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Genome-wide association studies (GWAS) have identified several susceptibility loci
for gastric cancer (GC), but the majority of identified single-nucleotide polymorphisms
(SNPs) fall within the non-coding region and are likely to exert their biological function by
modulating gene expression. To systematically estimate expression-associated SNPs
(eSNPs) that confer genetic predisposition to GC, we evaluated the associations of
314,203 stomach tissue-specific eSNPs with GC risk in three GWAS datasets (2,631
cases and 4,373 controls). Subsequently, we conducted a gene-based analysis to
calculate the cumulative effect of eSNPs through sequence kernel association combined
test and Sherlock integrative analysis. At the SNP-level, we identified two novel variants
(rs836545 at 7p22.1 and rs1892252 at 6p22.2) associated with GC risk. The risk
allele carriers of rs836545-T and rs1892252-G exhibited higher expression levels of
DAGLB (P = 3.70 × 10−18) and BTN3A2 (P = 3.20 × 10−5), respectively. Gene-based
analyses identified DAGLB and FBXO43 as novel susceptibility genes for GC. DAGLB
and FBXO43 were significantly overexpressed in GC tissues than in their adjacent
tissues (P = 5.59 × 10−7 and P = 3.90 × 10−6, respectively), and high expression
level of these two genes was associated with an unfavorable prognosis of GC patients
(P = 1.30 × 10−7 and P = 7.60 × 10−3, respectively). Co-expression genes with
these two novel genes in normal stomach tissues were significantly enriched in several
cancer-related pathways, including P53, MAPK and TGF-beta pathways. In summary,
our findings confirm the importance of eSNPs in dissecting the genetic basis of GC, and
the identified eSNPs and relevant genes will provide new insight into the genetic and
biological basis for the mechanism of GC development.

Keywords: gastric cancer, eSNP, genome-wide association study, gene-based analysis, Sherlock integrative
analysis
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INTRODUCTION

Gastric cancer (GC) is the fifth most common neoplasm and
second leading cause of cancer-related death globally. There
were approximately one million newly diagnosed GC cases and
780,000 deaths in 2018 (Bray et al., 2018). Approximately half
of the new GC cases and deaths worldwide occur in China,
indicating a major public health burden (Chen et al., 2016). A
large twin cohort study in Nordic countries suggested that up
to 22% interindividual variability in GC risk could be explained
by genetic factors (Mucci et al., 2016). In the past decade, we
and other groups have reported a number of susceptibility loci
for GC through genome-wide association study (GWAS), which
only explain a fraction of GC heritability (Abnet et al., 2010; Shi
et al., 2011; Wang et al., 2017; Park et al., 2019). Moreover, the
vast majority of disease-related variants discovered by GWAS
fall within intergenic or non-coding regions, which may regulate
the expression of target genes and influence the process of
pathogenesis (Maurano et al., 2012).

Expression quantitative trait locus (eQTL) analysis has been
conducted to provide prior weights for the statistical analysis
of new susceptibility single-nucleotide polymorphism (SNP)
discovery and prioritize SNPs or genes for further functional
experiments (Li et al., 2013). Integration of GWAS and eQTL can
help us dissect genetic mechanism of multiple diseases (Guo et al.,
2018; Heinrichs et al., 2018). The Genotype-Tissue Expression
(GTEx) project has established the largest comprehensive public
database with whole-genome and transcriptome sequencing data
across 53 normal human tissues from nearly 1,000 individuals,
making it better to dissect the effects and molecular mechanism
of functional variations.

In a given gene, several variants modulate its expression level
in stomach tissue. These expression-associated SNPs (eSNPs)
may synergistically regulate the expression of the target gene.
Thus, collections of multiple genetic variants, rather than
individual highly significantly associated eSNPs, may account
for the putative role of the novel gene in predisposition to
GC. Pathway-based analysis evaluates the cumulative effect of
multiple SNPs from the same gene set. Utilizing this approach,
several novel genes and biological pathways enriched with
significantly disease-associated SNPs were identified (Cheng
et al., 2016; Yao et al., 2016; Walsh et al., 2019). Generally,
most studies select the representative SNPs by their proximity
to a specific gene, which inevitably obscures the genetic
effect between the candidate gene and disease. Accordingly,
incorporating functional eSNPs into the pathway analysis is
appealing because of its ability to explore the mechanism of
complex diseases. Through evaluating the cumulative effect
of 322,324 eSNPs in Caucasian individuals, scientists found
that the autoimmune thyroid disease pathway and JAK-STAT
pathway were involved in basal cell carcinoma pathogenesis
(Zhang et al., 2012). Moreover, a similar strategy was also
applied to obtain biological insight into the development of
lung cancer and type 2 diabetes (Zhong et al., 2010; Wang
et al., 2018). During the preparation of the manuscript, another
similar computational method called loci2path was reported
(Xu et al., 2020).

