
fgene-11-00900 August 10, 2020 Time: 16:12 # 1

METHODS
published: 12 August 2020

doi: 10.3389/fgene.2020.00900

Edited by:
Xiaochen Bo,

Beijing Institute of Radiation Medicine,
Academy of Military Medical Sciences

(AMMS), China

Reviewed by:
Liang Zhao,

Taihe Hospital, Hubei University
of Medicine, China

Miten Jain,
University of California, Santa Cruz,

United States

*Correspondence:
Huaiqiu Zhu

hqzhu@pku.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 30 November 2019
Accepted: 21 July 2020

Published: 12 August 2020

Citation:
Wang L, Qu L, Yang L, Wang Y

and Zhu H (2020) NanoReviser: An
Error-Correction Tool for Nanopore

Sequencing Based on a Deep
Learning Algorithm.

Front. Genet. 11:900.
doi: 10.3389/fgene.2020.00900

NanoReviser: An Error-Correction
Tool for Nanopore Sequencing Based
on a Deep Learning Algorithm
Luotong Wang1, Li Qu1,2, Longshu Yang3, Yiying Wang1 and Huaiqiu Zhu1,2,3*

1 State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College
of Engineering, Peking University, Beijing, China, 2 Department of Biomedical Engineering, Georgia Institute of Technology
and Emory University, Atlanta, GA, United States, 3 Center for Quantitative Biology, Peking University, Beijing, China

Nanopore sequencing is regarded as one of the most promising third-generation
sequencing (TGS) technologies. Since 2014, Oxford Nanopore Technologies (ONT) has
developed a series of devices based on nanopore sequencing to produce very long
reads, with an expected impact on genomics. However, the nanopore sequencing reads
are susceptible to a fairly high error rate owing to the difficulty in identifying the DNA
bases from the complex electrical signals. Although several basecalling tools have been
developed for nanopore sequencing over the past years, it is still challenging to correct
the sequences after applying the basecalling procedure. In this study, we developed
an open-source DNA basecalling reviser, NanoReviser, based on a deep learning
algorithm to correct the basecalling errors introduced by current basecallers provided
by default. In our module, we re-segmented the raw electrical signals based on the
basecalled sequences provided by the default basecallers. By employing convolution
neural networks (CNNs) and bidirectional long short-term memory (Bi-LSTM) networks,
we took advantage of the information from the raw electrical signals and the basecalled
sequences from the basecallers. Our results showed NanoReviser, as a post-basecalling
reviser, significantly improving the basecalling quality. After being trained on standard
ONT sequencing reads from public E. coli and human NA12878 datasets, NanoReviser
reduced the sequencing error rate by over 5% for both the E. coli dataset and the
human dataset. The performance of NanoReviser was found to be better than those
of all current basecalling tools. Furthermore, we analyzed the modified bases of the
E. coli dataset and added the methylation information to train our module. With the
methylation annotation, NanoReviser reduced the error rate by 7% for the E. coli dataset
and specifically reduced the error rate by over 10% for the regions of the sequence
rich in methylated bases. To the best of our knowledge, NanoReviser is the first post-
processing tool after basecalling to accurately correct the nanopore sequences without
the time-consuming procedure of building the consensus sequence. The NanoReviser
package is freely available at https://github.com/pkubioinformatics/NanoReviser.

Keywords: nanopore sequencing, deep learning, sequencing revising, convolution neural network, long short-
term memory networks, DNA methylation

Frontiers in Genetics | www.frontiersin.org 1 August 2020 | Volume 11 | Article 900

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00900
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00900
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00900&domain=pdf&date_stamp=2020-08-12
https://www.frontiersin.org/articles/10.3389/fgene.2020.00900/full
http://loop.frontiersin.org/people/801598/overview
http://loop.frontiersin.org/people/756768/overview
http://loop.frontiersin.org/people/1047536/overview
http://loop.frontiersin.org/people/1048590/overview
http://loop.frontiersin.org/people/734573/overview
https://github.com/pkubioinformatics/NanoReviser
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 2

