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Patients with carcinoma of unknown primary (CUP) account for 3–5% of all cancer
cases. A large number of metastatic cancers require further diagnosis to determine
their tissue of origin. However, diagnosis of CUP and identification of its primary site
are challenging. Previous studies have suggested that molecular profiling of tissue-
specific genes could be useful in inferring the primary tissue of a tumor. The purpose
of this study was to evaluate the performance somatic mutations detected in a tumor
to identify the cancer tissue of origin. We downloaded the somatic mutation datasets
from the International Cancer Genome Consortium project. The random forest algorithm
was used to extract features, and a classifier was established based on the logistic
regression. Specifically, the somatic mutations of 300 genes were extracted, which
are significantly enriched in functions, such as cell-to-cell adhesion. In addition, the
prediction accuracy on tissue-of-origin inference for 3,374 cancer samples across 13
cancer types reached 81% in a 10-fold cross-validation. Our method could be useful
in the identification of cancer tissue of origin, as well as the diagnosis and treatment
of cancers.

Keywords: somatic mutation, machine learning, random forest, patients with carcinoma of unknown primary,
tissue of origin

INTRODUCTION

Researches have proved that hepatitis C virus (HCV) and hepatitis B virus (HBV) are the main
causes of liver cancer, and liver cancer can be primary or metastatic, where metastatic liver cancer
accounts for 5% (Hu and Ludgate, 2007; Lin et al., 2013). Studies have shown that Epstein–Barr
virus (EBV) infection is one of the important causes of nasopharyngeal carcinoma (Hui et al.,
1998; Krishna et al., 2006). Tsai et al. (1996) carried out numerous experiments and found that
EBER1 expression is abundant in primary nasopharyngeal carcinoma, which may metastasize to
lymph nodes. Numerous studies have shown that Helicobacter pylori (HP) is associated with gastric
cancer (Farinati et al., 1993; Gonzaga et al., 2002; Geng and Zhang, 2017). Gastric cancer is one of
the most common malignant diseases in the world, where metastasis often occurs, and there are
histological differences between primary and metastatic gastric cancer (Wang et al., 2008). In most
cases, viruses are a major cause of cancer. Metastatic cancer brings great adversity to the follow-up
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diagnosis and treatment. Some biomarkers are related with
metastasis of cancer. Chen et al. (2016) carried out researches
on the differential expressed proteins and found two biomarkers
related with lung adenocarcinoma. Xiuping et al. (2016) found
that NTN4 is associated with breast cancer cell migration and
invasion via regulation of epithelial–mesenchymal transition–
related biomarkers. Differentially expressed genes between
metastatic tissue samples and nonmetastatic tissue samples
can be molecular biomarkers for gastric cancer metastasis
(Li et al., 2016).

In clinical diagnosis, metastatic cancer is a common
phenomenon and a great challenge for determination of the
primary site of a tumor. In all cases of cancer diagnoses, 3–5% of
patients are confirmed as carcinoma of unknown primary (CUP)
(Shaw et al., 2007). Cases of CUP are usually heterogeneous and
can make diagnosis and treatment of pathological and clinical
cases difficult (Rizwan and Zulfiqar, 2010). In the recent years,
immunohistochemistry was a crucial method for classification of
cancer and identify the primary site of a tumor and made great
contributions to CUP identification (Huebner et al., 2007; Voigt,
2008; Centeno et al., 2010; Kandalaft and Gown, 2015; Janick
et al., 2018). However, immunohistochemistry is labor-intensive
and applicable to small-scale sample data, and it is difficult to
overcome the bottleneck in classification accuracy.

Computed tomography (CT) and positron emission
tomography are good medical imaging tools for identifying
cancer tissue and predicting the primary site of a tumor (Fencl
et al., 2007; Kwee et al., 2010; Fu et al., 2019). CT and PET
identify tumors with an accuracy of 20–27% and 24–40%,
respectively (Ambrosini et al., 2006). Obviously, the prediction
performance is too poor to reach a satisfying degree. Moreover,
medical images usually generate large-scale data, and limitations
of image processing technology also bring about great difficulty
in application. Identification of tissue origin utilizing medical
imaging still remains conservative.

