thresholding powers (β) from 1 to 20. (D) The co-expression network connectivity
distribution is demonstrated in the plot. The soft threshold β is selected as 4. The logarithm of the network connectivity k is shown on the x-axis, while the logarithm
of the corresponding frequency distribution is shown on the y-axis. The distribution follows a straight line, representing an approximately satisfactory scale-free
topology network (correlation coefficient = 0.94). (E) The correlation between different module eigengenes and various clinical parameters of gastric cancer in a
heatmap. The brown module is most positively associated with stromal scores and the yellow module is most positively associated with immune scores. (F) Scatter
plot showing the brown module eigengenes.

clustering of brown module genes exhibited strong association
with stroma-related biological functions, including “extracellular
structure organization,” “extracellular matrix disassembly,”
“integrin binding,” “extracellular matrix organization,” “cell-
substrate adherens junction,” and “collagen metabolic process.”
Important biological functions including “leukocyte migration,”
“regulation of vasculature development,” and “response
to hypoxia” were also significantly enriched in the brown
module (Figure 3A).

Screening of Differentially Expressed
Potential Hub Genes
We performed differential expression analysis for genes in the
brown module to identify potential tumorigenic factors. Owing
to the biological cascading effect, potential hub genes with
low expression values within tumors might play important
roles in TME development. To eliminate such bias, we
adopted a relatively broad inclusion criterion. With the cut-
off threshold set as |log 2 FC| > 0.3 and FDR < 0.05,
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FIGURE 3 | Identification of potential hub genes and their correlation with immune infiltration in gastric cancer. (A) Brown module gene ontology enrichment analysis.
(B) The 40 genes with the highest intramodular connectivity value within the brown module are demonstrated. Node size is based on the intramodular connectivity
within the brown module. The node color changes from yellow to red in ascending order according to the foldchange of the potential hub genes in this study.
(C) Correlation of potential hub gene expression with immune infiltrating level in stomach adenocarcinoma based on TIMER database; blue and red indicate positive
and negative correlations, respectively. (D) Correlation of infiltrating levels of various immune cells with overall survival in stomach adenocarcinoma according to the
TIMER database. Red line represents high infiltrating levels (top 50%), blue line represents low infiltrating levels (bottom 50%). (E) Volcano plot showing the
differentially expressed genes in the brown module. (F) Univariate Cox analysis for potential hub genes obtained 14 genes associated with prognosis in gastric
cancer. (G) Trendline of the expression of potential hub genes at various gastric cancer stages.

160 DEGs in the brown module were screened out. Of these
DEGs, 129 were up-regulated, and 31 were down-regulated
in GC tissues (Figure 3E). To identify the most centrally

connected genes within the weighted gene co-expression
network, we screened out 40 brown module genes with the
highest intramodular connectivity. Among them, 26 genes
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were significantly up-regulated and defined as potential hub
genes (Figure 3B).

Stromal-Relevant Hub Genes Are
Associated With Macrophages
Infiltration in GC
Based on the brown module’s dual positive association with
stromal and immune scores, we postulated that interplay between
immune and stromal cells has important roles in carcinogenesis.
We used the TIMER database to investigate the correlation
between the 26 stromal-related DEGs and tumor immune
infiltrates. The potential hub genes and their correlation with
infiltrating immune cell concentration within the TME was
assessed (Figure 3C). Notably, High expression of these genes
was moderately to strongly positively correlated with high
macrophage infiltration levels (Cor = 0.4–0.8, P < 0.05).

We assessed the prognostic significance of the infiltrating
levels of the six immune cells in GC using the TIMER survival
module. We found that high macrophage infiltration levels were
associated with a poorer prognosis in GC (Figure 3D, P = 0.004).
These results led to the hypothesis that stromal-related hub genes
might promote tumor development by regulating macrophage
infiltration in GC.