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

INTRODUCTION

Oxford Nanopore Technologies (ONT) has recently shown the
ability to use nanopores to achieve long-read sequencing, which
has a tremendous impact on genomics (Brown and Clarke,
2016). The small-sized MinION device introduced by ONT is
able to translate long sequencing reads from electrical signals
produced by a single-stranded molecule of DNA passing through
a nanopore (Lu et al., 2016). MinION is much cheaper than
the other available sequencers and allows for sequencing to be
carried out in real time, and hence has great prospects for use in
many areas of genomics analysis such as variation detection and
genome assembly (Leggett and Clark, 2017; Ameur et al., 2018;
Pollard et al., 2018).

Although it is possible to produce long sequencing reads
when using the MinION device with large arrays of nanopores,
nanopore sequencing reads do show a fairly high error rate
which could be introduced by abnormal fluctuations of the
current or by the improper translation from raw electrical
signals into DNA sequence, which has been sought to be
corrected by the basecalling procedure developed by ONT
(Rang et al., 2018). Several basecallers have been proposed since
MinION was launched. Albacore (Loman et al., 2015), Guppy
and Scrappie are basecallers provided by ONT. Notably, both
Albacore and Guppy are only available to ONT’s commercial
customers, while Albacore is the default basecaller. Scrappie, a
technology demonstrator provided by ONT, actually combined
with two basecallers in one: scrappie events and scrappie raw,
which can only provide fasta output and was not trainable.
Nanocall (David et al., 2017) predicted the DNA sequences using
hidden Markov models (HMMs), but could not detect long
homopolymer repeats. DeepNano (Boža et al., 2017), the first
basecaller based on deep learning and one applying recurrent
neural networks (RNNs) to predict DNA bases, showed that a
deep learning model could make a crucial contribution to the
basecalling performance. However, DeepNano was developed
mainly based on the datasets sequenced using R7.3 and R9.0
flow cells, which are no longer used. Later on, BasecRAWller
(Stoiber and James, 2017), designed to use the raw outputs of
nanopores with unidirectional RNNs to basecall DNA bases, was
shown to be able to process the electrical signals in a streaming
fashion but at the expense of basecalling accuracy. Chiron (Teng
et al., 2018), designed to adopt a combination of convolution
neural network (CNN) and RNN methodologies together with
a connectionist temporal classification decoder (CTC decoder)
that was successfully used in machine translation, achieved a
high basecalling accuracy. Despite this high accuracy, Chiron,
however, required a high much computer time to get these
accurate results. Notably, all of these tools were designed to focus
on basecalling but not sequencing error correction. The only tool
proposed previously for MinION sequencing error correction,
nanoCORR (James, 2016), requires additional next-generation
sequencing short read sequences, and thus is not a practical tool
for error correction in its true sense.

In this study, we developed NanoReviser, the first error-
correction tool for a MinION nanopore sequencing platform. To
correct errors introduced by the default basecallers provided by

the manufacturer, our tool was designed to first take both the
original electrical signals and base sequences as the inputs. In
the module designed for the tool, we used a CNN (Kalchbrenner
et al., 2014) to extract the local patterns of the raw signals, and
a highly powerful RNN (Pascanu et al., 2013) and bidirectional
long short-term memory networks (Bi-LSTMs) (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997) to determine the
long-term dependence of the bidirectional variation of the raw
electronical signals on DNA strand passing through the nanopore
hidden in the basecalled sequences. Although the module was
trained on a small dataset from Escherichia coliK12 MG1655 (Jain
et al., 2017) and human NA12878 (Jain et al., 2018) sequences,
it was shown to be able to correct errors of sequencing for
many other genomes as long as corresponding training sets
were provided. Furthermore, since studies have shown that DNA
modification information could be detected by analyzing the
electrical signals and since both the DNA sequences and the DNA
modifications could be determined at the same time using the
Oxford Nanopore sequencing (Stoiber et al., 2017), we analyzed
the basecalling results for the methylated bases and trained our
module with the modified data. We believe that NanoReviser will
find significant use in genome analysis when ONT sequencing
becomes, as expected, widely used in the future.