Recently, the use of molecular profiling has become a
popular method to infer the primary site of a tumor.
In addition, the combination of machine learning method
and molecular profiling has been proven to be better than
the utilization of immunohistochemistry for undifferentiated
or poorly differentiated tumors (Oien and Dennis, 2012).
Combination of methylation and copy number variation can
contribute to cancer classification and tissue origin identification
(Hoadley et al., 2014). Küsters-Vandevelde et al. (2017) suggested
that metastatic behavior of a tumor is closely associated with
specific copy number variations, as the methylation profile
of meningeal melanocytic metastatic tumor was found to be
similar as to that of the primary site. Although metastasis
of cancer occurs, methylation and copy number variation
are still in accordance with those of the primary origin.
Particularly, gene expression data were frequently used in
identification of the primary site of a tumor (Erlander et al.,
2004; Qu et al., 2007; Gross-Goupil et al., 2012; Greco, 2013;
Hainsworth et al., 2013). Erlander et al. (2011) proved that
the value of gene expression detected in metastasis is the
same as that detected in the primary origin when metastatic
cancer occurs. Centeno et al. (2010) carried out numerous

experiments with the proposed hybrid model, which utilized
immunohistochemistry and gene expression profiling, and
obtained classifier accuracies of 89, 88, and 75% for cross-
validation datasets, independent test sets, and institutional
independent test sets, respectively. Rosenwald et al. (2010)
gained an accuracy of 85% on prediction of the primary site
of cancer with the use of the KNN algorithm and micro-RNA
quantitative reverse transcription–polymerase chain reaction
test. Bloom et al. (2004) explored a method based on the
artificial neural network with gene expression profiling to
infer the tumor origin and thus aid in making a correct
pathological diagnosis.

Somatic mutation data can also be utilized to identify tissue
origin. Sheffield et al. (2016) revealed that mutation of the
IDH1 gene in patients with cholangiocarcinoma can be used
to infer the primary site of the malignant tumor. Dietlein
and Eschner (2014) and Lawrence et al. (2014) explored a
method using mutation spectra to predict the primary site
of cancer and obtained a specificity of 79%, showing that
the enrichment of mutation in tumor-specific genes can be
effective for primary tissue tracing. Relatively comprehensive
research was conducted by Marquard et al. (2016), using
somatic mutation data, base substitution frequency, trinucleotide
base substitution frequency, and copy number aberrations.
The best results with accuracy of 87.6% were obtained
using a combination of copy number status, trinucleotide
context base substitution frequencies, and somatic point
mutations. However, it is complicated that each cancer was
trained with a classifier. Moreover, the best performance
was achieved using three molecular profiling, in which data
collection is challenging.

Use of copy number variation, methylation, and gene
expression to predict the primary site of a tumor has been a
hot spot. However, research of predicting tissue origin using
mutation data has made little progress. This current study
proposed a new method using somatic mutation data to

TABLE 1 | Distribution of samples with 13 cancers.

Cancer Types Samples

Type Abbreviation Primary Metastasis

Biliary tract cancer BTCA 310 0

Chronic myeloid disorders CMDI 136 0

Colorectal cancer COCA 317 4

Gastric cancer GACA 708 0

Brain lower-grade glioma LGG 508 0

Liver cancer LIRI 258 0

Soft tissue cancer LMS 67 0

Malignant lymphoma MALY 152 89

Skin cancer MELA 183 0

Nasopharyngeal cancer NACA 21 0

Pancreatic endocrine neoplasms PAEN 87 2

Renal cancer RECA 432 0

Skin adenocarcinoma SKCA 52 48

Total 3,219 155
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predict the primary site of cancer. The International Cancer
Genome Consortium (ICGC), together with machine learning
methods could improve the predictive performance. Here,
the random forest algorithm (Sandri and Zuccolotto, 2006)
was selected as a gene selection algorithm, and the logistic
regression algorithm (Zhang et al., 2014; Pranoto et al., 2015)
was utilized to establish a classifier. Performance evaluation
was judged by metrics, such as accuracy and specificity.
Functional annotation and enrichment of specific gene set were
settled by R packages.