Considering the fact that regulatory causal variants confer to
GC risk by affecting their target gene expression, we initially
conducted genome-wide screening of 389,207 potential eSNPs
in stomach tissues from the GTEx database. We then evaluated
the associations of 314,203 eSNPs shared in three GWAS datasets
with GC risk. In addition, we performed a gene-based analysis to
calculate the cumulative effect of eSNPs and identify additional
susceptibility genes that might help provide new insight into the
mechanism of GC.

MATERIALS AND METHODS

eSNP Analysis
Expression-associated SNPs in stomach tissues were derived
from the GTEx v7 database (Stomach.allpairs.txt.gz). Genotyping
was performed using Illumina HumanOmni 5 M and 2.5 M.
Transcriptome dataset was generated by Affymetrix Expression
Array or Illumina TruSeq RNA sequencing. A total of 237
stomach tissues with both genotype and expression data were
available. Linear regression analysis was applied to evaluate the
association between genetic variants and expression levels of
genes within 1 Mb distance. As a result, a total of 636,426 cis-
eQTL gene (eGene) pairs were defined with a false discovery rate
(FDR) P-value < 0.05. After excluding indels, duplicated and
non-biallelic eSNPs, there were 389,207 eSNPs remained.

GC GWAS Datasets
Three existing GC GWAS datasets were used in the current
study, including 2,631 cases and 4,373 controls. Of them, NJ-
GWAS, and BJ-GWAS were previously conducted by our group
(Shi et al., 2011). All subjects recruited from Nanjing (550 cases
and 1,155 controls) and Beijing (456 cases and 1,118 controls)
were genotyped with Affymetrix Genome-Wide Human SNP
Array 6.0. Another GC GWAS dataset named SX-GWAS was
approved and downloaded from the dbGap (accession number:
phs000361.v1.p1; Abnet et al., 2010). All participants (1,625 cases
and 2,100 cancer-free individuals) recruited from Shanxi and
Linxian were genotype using the Illumina 660W-Quad chips.
The basic characteristics of study participates were shown in
Supplementary Table S1.

Quality Control and Imputation for GWAS
We performed a standard quality control procedure for these
three GWAS by excluding samples with lower call rates, sex
discordance, or excessive heterozygosity. Then, we excluded
eSNPs with a call rate < 95%, minor allele frequency (MAF)
<0.01, or P < 1 × 10−6 for Hardy-Weinberg equilibrium.
Imputation was performed with SHAPEIT v2 (Delaneau et al.,
2011) and IMPUTE2 (Howie et al., 2009) with the 1000 Genomes
Project (Phase III integrated variant set release, across 2,504
samples) as reference. We selected eSNPs with INFO score ≥ 0.4
for further association analysis.

Association Analysis
For each eSNP, unconditional logistic regression was conducted
to calculate odds ratios (ORs), and 95% confidence intervals
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(CIs). We performed genetic association analysis assuming an
additive effect model with adjustment for age, sex, smoking,
alcohol consumption, and top ten principal components (PCs)
in NJ-GWAS and BJ-GWAS. Since the smoking and drinking
status were not available in the SX-GWAS dataset, we took age,
sex and top ten PCs as covariates. Subsequently, a meta-analysis
with the fixed-effects model was conducted to pool the results
from each GWAS by using the GWAMA software (Magi and
Morris, 2010). I2 indicates the percentage of the effect estimates
variability which can be attributed to heterogeneity, and an
I2 value of ≥75% represents high heterogeneity. We filtered
significant eSNPs on linkage disequilibrium (LD; r2 < 0.1), from
which, the index eSNPs with the lowest p value in each LD block
were obtained. All statistical analyses were conducted by using
PLINK 1.9 and R language (version 3.5.0). Regional association
plots were generated in LocusZoom.