Preliminary Identification of Prognostic
Hub Genes Using the Machine Learning
Method
We performed univariate Cox regression analysis on 26 potential
hub genes and identified 14 genes significantly associated with
unfavorable prognosis in GC (Figure 3F). We mapped their
expression trends based on clinical GC stages and found
significant differences in expression between stage I and the
other stages (Figure 3G). These results suggest that the potential
hub genes play important roles in early tumor development
stages. The LASSO and SVM-RFE algorithms identified nine
characteristic genes respectively (Figures 4A,B). By overlapping
the biomarkers from the two algorithms, we identified eight
hub genes with the best prognostic predictive performance
(Figure 4C). The co-expression relationship between these
eight hub genes is shown in Supplementary Figure S3. These
eight prognostic hub genes, which are more strongly related
to macrophage infiltration than the other potential hub genes
(Figure 5A), are as follows: Ras-related protein 31 (RAB31,
Cor = 0.711, P = 2.39e-58); Follistatin like 1 (FSTL1, Cor = 0.711,
P = 2.89e-58); Fibrillin 1 (FBN1, Cor = 0.691, P = 8.84e-54);
Anthrax toxin receptor 1 (ANTXR1, Cor = 0.646, P = 4.48e-
45); Leucine rich repeat containing 32 (LRRC32, Cor = 0.643,
P = 1.27e-44); Cathepsin K (CTSK, Cor = 0.617, P = 3.31e-
40); Collagen type V alpha 2 chain (COL5A2, Cor = 0.436,
P = 1.21e-18); and Endoglin (ENG, Cor = 0.467, P = 2.25e-8).

Survival Analysis and Gene Expression
Validation
We conducted survival validation on the eight hub genes using
the Kaplan–Meier plotter database. Seven of the hub genes with
high expression (FSTL1, RAB31, ANTXR1, COL5A2, ENG, FBN1,

and LRRC32) were found to predict poorer overall survival than
their low-expression counterparts (P < 0.05) (Figure 5B). We
verified hub gene mRNA expression levels across different types
of cancers in the Oncomine database. These hub genes are
overexpressed in GC and in other cancers including pancreatic
cancer and lymphoma (Figure 6A). The eight hub genes were
all ranked at the highest 1% in GENE RANK. Five genes had
four or more datasets supporting their aberrant expression in GC
with the threshold of fold change = 2, P-value = 1E-4. Moreover,
we used datasets GSE54129 and GSE79973 from GEO database
to further examine hub gene expression differences in GC and
normal tissues (Figures 6B,C). The results show that these hub
genes are more highly expressed in GC than in normal gastric
tissues (P < 0.05).

Revalidation of the Correlation Between
Hub Genes and Tumor Immune
Characterization
To validate the relationships between the hub genes with
tumor immune characteristics we used ssGSEA to reevaluate
the immune infiltration signature of each sample in 24 immune
cell types. The 375 GC samples were distinguished as having
high, medium, and low immune infiltration patterns with
the corresponding clinical characteristics (Figure 7A). We
compared the stromal and immune scores between the three
immune infiltration patterns (Figures 7B,C). We found that
high immune-infiltration groups have higher immune scores
than do the low- and medium immune infiltration groups
(P < 0.001). Although the difference in stromal scores between
high and medium infiltration groups was not significant, the
median value of the stromal scores was higher in the high-
infiltration group (P < 0.001). We compared survival differences
between the three groups and found no significant differences
(Figure 7D). Survival significance differences was observed
when we divided the groups into high- and low macrophage
infiltration levels using upper and lower quartiles (Figure 7E,
HR = 1.77, P = 0.038). Based on the results of ssGSEA
analysis, we further assessed the correlation between hub gene
expression and the infiltrating levels of 24 kinds of immune
cells (Supplementary Figure S4). The high expression level
of the selected hub genes was significantly associated with
infiltration of various immune cells, especially macrophages, in
GC (Figure 7F).

Exploration of the Correlation Between
Hub Genes and Macrophage-Related
Immune Markers
We used CIBERSORT to evaluate the differences in immune
infiltration between high- and low stromal groups in GC to
elucidate the underlying connection between tumor stroma
and infiltrating-immune cells within the TME. With the cut-
off standard set as P-value < 0.05, we obtained 161 and 83
samples in the high- and low stromal groups, respectively.
The high-stromal group had higher infiltration of monocytes
(P = 0.020), M2 macrophages (P = 0.001), resting mast cells
(P = 0.049), and resting DCs (P = 0.023) than the low-stromal
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FIGURE 4 | Identification of hub genes associated with prognosis using the machine learning method. (A) LASSO coefficient profiles of candidate hub genes. Each
curve corresponds to a candidate gene. (B) The SVM-RFE algorithm identified candidate genes with the best predictive performance and lowest error bar (5 × CV
accuracy = 9–0.907). (C) Venn plot showing hub genes identified in common by the two algorithms.