MATERIALS AND METHODS

Data Preparation
We downloaded the somatic mutation data from ICGC database
version 281. The format of the gene name was Ensembl

1https://dcc.icgc.org/releases/release_28/

Gene ID. A total of 19,730 samples were obtained. We
duplicated the samples according to chromosomal features,
locus in chromosome, donor-id, and gene-affected. Sample data
of 57 types of cancer were preliminarily extracted. Somatic
mutation data cannot identify the primary site of some cancers.
Samples with primary and metastasis of 13 types of common
cancers were used to predict tissue origin (Table 1). Data were
further filtered, and we generated an S × G matrix, where S
represents the number of samples and G represents the number
of genes included.

Feature Selection
As mutation detection of tissue-specific gene is time consuming
and costly, a balance between performance and number of genes
used is necessary. Existing feature selection algorithms such as
Lasso and Principal Component Analysis (PCA) (Malhi and
Gao, 2005; Muthukrishnan and Rohini, 2016) have been largely
used as a tool for feature processing. Here, we used the random

FIGURE 1 | Workflow of cancer tissue origin identification using somatic mutation data.
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forest algorithm (Breiman, 2001; Sandri and Zuccolotto, 2006)
for feature selection. It can handle a large number of input
features and assess their importance, and its learning process is
fast. Tt is a type of ensemble learning algorithm and is composed
of a CART (classification and regression tree). In each tree, √g
was used, where g denotes the gene number. The process of
feature selection was explained by the splitting of nodes. The Gini
index was used to determine which feature should be selected as
most important and was calculated by the following Eq. 1:

Gini
(
p
)
=

K∑
k=1

pk(1− pk) = 1−
K∑

k=1

p2
k (1)

In a node, p denotes the weight represented as frequencies of
cancers, k denotes the total cancer number, and the weight of k-th
cancer is denoted by pk. We calculated feature importance scores
of the i-th gene in a node, which was represented by a decrease in
the Gini index value. This was calculated by Eq. 2:

VIM(Gini)
im = GIm − GIl − GIr (2)

M was used as the set of nodes. m denotes a node in M. Thereafter,
we selected the i-th gene for splitting. Split subnodes have their
own Gini index. We calculated the Gini index before node m
splitting, denoted as VIM(Gini)

im , and Gini index of two subnodes

FIGURE 2 | Functional annotation of the top 500 genes.
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FIGURE 3 | Overall average accuracy using logistic regression classifier with 10-time 10-fold cross-validation.

TABLE 2 | Performance metric of training dataset using top 500 genes.

Cancer Precision Recall F1 score Support Specificity

BTCA 0.6288 0.6331 0.6308 245.0000 0.9626

CMDI 0.9789 0.8921 0.9335 114.0000 0.9991

COCA 0.6479 0.7700 0.7036 250.0000 0.9573

GACA 0.8556 0.8265 0.8408 570.0000 0.9627

LGG 0.9315 0.9178 0.9246 400.0000 0.9883

LIRI 0.9390 0.9362 0.9376 207.0000 0.9949

LMS 0.9981 0.9796 0.9888 54.0000 1.0000

MALY 0.9944 0.9893 0.9918 196.0000 0.9996

MELA 0.8851 0.9147 0.8996 143.0000 0.9934

NACA 0.9018 0.6118 0.7275 17.0000 0.9996

PAEN 0.7150 0.7738 0.7431 80.0000 0.9906

RECA 0.9294 0.9077 0.9184 339.0000 0.9901

SKCA 0.9251 0.8259 0.8726 85.0000 0.9978

Average 0.8552 0.8445 0.8548 2, 700.0000 0.9883

Accuracy 0.8671 NA NA NA NA

after splitting denoted as GIl and GIr , respectively. The bigger the
VIM(Gini)

im , the more important the i-th gene.