Variance Explained
The phenotypic variance explained by genetic variants was
estimated using the fixed-effects model in the single-variant
analysis as previously described (Lee et al., 2012). Variants
identified in the present study and those published in previous
GWAS (Supplementary Table S2) were used to calculate the
respective variances by assuming the 5-year prevalence of GC to
be 32.43/100,000, 42.43/100,000, and 52.43/100,000 in China1.

In silico Functional Annotation
We used ANNOVAR (Wang et al., 2010) to generate gene-
based annotation and then described the distribution of all these
eSNPs. We extracted candidate SNPs in strong LD (r2

≥ 0.6)
with the index variant based on the 1000 Genomes Phase 1
Asian individuals from the online HaploReg v4.2 tool (Ward and
Kellis, 2012). According to the available data from ENCODE
(Ward and Kellis, 2012) and Roadmap (Bernstein et al., 2010)
we predicted regulatory elements (promoter, enhancer, etc.)
through histone modification markers (H3K4me3, H3K4me1,
and H3K27ac) and chromatin state segmentation in the stomach
tissues and DNase I hypersensitivity sites (DHS) in 125
cell types. Other bioinformatics annotation tools, including
RegulomeDB (Supplementary Table S3; Boyle et al., 2012)
CADD (Kircher et al., 2014) GWAVA (Ritchie et al., 2014) and
PINES (Corneliu et al., 2018) were also used to decipher the
potential functional variants.

Gene-Based and Pathway Analysis
Gene-based analysis was performed using the sequence kernel
association combined test (SKAT-C), which calculates the
combined effect of common variants toward a particular
phenotype (Ionita-Laza et al., 2013). Pathway analysis was
conducted in merged dataset by the adaptive rank truncated
product (ARTP) method with 10,000 permutations, which
utilizes highly efficient permutations to analyze the association
between genes within a pathway and diseases (Yu et al., 2009). All
analyses were implemented in R package “SKAT” and “ARTP.”
Human-derived gene sets were cataloged by and obtained

1https://gco.iarc.fr/today/online

from the Molecular Signatures Database (MSigDB, version 6.2).
Finally, a total of 1,077 pathways with 5,155 related genes were
derived from KEGG (n = 186), Reactome (n = 674), and BioCarta
(n = 217). The Benjamini-Hochberg method was applied to
correct multiple testing, setting the threshold for significance at
5% FDR. In addition, genes were considered significant when
they had P-values < 0.05 in at least two GWAS datasets.

Sherlock Integrative Analysis
We used Sherlock integrative analysis for further validation (He
et al., 2013). Sherlock uses a Bayesian statistical method to
calculate the individual Bayes factor for each eSNP, and their sum
constitutes the final Log Bayes factor (LBF) score for each gene.
The larger LBF score represents the higher probability that the
gene is associated with GC. If an eSNP is significantly associated
with GC, a positive score would be assigned. Otherwise, a
negative LBF score would be given. The P threshold for statistical
significance was set to 1.0 × 10−3.

Differential Expression Analysis
We downloaded the normalized expression data and clinical
information of individuals with GC from The Cancer Genome
Atlas database. Differential expression analyses were performed
in 32 paired gastric tumor and adjacent normal tissues.

Co-expression and Gene-Set Enrichment
Analysis
The expression data of 23,424 genes in 237 normal stomach
tissues were obtained from the GTEx v7 database. We conducted
genome-wide expression correlation analysis to identify co-
expression genes with the linear regression model. Gene-set
enrichment analysis (GSEA) of the KEGG pathway gene set
collection was implemented in R package “clusterProfiler” (Yu
et al., 2012). All genes were pre-ranked according to the Pearson
correlation coefficients calculated by the co-expression analysis.
Then, gene sets were considered significantly enriched if the FDR
was <0.05 after 100,000 permutations.

RESULTS

Individual eSNP Associated With GC Risk
As shown in the workflow chart (Figure 1), 389,207 eSNPs were
found to be significantly associated with their surrounding gene
expression levels (FDR < 0.05) in 237 stomach tissue samples
from the GTEx database. Among them, 319,656, 321,098, and
322,370 eSNPs passed the quality control in NJ-GWAS, BJ-
GWAS, and SX-GWAS, respectively. A total of 314,203 shared
eSNPs were included in the genetic association analysis, and
the association results of 307,676 variants without heterogeneity
between studies (I2 < 75.0%) were shown in Figure 2A.
Most of the eSNPs were located within intronic (48.21%) or
intergenic (32.60%), and 8.19% had a RegulomeDB score less
than 3 (Figure 2B). After LD pruning, we identified a total of
1,222 index eSNPs at P < 0.05. Among them, 4 eSNPs were
retained after multiple testing correction (FDR < 0.05; Table 1).
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FIGURE 1 | Workflow of the study design.