group (Figure 8A). This highlights the correlation between
tumor stroma and tumor-associated macrophages (TAMs). It
is feasible that a close interaction exists between stromal-
related hub genes and TAMs in tumor progression. Therefore,
we analyzed the correlation between hub gene expression and
specific gene markers of macrophages in various immune cell
subtypes; these included CD86, CD14, CD16 of monocytes;
CCL2, CD115, CD206, and IL10 of TAMs; INOS, IRF5, SOCS1,
CCR7, TSPO, ROS, IL6, and CXCL10 of M1 macrophages;
and CXCL12, MS4A4A, MAR1, CD36, VISIG4, DCIR, CD184,
and CD163 of M2 macrophages. Interestingly, eight hub genes
were all significantly correlated with the gene markers of TAMs,
M2 macrophages, and monocytes (P < 0.01, Table 1). There
was a moderate to strong correlation between five hub genes
(RAB31, FBN1, CTSK, FSTL1, LRRC32) and CD86 and CD14 of
monocytes; MRC1, CSF1R, and CCL2 of TAMs; and CXCL12,
MS4A4A, and MSR1 of M2 macrophages. Furthermore, weak
correlation between the hub genes and SOCS1, IRF5 and
NOS2 of M1 macrophages was observed (Figure 8B). These

findings suggest that hub genes might regulate macrophage
polarization in GC.

The present investigation of TME in GC indicates a complex
relationship between the genome and immune infiltration.
Overexpressed prognostic hub genes positively correlate with
high stromal infiltration and may also participate in macrophage
recruitment and M2 macrophage polarization. High-stromal-
group patients were also observed to have higher M2 macrophage
infiltration. The adverse prognostic value of each factor was
verified independently in survival analysis (Figure 8C).

DISCUSSION

Biological behaviors of cancers are determined by genetic
instability (such as TMB), cancer cell epigenetic abnormalities,
and the surrounding milieu (such as TME) that the cancer cells
interact with for growth, survival, proliferation, and metastasis
(Hanahan and Weinberg Robert, 2011; Mlecnik et al., 2011).
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FIGURE 5 | Immune correlation and survival analysis of the eight hub genes. (A) Scatter plot showing a strong and positive correlation (Cor = 0.4–0.8, P < 0.05)
between the expression level of eight selected hub genes and the macrophage infiltration level. CD8+T set as control. (B) Survival analysis validation of the eight hub
genes in gastric cancer using Kaplan–Meier plotter.

Infiltrating stromal and immune cells are major components
of normal cells within tumor tissue (Yoshihara et al., 2013).
To elucidate the components of TME in GC, we utilized the
ESTIMATE algorithm to evaluate the immune phenotypes
of GC with immune and stromal scores. Our results showed
that stromal scores, but not immune scores, were significantly
correlated with survival outcomes in GC, indicating that
the stromal compartment plays an important role in GC.
Previous studies have indicated that stromal cells, like
fibroblasts, are much more crucial in TME formation in
GC than inflammatory cells (Komohara and Takeya, 2017;
Ham et al., 2019; Kobayashi et al., 2019).

Tumor mutational burden, a novel biomarker of
immunotherapy response, is based on the notion that mutation-
associated neoantigens can activate immune cells to eliminate
cancer cells: the higher the TMB, the better the therapeutic
effect (Samstein et al., 2019). Here, the low-TMB group showed

significantly poorer survival compared with high-TMB group.
In addition, the low-TMB group tended to have higher stromal
scores in GC. Given the validity of TMB as a biomarker for
immunotherapy response, we speculated that the population
that was not susceptible to immunotherapies (i.e., the low-
TMB group) are highly associated with stromal cells (high
stromal score) within the TME, which is correlated with
unfavorable prognosis.

To elucidate the potential connection between the genome
and TME in GC, we systematically clustered the co-expressed
genes by WGCNA analysis. This approach allowed us to
identify gene modules most related to cancer immunological
phenotypes, especially stromal scores and TMB. The brown
module showed strong positive correlation with stromal
scores, moderate correlation with immune scores, and negative
correlation with TMB (Figure 2E). Functional enrichment
analysis for the brown module also confirmed its strong
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FIGURE 6 | mRNA expression patterns of the eight hub genes was verified with the Oncomine and GEO databases. (A) The Oncomine database shows the mRNA
expression differences between various cancers and corresponding normal tissues. The threshold is shown at the bottom. The figure in the colored cell indicates the
number of data sets satisfying the threshold. The red cells show that hub genes are overexpressed in tumor tissues, while the blue cells show that hub genes are
downregulated in tumor tissues. (B,C) Boxplots show the expression of eight hub genes in gastric cancer and normal gastric tissues from GSE54129 and
GSE13911 datasets. ***P < 0.001; **P < 0.01.