VIM(Gini)
ti =

∑
m∈M

VIM(Gini)
im (3)

T was used as a set of trees, and t denotes the t-th tree. Equation 3
shows the importance of the i-th gene in the t-th tree. Thereafter,
we calculated the importance of the ith gene in all trees, and the
sum was represented as Eq. 4 depicts:

VIM(Gini)
i =

T∑
t=1

VIM(Gini)
ti (4)

Finally, importance scores of each feature in all trees were
averaged by weight. The importance of each gene sorted
according to their averaged importance score. We selected the top
n genes by importance score, where n was a flexible value set to
obtain the best classification performance.
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Logistic Regression Classifier
We used the logistic regression algorithm to construct a classifier
(Zhang et al., 2014; Pranoto et al., 2015). Logistic regression uses
the sigmoid function to represent the probability of a sample
being labeled as a certain category, and prediction of tissue origin
can be explained as a one-to-many classification problem. In this
process, one type of cancer was considered positive, and other
types were considered negative. Thereafter, the probability of the
sample was predicted as one cancer type and other cancer types,
respectively. After a series of similar procedures, we obtained
the probability of a sample being predicted as each cancer. The
prediction function was calculated by Eq. 5:

hθ (x) =
1

1+ e−θT x
(5)

where hθ(x) denotes the probability of a sample being predicted
as one cancer type (positive), or other cancer types, (negative). θT

is a matrix of parameters used to determine the best model. θ is
computed by the negative log-likelihood loss function. The loss
function was calculated by Eq. 6:

J (θ) = −
1
m

[ m∑
i=1

y(i)loghθ

(
x(i)
)

+

(
1− y(i)

)
log

(
1− hθ

(
x(i)
))]
+

λ

2m

n∑
j=1

θ2
j (6)

where loghθ

(
x(i)) and log

(
1− hθ

(
x(i))) represent the log loss

when a sample is labeled positive and negative, respectively. m
represents the number of samples, and n denotes the number

FIGURE 4 | Receiver operating characteristic curve and AUC of 13 types of cancer.
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of features. And L1 regularization term was also used. The best
θ was determined by minimizing the loss function based on
gradient descent.

Evaluation Metric
We used accuracy, precision, recall, and F1 score as the metric
for performance evaluation. True positive (TP) and false positive
(FP) represent samples whose true label are positive and negative,
respectively, were predicted as positive, whereas true negative
(TN) and false negative (FN) represent samples, whose true label
was negative and positive, respectively. These were predicted as
negative. Accuracy was used to measure the overall performance
and was calculated by Eq. 7. Precision demonstrates the ability
of classifier to distinguish positive and negative samples and was
calculated by Eq. 8. Recall represents the ability of the classifier
to recognize all positive samples and was calculated by Eq. 9. F1
score was the harmonic average value of precision and recall and
is calculated by Eq. 10. Because there is class imbalance in sample
distribution in this study, ROC (receiver operating characteristic)
curve and AUC (area under the curve) were also used to evaluate
classification performance.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(7)

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

F1 score =
2TP

2TP+ FP+ FN
(10)

Functional Annotation
We utilized the Gene Ontology enrichment analysis database (Ye
et al., 2006; Waardenberg et al., 2016) to annotate the function of
the gene used in the model, shown in Figure 3. The R package
gogadget and clusterProfiler (Nota, 2016; Yu et al., 2012) were
used for gene visualization and clustering.

RESULTS

Workflow
The complete process for predicting the primary site of a tumor is
shown in Figure 1, which can be divided into three parts. First, we
obtained the somatic mutation data from the ICGC database and
carried out data preprocessing such as filled null value and filtered
invalid data. A matrix of features was generated for follow-up
handling. Thereafter, we built a gene selection model using the
random forest algorithm. Genes were selected with 10-time cross-
validation. Finally, we constructed the classifier by utilizing the
logistic regression algorithm, and the final matrix feature was fed
into the classifier. The results were obtained with 10-time 10-
fold cross-validation, and model performance was analyzed by
the evaluation metric.

Data
We obtained the somatic mutation data from ICGC version
28 database for gene selection and tumor classification. Allelic
mutations in somatic mutation data can be A/G, C/T, C/A, and so
on. Because of limited information and tools, we treated all allele
mutations as mutations and counted the number of mutations.
And we counted the number of mutations of each sample. The
sample distribution of each cancer is shown in Table 1. A total of
3,219 primary samples and 155 metastatic samples were used to
model training and included 13 types of cancer.