Region plots of these four significant variants were depicted in
Supplementary Figure S1.

The two most strongly risk-associated variants (rs6676150
at 1q22 and rs12217597 at 10q23.33) in known loci achieved
genome-wide association significance (P = 4.29 × 10−10

and P = 1.74 × 10−8, respectively), which correlated with
the expression level of THBS3 and NOC3L, respectively,
(Figures 3A,B). Moreover, these two variants were in strong
LD with previously reported index SNPs (Supplementary
Table S4). Of note, we found that two novel variants at 7p22.1
(rs836545), and 6p22.2 (rs1892252) were significantly associated
with GC risk (per T allele OR = 1.23, 95% CI: 1.12–1.35, and
P = 7.46 × 10−6; per G allele OR = 1.41, 95% CI: 1.20–
1.66, and P = 2.43 × 10−5, respectively). Meanwhile, the risk
alleles rs836545-T and rs1892252-G were correlated with higher
expression levels of DAGLB (P = 3.70 × 10−18) and BTN3A2
(P = 3.20 × 10−5), respectively (Figures 3C,D). A total of 63
candidate SNPs in strong LD (r2

≥ 0.6) with rs836545 were
extracted by using the HaploReg v4.2 tool (Supplementary
Table S5). We found that the rs836545 site located within an
active enhancer in three cell types, and the variant allele was
predicted to alter the binding of four regulatory motifs; however,
the chromatin status in stomach tissue was quiescent. As depicted
in Supplementary Figure S2, we focused on the region nearby
the promoter of DAGLB containing two variants in perfect

LD (rs3828944 and rs4724806 at a 25 bp distance, pairwise
r2 = 1.00), where histone markers and chromatin state signatures
exhibited a strong transcriptional activity as well as DNase-seq
evidence for transcription factor binding. Using a combination of
annotation tools, we proposed that rs3828944 might be the most
promising functional variant in this region. We did not observe
any variants in LD with the rs1892252 by HaploReg. Nevertheless,
our previous study have observed a tumor-promoting role of
BTN3A2 that was remotely regulated by rs1679709 at 6p22.1
(Zhu et al., 2017).

Variance Explained by Independent
eSNPs
Based on the eSNPs identified in present study and those
reported by previous GWAS, we estimated the proportion of
phenotypic variance explained by a liability threshold model
assuming a GC prevalence of 32.43/100,000, 42.43/100,000,
and 52.43/100,000 (Table 2). These four identified eSNPs
showed 0.58, 0.60, and 0.62%, respectively, while nineteen
of these GWAS-reported SNPs accounted for 1.14, 1.19,
and 1.23% of the total phenotypic variance at the respective
prevalence. In total, all these variants associated with
susceptibility to GC showed 1.30, 1.35, and 1.39% of the
phenotypic variance, respectively.These two novel eSNPs
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FIGURE 2 | SNP-based associations with GC in the GWAS meta-analysis. (A) Manhattan plot of P value for each expression-related SNPs (eSNPs) highlighting key
chromosomal regions. The associations [-log10 (P) values, Y-axis] are plotted against genomic position (X-axis by chromosome and the chromosomal position of
NCBI build 37). The green horizontal line corresponds to a P value threshold of 1.00 × 10−4; (B) Pie charts showing the distribution of functional annotation and
Regulome DB score (a categorical sore range from 1a to 7, indicating biological indicating biological evidence of a SNP being a regulatory element, with a low score
denoting a higher likelihood of a SNP being regulatory) for 307,676 eSNPs without heterogeneity between studies.

(rs836545 and rs1892252) showed approximately 12.37%
(0.49%/3.96%) of the phenotypic variance owing to known
genetic variations.