MATERIALS AND METHODS

Data Sets
We performed this study with data from two public datasets:
human data from the Nanopore WGS Consortium (Stoiber
et al., 2017) and E. coli data from the MinION Analysis and
Reference Consortium (MARC) (Jain et al., 2017). The Nanopore
WGS Consortium sequenced the genome of the human sample
CEPH1463 (NA12878/GM12878, Ceph/Utah pedigree) using 1D
ligation kits with R9.4 chemistry. The sequencing of this data
was basecalled using Albacore release v2.0.2. We trained our
module on the chromosome 20 data and validated our module
on the rel3 NA12878 genome data. MARC provided the whole
genome sequencing of E. coli K12 MG1655 using 1D ligation kits
and Rapid kits with R9.0 chemistry, and the basecaller used for
these samples was Albacore release v0.8.4. A summary of the two
datasets is listed in Table 1.

The sequence of the Escherichia coli K12 MG1655 genome
may be accessed at the NCBI under Refseq accession number
NC_000913.3 and the sequence of the Homo sapiens NA12878
genome was downloaded from the NCBI GenBank assembly
accession GCA_002077035.3. The annotated file of the
modifications in the E. coli genome was downloaded from
the MethSMRT database (Ye et al., 2017).

TABLE 1 | Summary of the experimental datasets for training NanoReviser.

E. coli Human chromosome 20

Numbers of reads 560,000 395,514

Numbers of mapped reads 550,234 259,768

Average length of mapped reads 8198.05 6691.98

Frontiers in Genetics | www.frontiersin.org 2 August 2020 | Volume 11 | Article 900

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 3

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

Preprocessing
Re-segmentation of Events During Sequencing
The raw signals generated by the process of DNA passing through
the nanopores were basecalled into DNA sequences immediately
by default. The raw signals, the files used during the basecalling
procedure, and the output file in fastq format were packed
together into a fast5 file as the final output of the sequencing.
Based on the files used during the basecalling procedure, which
were the event files, we re-segmented the events provided by the
default Albacore basecaller.

A period of raw signals that can be translated into a particular
length of DNA was defined when using ONT procedures as an
event, and a series of parameters were used to describe this event
(David et al., 2017). Although the parameters in an event defined
by the different basecallers differed, the common parameters
were mean, start, stdv, length, model_state, move, weight, and
p_model_state – with model_state referring to the corresponding
predicted DNA sequence of the event, start being the starting
time point of the event, length being the length of the raw
signals corresponding to the event, mean and stdv being the
basic statistics of this period of raw signals, move describing the
movement of the DNA in nanopores and having only three values
(0 standing for the DNA strand staying in the nanopore and 1
and 2 standing for the DNA strand moving, respectively, one
base or two bases in the nanopore), weight and p_model_state
being essential parameters for basecalling. Based on move, we re-
segmented the events and calculated the mean and stdv as the
input of our module. The re-segmentation process was crucial for
basecalling in the following process.

Labeling and Training
We aligned the re-segmented reads against the E. coli K12
MG1655 reference genome using GraphMap (Sović et al., 2016),
which was designed specifically for the alignment of the nanopore
reads, with the default parameters and we labeled the sequencing
errors and basecalling errors based on the alignment results.
As for the methylation labeling, we aligned the re-segmented
reads against the E. coli K12 MG1655 reference genome to
get the positions of events. Then, we labeled the methylated
bases according to the annotation from the MethSMRT database
(Ye et al., 2017), which defined three types of methylated
areas: m6A stands for N6-methyladenosine, m4C stands for
N4-methylcytosine and modified bases.

Notably, the two dataset projects (Nanopore WGS
Consortium and MARC) were quite different in many of
their sequencing procedures such as library preparation (Rapid
kit vs. 1D ligation kit), flow cell version (R9.4 chemistry vs. R9.0
chemistry) and basecaller tools (Albacore v2.0.2 vs. Albacore
v0.8.4). Thus, we trained NanoReviser on the E. coli data and
human data individually. In order to build the training set and
validation set, we first divided the reference genome into 5,000 bp
intervals. Then we aligned all of the reads and separated them
into different intervals based on the alignment results. For the
E. coli training process, we selected two reads from every interval,
which was 2x depth data, to build up the low-coverage training
set and we selected the reads located on the genome length of
2,225,000–2,300,000 bp to build up the local training set: There

were 1,854 and 2,412 reads in, respectively, the low-coverage and
local E. coli training sets.