correlation with stromal-related phenotypes, including ECM
organization and leukocyte migration. This suggests that special
genomic abnormalities may facilitate malignant growth by
affecting stromal structure or the immunogenicity of the
TME in GC. Therefore, we performed differential expression
analysis for brown module genes with the highest intramodular
connectivity in order to identify potential oncogenes. We
adopted a combination strategy, integrating three different
algorithms, to screen the prognostic biomarkers from DEGs.
Based on univariate Cox analysis determining the prognostic
DEGs, LASSO, and SVM-RFE methods were used to identify
biomarkers with distinct characteristics. After survival analysis
and expression validation, eight brown module hub genes were
identified as adverse prognostic factors in GC. Growing evidence
suggests that the stromal compartment can influence antitumor
immune responses and regulate tumor immunology (Komohara
and Takeya, 2017). We investigated whether stromal-related
hub genes play an immunomodulatory role within the TME.
To this end, we used TIMER and ssGSEA to analyze the
relationship between hub gene expression and tumor immune
infiltration in GC. The results show a strong positive correlation

between hub gene expression and macrophage infiltration in
GC. The similarity of the immune correlation analysis results
using two independent methodologies indicates the robustness
of the results. We additionally observed that high macrophage
infiltration levels represent as an adverse prognostic factor in
GC (Figures 3D, 7E). To reveal the mechanisms underlying the
relationship between stromal score and prognosis, we compared
the immune-infiltrating cell fractions of each sample between
high and low stromal groups. Intriguingly, the high-stromal
group was found to have higher proportions of monocytes and
M2 macrophages. Accordingly, further analysis was performed
to explore the correlation between stromal-related hub genes
and different immunophenotypes of macrophages in order to
elucidate the role of hub genes in regulating tumor immunology
in GC. Immune markers of monocytes and TAMs, such as
CD86 and CSF1R, showed a strong positive correlation with
hub gene expression, suggesting that the stromal-related hub
genes promote the recruitment of circulating monocytes into the
TME and facilitate their differentiation into TAMs. Moreover,
M1 macrophage immune markers, such as SOCS1 and NOS2,
demonstrated weak or even negative correlation with the
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FIGURE 7 | Immune characterization of gastric cancer. (A) Gastric cancer samples (n = 375) from the TCGA cohort were divided into low immune infiltration, median
immune infiltration, and high immune infiltration with unsupervised clustering using single sample gene-set enrichment analysis (ssGSEA) scores based on 24
immune signatures. (B) The relationship between immune scores and immune infiltration clusters. (C) The relationship between stromal scores and immune
infiltration clusters. (D) Kaplan–Meier survival analysis divided by immune infiltration clusters (E) Kaplan–Meier survival analysis divided by macrophage infiltration
level. (F) The correlation between hub gene expression levels and macrophage infiltration levels based on ssGSEA scores. ***P < 0.001; ns: no significance.

expression of hub genes, while M2 macrophage immune markers,
such as CXCL12, MSR1, and MS4A4A, exhibited moderate to
strong correlation. These results demonstrate the underlying role
of hub genes in regulating the recruitment of macrophages and
polarization of TAMs in GC.

Evidence indicates that stromal cells may shape an
immunosuppressive microenvironment by secreting cytokines
and promoting M2 polarization of macrophages (Comito et al.,
2014). Notably, Cathepsin K (CTSK), a lysosomal cysteine
protease of the peptide protein C1 family, is implicated in
matrix remodeling and angiogenesis (Krieg and Lipford, 2008).
CTSK overexpression has been detected in breast, prostate,
and gastrointestinal cancers, and correlated with tumor stroma

(Kleer et al., 2008; Li R. et al., 2019). CTSK was identified as
a metastatic-related protein regulated by gut microbiota in
colorectal cancers, and its effect on M2 polarization of TAMs
has been confirmed (Li R. et al., 2019). The evidence correlating
stromal-related hub genes with M2 macrophage polarization
support further exploration of the potential of these genes as
immunotherapeutic targets.