Susceptibility Genes Associated With GC
Risk and Pathway Analysis
At the gene level, 302 (5.97%) of 5,055 pathway genes were
associated with GC risk at a nominal P-value < 0.05. Five
protein-coding genes, including THBS3 (P = 2.65 × 10−8),
GBA (P = 1.29 × 10−6), GPR27 (P = 1.59 × 10−5), AMDHD1

(P = 2.65 × 10−5), and FBXO43 (P = 1.26 × 10−4),
were significantly related to GC susceptibility in the pooled
dataset after correction for multiple testing (FDR < 0.05;
Table 3). Two genes (THBS3 and GBA) were located in
known susceptibility locus (1q22), while the other three genes
(GPR27 at 3p13, AMDHD1 at 12q23.1, and FBXO43 at
8q22.2) were identified as novel GC susceptibility genes. At
the pathway level, there were no significant pathways after
multiple testing correction. However, 23 pathways reached a
less stringent threshold (P < 0.05), which was predominantly
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TABLE 1 | Associations of four significant expression-related SNPs (eSNPs) with GC risk under the additive genetic model.

SNP Region Allelesa NJ-GWAS BJ-GWAS SX-GWAS Fixed-effect meta-analysis

OR(95% CI)b OR(95% CI)b OR(95% CI)c OR(95% CI) P value FDRd

rs6676150 1q22 G/C 0.67 (0.52–0.86) 0.79 (0.54–1.17) 0.55 (0.65–0.76) 0.67 (0.59–0.76) 4.29 × 10−10 3.41 × 10−6

rs12217597 10q23.33 T/C 1.05 (0.85–1.29) 1.31 (0.95–1.81) 1.28 (1.45–1.64) 1.33 (1.21–1.47) 1.74 × 10−8 6.92 × 10−2

rs836545 7p22.1 C/T 1.10 (0.91–1.33) 1.37 (1.04–1.81) 1.13 (1.26–1.41) 1.23 (1.12–1.35) 7.64 × 10−6 2.03 × 10−2

rs1892252 6p22.2 C/G 1.69 (1.33–2.16) 1.60 (1.05–2.43) 0.70 (0.89–1.14) 1.41 (1.20–1.66) 2.43 × 10−5 4.83 × 10−2

aReference allele/effect allele. bAdjusted for age, gender, smoking, drinking and top ten principal components (PCs). cAdjusted for age, gender and top ten PCs. dFDR
was corrected by Benjamini-Hochberg procedure.

FIGURE 3 | eQTL analysis shown the associations of four expression-related SNPs (eSNPs) and its related genes in stomach tissues from GTEx. The small gray dot
represents the individual log2 gene expression value. (A) eQTL analysis (rs6676150, risk allele C) for the expression of THBS3 (P = 2.10 × 10−12); (B) eQTL analysis
(rs12217597, risk allele C) for the expression of NOC3L (P = 6.20 × 10−9); (C) eQTL analysis (rs836545, risk allele T) for the expression of DAGLB
(P = 3.70 × 10−18); and (D) eQTL analysis (rs1892252, risk allele G) for the expression of BTN3A2 (P = 3.20 × 10−5).
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TABLE 2 | Heritability estimated from variants associated with GC risk.

Modela h2(SE) observed scale h2(SE) liability scale

Prevalence Prevalence Prevalence

(32.43/100,000) (42.43/100,000) (52.43/100,000)

SNPs identified by previous GWAS (n = 19)a 3.50% 1.14% 1.19% 1.23%

The identified eSNPs (n = 4)b 1.80% 0.58% 0.60% 0.62%

The identified eSNPs in unknown loci (n = 2)c 0.49% 0.16% 0.16% 0.17%

Combination (n = 21)d 3.96% 1.30% 1.35% 1.39%

aVariants reported by previous GWAS studies. bSignificant eSNPs identified by the present study. cSignificant novel eSNPs identified by the present study. dConsist of 19
GWAS reported SNPs and 2 novel identified eSNPs by present study.

TABLE 3 | Significant GC-associated protein-coding genes predicted by sequence kernel association combined test (SKAT-C).

Region Gene eSNP testeda PNJ−GWAS PBJ−GWAS PSX−GWAS Pcombined FDRb

Known region

1q22 THBS3 79 4.98 × 10−2 2.75 × 10−1 7.89 × 10−6 2.65 × 10−8 3.00 × 10−5

1q22 GBA 14 2.56 × 10−2 7.14 × 10−2 8.56 × 10−4 1.29 × 10−6 1.11 × 10−3

Unknown region

3p13 GPR27 51 4.97 × 10−8 9.99 × 10−1 6.03 × 10−3 1.59 × 10−5 9.30 × 10−3

12q23.1 AMDHD1 75 1.17 × 10−6 2.83 × 10−3 1.54 × 10−1 2.65 × 10−5 1.36 × 10−2

8q22.2 FBXO43 28 3.81 × 10−1 5.00 × 10−3 1.61 × 10−3 1.26 × 10−4 4.97 × 10−2

aNumber of eSNPs mapped to each gene. bFalse discovery rate in the combined dataset.