We used 1x depth reads, which means the reads contained
in our selection could cover the genome one times, and the
reads located on 28,750,000–43,750,000 bp of the NA12878
chromosome 20 to build, respectively, the low-coverage training
data and local training data for the training process using the
human data. The low-coverage training data contained 4,820
reads and the local data contained 4,593 reads.

We used the Adam (adaptive moment estimation) algorithm
with the default parameters (Kingma and Ba, 2014) in the
training process to perform optimization. NanoReviser iterated
through 50 epochs with the low-coverage data, the local data,
and the combination of the low-coverage data and local data,
which we denoted as NanoReviser (low coverage), NanoReviser
(local) and NanoReviser respectively. We trained our models
on a high-performance computer (Dell R930, 2019) with
four CPU processors (2.1 GHz Intel Xeon E7-4809 v4), four
GPU processors (Nvidia Tesla T4) and 18 DDR4 memories
(18× 32G, 2133 MHz). Additionally, we applied multiprocessing
implementation in the training procedure of NanoReviser to
reduce training time, and the corresponding training time is
presented in Table 2.

Model Architecture
As shown in Figure 1A, NanoReviser was designed to be
composed of two main models, named model 1 and model 2,
respectively, with the main task for model 1 being the learning of
the error types from the combination of the reads and electrical
signal input and the main goal of model 2 being identification of
the bases. Models 1 and 2 were designed to share a similar model
structure, called the main model, which is shown in Figure 1B.

Main Model Architecture
A simple multi-layer RNN cannot precisely capture the fine-scale
changes of the electrical signals caused by DNA polymers passing
through nanopores. In order to increase the model capacity, we
designed the main model to be similar to a speech recognition
deep learning model (Rosenberg et al., 2017) that used multiple
CNN layers (Kalchbrenner et al., 2014) and RNN layers (Pascanu
et al., 2013). In order to make our module perform well with
extremely imbalanced datasets, we also exploited the center loss
function (Wen et al., 2016) in our module. Figure 1B shows the
architecture of our sequencing error correction system.

In our definition, the event of moment t defined as et was
labeled as yt1 ∈ {A, T, C, G, I, D} in model 1 (with I and

TABLE 2 | Summary of the training time.

E. coli Human chromosome 20

Low-coverage data 2.66 h/epoch 9.02 h/epoch

132.29 h/50 epochs 451.22 h/50 epochs

Local data 3.05 h/epoch 7.10 h/epoch

152.61 h/50 epochs 355.11 h/epochs

Low-coverage + Local data 6.69 h/epoch 16.54 h/epoch

334.50 h/50 epochs 827.32 h/50 epochs

Frontiers in Genetics | www.frontiersin.org 3 August 2020 | Volume 11 | Article 900

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 4

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

FIGURE 1 | Schematics of NanoReviser. (A) Structure of NanoReviser model
building. (B) Structure of the main model. The preprocessed raw electrical
signals (on the right) were passed through Identity Block and joined with the
results of the preprocessed read input (on the left), passing through two
bidirectional long short-term memory (Bi-LSTM) layers, and then the
combination of the raw electrical signal features and read features were fed
into the following Bi-LSTM layers. Finally, after the formation of two fully
connected layers, the model gave a probability distribution of called bases.
(C) Structure of Residential Block. Residential Block consisted of two
convolutional layers and two batch normalization layers, which were used to
accelerate the training speed. Conv stands for a convolutional layer and 1 × 3
was the size of the kernel used by the convolutional layer. (D) Structure of
Identity Block. Identity Block consisted of three Residential Blocks. Conv
stands for a convolutional layer and BN is the abbreviation for Batch
Normalization.