Of the eight stromal-related hub genes, FSTL1, FBN1,
COL5A2, and LRRC32 encode extracellular proteoglycans,
glycoproteins, and other components within the ECM,
playing a fundamental role in determining ECM composition
(Andrikopoulos et al., 1995; Dubuisson et al., 2001;
Carrillo-Galvez et al., 2015; Mattiotti et al., 2018). ANTXR1,
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FIGURE 8 | Evaluation of the stromal-related hub genes with infiltrating macrophage subtypes. (A) The difference in immune cell infiltration levels between high- and
low-stroma groups. (B) Scatterplot showing the correlations between hub gene expression and markers of monocytes, tumor-associated macrophages (TAMs), and
M1 and M2 macrophages. Monocytes immune markers include CD86 and CD14. TAM immune markers include MRC1, CSF1R, and CCL2. M1 macrophage
immune markers include SOCS1, IRF5, and NOS2. M2 macrophage immune markers include CD163, MS4A4A, and MSR1. (C) Overexpression of hub genes is
positively correlated with high stromal infiltration, high macrophage infiltration, and macrophage polarization in gastric cancer. Factors associated with poor
prognosis in gastric cancer are indicated with rectangles.

Rab31, and ENG are transmembrane or membrane proteins
engaged in signal transduction and transmembrane trafficking
(Chen et al., 2013; Carrillo-Galvez et al., 2015). FSTL1 is
involved in multiple tumor biological processes, including
metastasis and regulation of the immune response. It is
noteworthy that FSTL1 is significantly related to tumor
metastasis, and up or down regulation of FSTL1 in different
cancers greatly induces their migratory and invasive capacity,
leading to tumor dissemination (Kudo-Saito et al., 2013;
Ni et al., 2018; Chiou et al., 2019). FSTL1 exerts this effect
on migration through the reduction of various cytokines,

including metalloproteinase-2 (MMP-2), CCL2, and CXCL12
(Chan et al., 2009). Moreover, FSTL1 is considered a
determinant of immune dysfunction mediated by mesenchymal
stroma/stem cells (MSCs) and immunoregulatory cells, and
may therefore represent a target to suppress cancer progression
(Kudo-Saito et al., 2018).

Rab31 is a member of the RAB family derived from
monomeric GTP-binding proteins, which regulate intracellular
transportation (Cheng et al., 2005). Numerous studies have
reported that Rab31 participates in tumor initiation and
progression across various cancers, including breast cancer,
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TABLE 1 | Correlation analysis of the eight hub genes with immune markers of different macrophage phenotypes in TIMER.

Description Markers RAB31 FBN1 CTSK LRRC32 FSTL1 ANTXR1 ENG COL5A2

Cor P Cor P Cor P Cor P Cor P Cor P Cor P Cor P

Monocyte CD86 0.560 *** 0.481 *** 0.551 *** 0.410 *** 0.443 *** 0.403 *** 0.307 *** 0.382 ***

CD14 0.582 *** 0.497 *** 0.582 *** 0.504 *** 0.480 *** 0.457 *** 0.438 *** 0.424 ***

CD16 0.568 *** 0.514 *** 0.516 *** 0.426 *** 0.425 *** 0.457 *** 0.167 *** 0.490 ***

TAM CCL2 0.544 *** 0.472 *** 0.540 *** 0.500 *** 0.545 *** 0.458 *** 0.489 *** 0.367 ***

CD115 0.572 *** 0.621 *** 0.555 *** 0.566 *** 0.555 *** 0.476 *** 0.479 *** 0.381 ***

CD206 0.572 *** 0.566 *** 0.488 *** 0.425 *** 0.498 *** 0.449 *** 0.327 *** 0.419 ***

IL10 0.520 *** 0.500 *** 0.506 *** 0.449 *** 0.446 *** 0.413 *** 0.378 *** 0.380 ***

M1 INOS −0.005 na 0.020 na 0.054 na 0.005 *** 0.007 na −0.051 na −0.018 na 0.098 *

Macrophage IRF5 0.204 *** 0.197 *** 0.262 *** 0.275 *** 0.158 ** 0.182 *** 0.262 *** 0.091 na

SOCS1 0.096 na 0.002 na 0.127 ** 0.136 ** 0.057 na −0.049 na 0.318 *** 0.012 na

CCR7 0.337 *** 0.352 *** 0.316 *** 0.405 *** 0.362 *** 0.183 *** 0.510 *** 0.066 na