TABLE 4 | Top GC-related protein-coding genes predicted by Sherlock integrative analysis.

Region Gene LBFa Pb Supporting SNPc PGWAS
d PeQTL

e

Known region

1q22 THBS3 7.31 2.45 × 10−5 rs2049805 2.82 × 10−8 1.85 × 10−9

10q23.33 NOC3L 7.18 2.45 × 10−5 rs12220125 2.09 × 10−9 2.79 × 10−9

1q22 GBA 6.87 3.43 × 10−5 rs12034326 1.38 × 10−5 2.90 × 10−6

Unknown region

8q22.2 FBXO43 5.79 9.31 × 10−5 rs2453641 9.39 × 10−5 3.45 × 10−6

7p22.1 DAGLB 5.60 1.32 × 10−4 rs4724806 1.08 × 10−5 3.44 × 10−18

19p13.11 HAPLN4 4.18 7.99 × 10−4 rs2905421 4.48 × 10−5 4.62 × 10−8

19q13.43 ZNF329 4.17 8.08 × 10−4 rs157375 3.34 × 10−4 4.53 × 10−6

aLBF (logarithm of Bayes factor) is to assess whether a gene is associated with GC through integrating the GWAS signal and eQTL. The larger LBF score represents the
higher probability that the gene is associated with GC. For example, a LBF of 7.31 means that a gene is more likely [1495 times, (exp(7.31) = 1495] to be associated
with GC than no association. bP-value from Sherlock integrative analysis. ceSNP with the highest LBF. dP-value from expression quantitative trait analysis. eP-value from
meta-analysis of three GC GWAS datasets.

related to metabolism and transcription. Details are shown in
Supplementary Table S6.

Sherlock Integrative Analysis Prioritizes
Seven Risk Protein-Coding Genes
We integrated genetic associations from the meta-analysis of
three GC GWAS (a total of 307,676 eSNPs with no heterogeneity)
with stomach eQTL from the GTEx database. Sherlock
integrative analysis identified seven top GC susceptibility genes
whose expression might confer GC risk (P < 1.0 × 10−3;
Table 4). Compared with the abovementioned results, this new
approach validated five genes consisting of three known genes
(THBS3, NOC3L, and GBA) and two novel genes (FBXO43
and DAGLB).

Differential Expression Analysis and
GSEA
We compared the expression level of DAGLB and FBXO43 in
32 paired tissue samples of patients with GC. Both mRNA
levels of the two genes were remarkably unregulated in tumors
than in their adjacent normal tissues (P = 5.59 × 10−7

and P = 3.90 × 10−6, respectively; Supplementary Figures
S3A,B). The Kaplan-Meier plotter online tool revealed that high
expression level of DAGLB or FBXO43 was associated with an
unfavorable prognosis in patients with GC (DAGLB, HR = 1.77,
95%CI: 1.43–2.20, and P = 1.30 × 10−7; FBXO43, HR = 1.39,
95%CI: 1.09–1.78, and P = 7.60 × 10−3; Supplementary
Figures S3C,D). To identify the potential function of these
two genes in GC tumorigenesis, we conducted GSEA on the
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correlation coefficients from co-expression analysis with 23,424
genes in 237 normal stomach tissues. We observed that co-
expression genes with DAGLB or FBXO43 were significantly
enriched in several classical cancer-related pathways, including
MAPK, WNT, JAK-STAT, and P53 signaling (all FDR < 0.05;
Supplementary Tables S7, S8).

DISCUSSION

In the current study, we conducted a genome-wide scan with
2,631 cases and 4,373 controls to systematically explore the
associations of 314,203 cis-eSNPs with GC risk, and then
we incorporated the association signals with eQTL data to
identify more risk genes for GC. Hitherto, this is the most
extensive overview of the role of eQTL related variants in GC
susceptibility. Of interest, we discovered two independent novel
eSNPs associated with GC risk, which together captured nearly
12.37% of the phenotypic variance explained by all identified
genetic loci. Synthesizing the results of single SNP association
and gene-based analyses, we identified DAGLB and FBXO43
as novel susceptibility genes for GC. Differential expression
analysis and GSEA also highlighted the tumorigenicity of DAGLB
and FBXO43.