D representing, respectively, an insertion and deletion in the
CIGAR record of the SAM format file) and labeled as yt2 ∈
{A, T, C, G} in model 2. As for the event of moment t, we defined
the first input, i.e., the raw electrical signal, as s(t) – with s(t)

corresponding to a time-series of length T(t), and with every time
slice represented as a vector of normalized raw signal features
in the form s(t)i , i = 0, . . . , T(t)−1. We defined the second input
as x(t), which consisted of the basecalled bases as well as the
mean, standard deviation and length of the event of moment t.
Besides, the second inputs we used for NanoReviser methylations
contained the features mentioned above, as well as the methylated
information of the events. These two inputs composed the input
as shown in Figure 1B.

To be specific, for model 1 or model 2, first s(t) was passed
through the multi-layer CNN module and the second input x(t)

was passed through the unique powerful RNN layers, which
are the Bi-LSTM (Hochreiter and Schmidhuber, 1997) layers.
Then, the two inputs were joined together as the input of the
following multi-layer Bi-LSTM module. Finally, the output ot at
the t moment gave a probability distribution of called bases. Our
module was designed with the core idea to convert the input s(t)
and the input x(t) into a final transcription yt1 or yt2. Notably, we
used center loss to help supervise the learning of our module.

Convolutional Neural Network Layers
Since our electrical signal input was a one-dimensional time-
series sequence, we used a one-dimensional CNN layer with a
filter size and stride set of 3 and 1, respectively. Then we applied
the rectified linear unit (ReLU) function (Zhao et al., 2017) on the
outputs of the CNN layer, which was the most common activation
operation in the CNN models (Table 3). We also used the batch
normalization to accelerate the training process.

CNN is good at learning multi-level representations, but the
traditional deep CNN faces a degradation problem (LeCun et al.,
2015). Thus, in the current study, we used the residual CNN (He
et al., 2015) to extract features from the raw signals. The residual
network contained direct links between the higher layer outputs
and the lower layer inputs, and the residual block in our module
is illustrated in Figure 1C.

TABLE 3 | Hyper-parameters of NanoReviser.

Layer Feature source Hyper-parameters Value

CNN Signal input Kernel size 1 × 3

Number of filters 8

Stride 1

Activation function ReLUa

Bi-LSTM Read input State size 16

Activation function tanhb

Bi-LSTM Concatenated input State size 64

Activation function tanhb

Dropout Concatenated input Dropout rate 0.2

Center loss Concatenated input Proportion 0.2

Adam optimizer Initial learning rate 0.002

Decay rate 0.05

Beta_1 0.9

Beta_2 0.999

aReLU is one of the commonly used activation functions in CNN layer. btanh is the
default activation function in LSTM layer.

Frontiers in Genetics | www.frontiersin.org 4 August 2020 | Volume 11 | Article 900

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 5

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

We used three residential blocks to build an identity block
(Figure 1D) just like the ResNet model (He et al., 2015). Indeed,
the first input s(t) went through the identity block and then was
mixed with the second handled inputs.

Recurrent Neural Network Layers
Compared with the traditional recurrent layers, the LSTM model
(Hochreiter and Schmidhuber, 1997) has been shown to be
more effective, especially for the task of learning long-term
dependencies (Yue and Wang, 2018). We applied the tanh
function (Yue and Wang, 2018)on the outputs of the LSTM
layer, which was the default activation operation in the LSTM
models (Table 3). Since DNA polymers near the nanopores could
contribute to changes in the electrical signal, a Bi-LSTM model
(Schuster and Paliwal, 1997) allowed us to look at the bases both
far ahead and far behind at will. Thus, we recruited the Bi-LSTM
model in our module. Specifically, the second input, x(t), was fed
into two Bi-LSTM layers, combined with batch normalization.
Then, the latter Bi-LSTM layer received the combination of the
handled signal data and read data. In order to avoid overfitting,
we used dropout layers (Bouthillier et al., 2015). After formation
of the two fully connected layers, model 1 finally output the
likelihood of the input event as A, T, C, G, I, or D and model 2
output the likelihood of the input event as A, T, C, or G.