TSPO −0.235 *** −0.302 *** −0.119 * −0.197 *** −0.334 *** −0.226 *** −0.111 * −0.155 **

ROS1 −0.005 na 0.030 na 0.059 na 0.007 na 0.041 na 0.085 na 0.054 na 0.108 *

IL6 0.364 *** 0.302 *** 0.326 *** 0.249 *** 0.331 *** 0.285 *** 0.315 *** 0.381 ***

CXCL10 0.253 *** 0.161 ** 0.223 *** 0.120 * 0.122 na 0.109 * −0.013 na 0.173 ***

M2 CXCL12 0.601 *** 0.633 *** 0.508 *** 0.633 *** 0.659 *** 0.471 *** 0.714 *** 0.377 ***

Macrophage MS4A4A 0.614 *** 0.583 *** 0.567 *** 0.522 *** 0.544 *** 0.496 *** 0.340 *** 0.383 ***

MSR1 0.637 *** 0.603 *** 0.584 *** 0.537 *** 0.537 *** 0.540 *** 0.302 *** 0.490 ***

CD36 0.468 *** 0.558 *** 0.409 *** 0.515 *** 0.558 *** 0.395 *** 0.508 *** 0.286 ***

VSIG4 0.634 *** 0.568 *** 0.560 *** 0.495 *** 0.530 *** 0.505 *** 0.326 *** 0.447 ***

DCIR 0.472 *** 0.431 *** 0.480 *** 0.317 *** 0.399 *** 0.331 *** 0.312 *** 0.333 ***

CD184 0.462 *** 0.476 *** 0.466 *** 0.479 *** 0.485 *** 0.404 *** 0.417 *** 0.245 ***

CD163 0.578 *** 0.590 *** 0.488 *** 0.460 *** 0.492 *** 0.454 *** 0.332 *** 0.438 ***

TAM, tumor-associated macrophage; Cor, R value of Spearman’s correlation; *P < 0.05; ** P < 0.01; *** P < 0.001; na P > 0.05.

glioblastoma, and pancreatic cancer (Ioannou et al., 2015;
Pan et al., 2016; Li H. et al., 2019). Rab31 was found to play
critical role in tumor development and is an independent
prognostic factor in breast cancer (Kotzsch et al., 2017). Recently,
Rab31 was recognized to function as an oncogene in GC
tumorigenesis and progression by interacting with GLI1, which
represents a therapeutic target in GC (Tang et al., 2018).
ANTXR1, also known as tumor endothelial marker 8 (TEM8),
is widely considered a potential target for cancer therapy because
of its effect on tumor angiogenesis. Consistent with our results,
ANTXR1 is widely expressed on tumor-associated perivascular
stromal cells, which strongly promotes angiogenesis within the
TME (Bagley et al., 2009). Recent studies have revealed that
antibodies targeting ANTXR1 exert unique antitumor effects
by selectively inhibiting stromal endothelial cells (Liu et al.,
2016). In addition, ANTXR1 is regarded as a potential target
for CAR T cell immunotherapies in gastric adenocarcinoma
(Sotoudeh et al., 2019), which makes it more applicable for
clinical treatment.

Using integrated bioinformatic and machine learning
algorithms, we elucidated the genomic landscape of GC and
its correlation with TMB, the stromal compartment, and
immune cell infiltration. Eight stromal-related prognostic
hub genes were found to play pleiotropic roles in the
TME of GC. These hub genes inhibit the formation of an
immunosuppressive microenvironment, therefore representing
potential therapeutic targets. The present findings were based on

retrospective datasets, and biological experiments are needed to
verify our results.
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FIGURE S1 | Work-flow of the bioinformatics analysis procedure.

FIGURE S2 | Sample clustering dendrogram. (A) Sample clustering was
conducted to detect outlier samples. Outlier samples (n = 23) were eliminated. (B)
Trait heatmap and sample dendrogram after outlier sample elimination. A total of
14 samples were included in the dendrogram. Color concentration is in proportion
to survival, age, gender, stage, stromal score, immune score, ESTIMATE score,
tumor purity, tumor mutation burden, TP53 mutation status, and MUC16
mutation status.

FIGURE S3 | Correlation analysis of the eight hub genes with 24 immune
signatures in ssGSEA.

FIGURE S4 | Co-expression analysis of the hub genes at
transcriptional level.

TABLE S1 | Clinical features of STAD patients in TCGA database.
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