Genes Used to Infer Cancer Tissue of
Origin
The role of relative genes was discussed in context of molecular
function, biological processes, and cellular components. Figure 2
shows functional annotation of the top 500 genes selected
using the random forest algorithm. Genes were found to enrich
cell–cell adhesion, regulation of ion transmembrane transport,
modulation of chemical synaptic transmission, forebrain
development, and so on. Among these, gene enrichment
evidently concentrated on the recognition and adhesion between
cells and neurotransmitter conduction. Abnormal proteins
that resulted from gene mutations can cause abnormal cell
adhesion or differentiation, as well as abnormal neurotransmitter
conduction or abnormal neural cell differentiation. Meanwhile,
gastric cancer and brain lower-grade glioma account for a
high proportion in all samples. Jiang et al. (2004) research
the frequency and nature of mutations of the CDH1 gene
in gastric cancer, and proved that the mutation accounts
for gastric cancer. The APC gene has been found to play an
important role in the pathogenesis of soft tissue tumors (Kuhnen
et al., 2000). Birnbaum et al. (2012) explored the role of the
APC gene in colorectal cancer, by investigating 183 cases,
and found point mutations in 73% of these cases. Mutation
of the IDH1 gene leads to a reduction in cell survival and
proliferation, as well as further invasion of human gliomas

TABLE 3 | Performance metric of test dataset using top 500 genes.

Cancer Precision Recall F1 score Support Specificity

BTCA 0.6429 0.6000 0.6207 15.0000 0.9675

CMDI 1.0000 1.0000 1.0000 5.0000 1.0000

COCA 0.7059 0.7500 0.7273 16.0000 0.9673

GACA 0.8148 0.7097 0.7586 31.0000 0.9638

LGG 0.9412 1.0000 0.9697 32.0000 0.9854

LIRI 0.9412 0.8889 0.9143 18.0000 0.9934

LMS 1.0000 1.0000 1.0000 2.0000 1.0000

MALY 1.0000 1.0000 1.0000 9.0000 1.0000

MELA 1.0000 0.8889 0.9412 9.0000 1.0000

NACA 1.0000 1.0000 1.0000 2.0000 1.0000

PAEN 0.3333 1.0000 0.5000 1.0000 0.9881

RECA 0.9583 0.9583 0.9583 24.0000 0.9931

SKCA 0.7143 1.0000 0.8333 5.0000 0.9878

Average 0.8501 0.9074 0.8633 169.0000 0.9890

Accuracy 0.8639 NA NA NA NA
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FIGURE 5 | Classification accuracy on each cancer by using 500 chosen genes based on logistic, svm, and knn, respectively.

by malignant tumor cells (Cui et al., 2016). Mutation of the
IDH1 gene has been proved to be the driving oncogenic factor
of and has an impact on most brain lower-grade gliomas of
different genetic pathways (Ohno et al., 2013; Pieper et al., 2014;
Ohka et al., 2017).

According to research carried out on patients with liver
cancer from China and southern Africa, a mutational hotspot
at codon 249 of the p53 tumor suppressor gene has been
identified (Hsu et al., 1993), and HBV and aflatoxin B1 (AFB1)
are known synergistic risk factors. Zheng et al. (2005) explored
the role of mutation of the DNA polymeraseβ (polβ) gene in
human nasopharyngeal cancer and its relationship with EBV.
Zhao (2001) carried out investigation on the mutation of the
ras gene and what role they played in HP infection. They
determined the infection of HP through serological examination.
The results showed that 28 of 43 cases existed with mutations

in codon 12 and a mutation rate of 65.12% (Zhao, 2001).
Supplementary Figure 1 also shows the relationship between
gene mutations and cancers. Therefore, we concluded that
viral infections could lead to gene mutations and result in
cancer. In this study, somatic mutation data were utilized to
identify the primary site of a tumor based on machine learning
methods, which can contribute to the further diagnosis and
treatment of cancer.