Loss Function
In order to make our module perform well with extremely
unbalanced data, we recruited the center loss function (Wen
et al., 2016) into the commonly used softmax cross-entropy
loss function. According to Wen, the softmax cross-entropy loss
function merely considers the inter-class distance, whereas the
main idea of the center loss function is to reduce the intra-class
distance during the training process.

The softmax cross-entropy loss function is normally
defined as:

Ls = −
m∑
i=1

log
eW

T
yixi+byi∑n

j=1 e
WT

j xi+bj

where xi, which belongs to the yith class, is the ith feature of the
mini-batch inputs with m samples. Furthermore, W and b are
the weights and bias term in the last fully connected layer, and
n is the number of classes. Obviously, the model could learn to
distinguish the samples from different classes by minimalizing
the softmax cross-entropy loss.

The center loss function used in our current work was
expressed using the equation.

Lc =
1
2

m∑
i=1

||xi − cyi||22

where m is the mini-batch number and cyi denotes as the center
of features. The loss function we used in our module was just
like the one Wen (Wen et al., 2016) used in his work and was
represented as:

L = Ls + λLc = −
m∑
i=1

log
eW

T
yixi+byi∑n

j=1 e
WT

j xi+bj
+

λ

2

m∑
i=1

||xi − cyi||22

Here, λ is a hyper parameter used to control the proportion
of the softmax cross-entropy loss and the center loss. We set
λ to be 0.2.

Evaluation Criterion
Due to the sequencing protocols and default basecallers being
quite different between the E. coli (K12 MG1655) and human
(NA12878) datasets, we evaluated NanoReviser on both the
E. coli and human datasets separately. We randomly used 100
reads that were not contained in training set from E. coli data
apart from the training set to evaluate our module. As for the
NA12878 datasets, 100 reads excluded from the training set
from human NA12878 chromosome 20 and 2,100 reads from
the other chromosomes (100 reads from each chromosome apart
from chromosome 22, which is not provided in the rel3 data of
the Nanopore WGS Consortium) were chosen to evaluate the
performance of our module, and compared this performance to
those of other modules.

The evaluation criteria we used were the deletion rate, the
insertion rate, the mismatch rate and the error rate, where

X Rate =
X length

Align length
, where X stands for deletion,

insertion and mismatch

Error Rate=
deletion length+insertion length+mismatch length

Align length

and
Align length = read length+ deletion length.

According to methylation annotation of the E. coli genome on
the MethSMRT database (Ye et al., 2017), there are three types of
methylated areas: m6A, m4C and modified bases. Therefore, the
deletion rate, the insertion rate, and the mismatch rate on the kth
type of methylated areas could be denoted as:

X Ratekth type of methylated areas =
X bases

kth type methylated bases

Where X stands for deletion, insertion and mismatch. The error
rate on the k type methylated areas could be denoted as:

Error Ratekth type of methylated areas =
∑

X ratekth type methylated areas

Thus, the total deletion rate, the insertion rate, the mismatch rate
and the error rate on the methylated areas could be denoted as:

X Ratemethylated areas =

3∑
k

X ratekth type of methylated areas

Error Ratemethylated areas =
∑

X ratemethylated areas

Where X stands for deletion, insertion and mismatch.
We compared NanoReviser with DeepNano (Boža et al.,

2017), Chiron Versions 0.6.1.1 (Teng et al., 2018) and
Scrappie 1.4.01.

1https://github.com/nanoporetech/scrappie

Frontiers in Genetics | www.frontiersin.org 5 August 2020 | Volume 11 | Article 900

https://github.com/nanoporetech/scrappie
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 6

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

RESULTS AND DISCUSSION

Implementation of NanoReviser
NanoReviser used the two outputs from two deep learning
models to compute the final DNA sequences as shown in
Figure 1A. Specifically, when model 1 or model 2 predicted the
same base as the original read base, the original read base was
preserved; whereas when model 1 and model 2 each predicted
the same base as each other but different than the original read
base, the read base was corrected. NanoReviser directly deleted
the read base when model 1 considered the read base to be an
insertion and model 2 predicted the same base as the original read
base. When NanoReviser predicted a base as a deletion, the base
inferred by model 2 was added to the DNA sequence. Except for
these situations, NanoReviser tended to preserve the original read
bases to avoid introducing new errors.