At the individual eSNP level, we discovered two novel risk
loci (rs836545 at 7p22.1 and rs1892252 at 6p22.2). The risk
T allele of rs836545 increased the expression level of DAGLB
in stomach tissues. As supporting evidence, it was shown that
DAGLB was significantly elevated in GC tissues than in adjacent
normal tissues. Moreover, Sherlock integrative analysis also
confirmed that DAGLB was a promising susceptibility gene
for GC. DAGLB, which encodes diacylglycerol lipase beta, has
been widely studied in lipid mechanism. In DAGLB knockout
mice, DAGLβ inhibition can reduce 2-arachidonoylglycerol and
arachidonic acid and eicosanoids in macrophages (Hsu et al.,
2012). A recent GWAS reported a novel variant with HDL-C
levels by modifying expression of DAGLB (Zhou et al., 2018).
To the best of our knowledge, metabolism of lipids, especially
arachidonic acid, has been proved to be an important regulator
in the process of inflammation and cancer (Walduck et al.,
2009). Using In silico analysis, we identified that rs3828944
(in perfect LD with rs836545, r2 = 0.97) located in the
promoter region of DAGLB was mapped with the center of
DHS peaks in 125 cell types and within regions harboring
histone marks (H3K4me1, H3K4me3, and H3K27ac) in stomach
tissues or mucosae. These convergent lines of evidence implied
that the risk T allele of rs3828944 at 7p22.1 might confer
GC risk though enhancing the expression of DAGLB. For
rs1892252 at 6p22.2, the risk allele rs1892252-G showed increased
expression of BTN3A2, which was greatly overexpressed in GC
tissues. A recent GWAS have reported that rs1892252-C was
a risk allele for schizophrenia (OR = 1.12, 95%CI: 1.09–1.15,
P = 7.0 × 10−13; Ikeda et al., 2019). Intriguingly, our group
has previously verified that the rs1679709 at 6p22.1 remotely
regulated BTN3A2 expression by modulating its enhancer activity
and deletion of BTN3A2 inhibited proliferation, migration,
and invasion of GC cells (Zhu et al., 2017). BTN3A2, an

isoform of BTN3 family, participates in regulating immune
signal in T and natural killer cells (Messal et al., 2011).
Besides, BTN3A2 also plays an important role in activating
the phosphoantigen-mediated Vγ9Vδ2 T cells toward the
development of pancreatic ductal adenocarcinoma (PDAC),
implicating it as a promising immunotherapeutic target for the
treatment of PDAC (Benyamine et al., 2017).

As mentioned above, only one candidate susceptibility
gene was found based on single eSNP analysis. Therefore,
collections of multiple genetic variants, rather than individual
highly significantly associated eSNPs, may account for a
putative role of the novel gene in predisposition to GC.
From the results of the SKAT-C and Sherlock integrative
analyses, we identified another new risk gene, FBXO43, also
known as EMI2, which is a member of F-box protein
family that influences the state of meiosis via translational
regulation (Tan et al., 2018). A previous study has shown
that the mRNA level of FBXO43 is dramatically upregulated
in hepatocellular carcinoma tissues than in normal tissues,
and elevated FBXO43 expression indicates a poor prognosis
in patients with hepatocellular carcinoma (Tang et al., 2008).
Consistent with the observation, FBXO43 was overexpressed
in GC tissues and associated with poor prognosis in patients
with GC. Co-expression genes with FBXO43 in normal stomach
tissue were predominantly involved in several important signal
transduction pathways, including MAPK, TGF-beta, WNT,
and P53 signaling.

In conclusion, our findings highlighted the importance of
eSNPs in dissecting genetic basis of GC. We discovered two
novel eSNPs, rs836545 at 7p22.1, and rs1892252 at 6p22.2,
which were significantly associated with susceptibility to GC.
Furthermore, we integrated eQTL data with GWAS association
signal to identify FBXO43 and DAGLB as new GC risk genes.
These susceptible eSNPs, together with candidate genes, will
provide new insight into the genetic and biological basis for the
mechanism of GC development.
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