Performance Evaluation
Figure 2 compares the accuracy with a different number of genes
used in the classifier. Because of gene sequencing and mutation
detection being costly and time consuming, we selected 100
and 1,000 as the minimum and maximum number of genes,
respectively. And we carried out a large number of experiments,
with 100 genes selected as the interval. The highest accuracy
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was obtained when using the top 500 genes. These results are
shown in Figure 3 with 10-time 10-fold cross-validation. The
average accuracy is 86.71%, and precision, recall, and F1 score
are presented in Table 2. The ROC curve and AUC of 13 types
of cancer are shown in Figure 4. Most curves are close to 100%,
and the area of each cancer is very close to 1 except BTCA
(biliary tract cancer). The micro-average and macro-average are
0.99, which show the prediction value of each dimension and
the average of all areas. Combining the metrics of prediction
accuracy, ROC, AUC, and so on, our model had the worst
overall prediction performance at biliary tract cancer and the best
overall prediction performance at malignant lymphoma. Liver
cancer, nasopharyngeal cancer, and gastric cancer are caused
by HBV, HCV, EBV, and HP, respectively. The performance
of our model on nasopharyngeal cancer was comparatively
poor. In general, our model can obtain considerable prediction
performance with the use of mutation data, which is great
help in identification of the primary site of a tumor, follow-up
diagnosis, and treatment.

In this study, the metastatic samples were used as test dataset.
We carried out experiments by using 500 chosen genes with use
of the model trained by training dataset. An average classification
accuracy is 86.39%, as shown in Table 3. Although the model
performed poorly on Pancreatic endocrine neoplasms (PAEN),
the overall classification accuracy is satisfying. In this condition,
we considered that little error on classification is tolerable.

Some experiments were also conducted by using other
algorithm with 500 selected genes. The average classification
accuracy values of using k-nearest neighbor (knn) and
support vector machine (svm) are 62.66 and 85.27%,
respectively, lower than 86.71% obtained by using the
method proposed in this study. As Figure 5 clearly shows,
the classification accuracy on each cancer of using logistic
algorithm was significantly higher than using knn. The
overall performance of logistic is also better than svm.
Therefore, the method proposed in this study can provide
better prediction performance.

Mean Value of Number of Somatic
Mutations on Each Cancer
We mapped the number of somatic mutations in each cancer, as
shown in Supplementary Figure 1. Columns represent cancers,
and rows represent genes. The number of mutations is colored on
a logarithmic scale. Also, we used the color bar to show difference
in values. The color of rectangles in the heat map represents the
relative log number of mutations per gene in each cancer type.
Cancers distributed in clusters along the vertical axis had similar
values in the number of mutations. Genes also cluster on the
horizontal axis, based on the association between cancers.

DISCUSSION

Viruses have been proven an important cause of cancer
(Tsai et al., 1996; Lin et al., 2013; Geng and Zhang, 2017).
Achieving effective identification of the primary site of a tumor
caused by viruses or other factors plays a vital role in the

follow-up diagnosis and treatment. Existing research shows
that molecular profiling can be used to predict the primary
site of a tumor. In this study, somatic mutation data were
used to determine cancer tissue origin. Samples of 13 types
of cancer were used with 3,374 samples used for feature
extraction. The selected top 500 genes with mutation data
were selected based on the feature importance score and was
trained in the proposed classifier with 10-time 10-fold cross-
validation. An average accuracy of 86.71% was obtained with
use of machine learning algorithms, random forest algorithm,
and logistic regression, utilized for gene selection and cancer
classification, respectively.

Our model can achieve considerable performance in
prediction of the primary site of common cancers caused by
a virus or other factors. However, prediction performances
on biliary tract cancer and nasopharyngeal carcinoma are
discouraging. According to the sample distribution in Table 1,
poor performance on nasopharyngeal carcinoma may be
attributed to the small quantity of samples tested for this
carcinoma. The reason for poor classification of the biliary tract
cancer requires further research because of a lack of evidence.
Therefore, we infer that there are shortcomings in using
mutation data alone to identify the primary site of some cancers,
but our model can obtain considerable overall performance. This
positively affects the follow-up diagnosis and treatment.

CONCLUSION

As a large number of patients have CUP, tracing the primary
site of a tumor has been a long-term challenge. Molecular
profiling of tissue-specific genes is available from public database
or medical institutions. We conducted experiments using
somatic mutation data based on machine learning algorithms.
Results showed that the proposed method is beneficial to the
diagnosis and treatment of patients with unknown primary
sites. However, the model does not perform well on all cancers.
This motivates for further research on the identification of
tissue origin of more common cancers. And research on
performance of combination of somatic mutation data and
other molecular profiling will be considered in our future
work. Currently, the proposed method can achieve considerable
performance and will help in the progress of the follow-
up study.
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