Since model 1 and model 2 share a similar structure, we
have tested the parameters on the model 1 and used the same
parameters for model 2. Table 3 summarizes the chosen hyper-
parameters for NanoReviser. The batch size is set to 256 and
the training sets were shuffled at the beginning of every training
round. As described in the previous studies, the presence of
multiple bases in the nanopore could contribute to the raw
electrical signal produced and used to predict the identity of
the central base (Rang et al., 2018). Although LSTM could
relatively well memorize the long-term relationship between
the surrounding bases and the central base in the nanopore,
processing the whole nanopore sequencing read is still beyond
the ability of LSTM. Therefore, the inputs must be divided into
small pieces, and we tested window sizes ranging from 9 to 15. We
observed that the model 1 performed the best when the window
size was 13 and we inferred from our results that the model
converged after 50 rounds of training (Figure 2). Since window
size, training epochs and the data size of the training data are
crucial for the final training result, these parameters could be set
by users when training NanoReviser.

Performance Comparison on the E. coli
Dataset
To date, 560,000 nanopore sequencing reads have been collected
in the E. coli dataset and the sequencing depth of the E. coli
dataset used was near 650x. We randomly selected 100 reads from
the 560,000 reads for evaluation. The details of the NanoReviser
performance are presented in Table 4. Specifically, we separated
2x depth reads to train our module and the method was marked
as NanoReviser (low coverage). Then, we trained our module
including only the reads located in a particular area of the E. coli
genome and the method was marked as NanoReviser (local).
Moreover, we trained our module with a combination of both
low-coverage reads and local reads, and this method was marked
as NanoReviser. Both NanoReviser (local) and NanoReviser (low
coverage) performed better than did the default basecaller, i.e.,
the Albacore program, as well as the Chiron program, which
is currently considered to be the most accurate open-source
basecaller (Wick et al., 2019). Unfortunately, although DeepNano
could yield all the reads in test data, all the reads could not be

aligned to the E. coli genome. Thus, DeepNano was excluded
from the comparison on the E. coli data. When compared with
the latest basecaller Scrappie, NanoReviser performed better than
both the Scrappie events and Scrappie raw model. Notably,
scrappie raw achieved a good performance at the expense of
fewer reads production, which generated only 90 reads on the 100
reads test sets. After 50 rounds of training, NanoReviser reduced
the error rate by over 5% compared with the default basecaller
Albacore and achieved the best performance on the test set.

Notably, we found that although NanoReviser improved the
basecalling accuracy in general regardless of the data on which
it was trained, the training data chosen nevertheless did slightly
influence the type of error identified by the model. It seemed that
NanoReviser best recognized the patterns of insertion errors from
the low-coverage training sets whereas it was most sensitive to the
deletion error type when trained on the local reads. Theoretically,
the insertion error and the deletion error may be thought of
as “two sides of a coin,” i.e., with an expectation that a model
tending to be more sensitive to the deletion error type would
introduce more insertion errors, and similarly a model tending
to be more sensitive to the insertion error type would introduce
more deletion errors. When trained with the combined datasets
including both low-coverage data and local data, NanoReviser
generally achieved a balanced sensitivity to the insertion and
deletion error types.

Performance Comparison on the Human
Dataset
Compared with the E. coli dataset, more advanced sequencing
applications were involved in the sequencing of the NA12878
dataset. A total of over 13 million reads have been generated
from several laboratories and the sequencing depth of the human
dataset used was about 28x. We used the reads from chromosome
20 to train the NanoReviser. In order to test the generalization
ability of the NanoReviser, we randomly selected 2,200 reads from
chromosome 1–20 and chromosome X of the NA12878 dataset
for evaluation. The results of these evaluations are reported
in Table 5.

We used 1x depth reads to train the model and the method
was marked as NanoReviser (low coverage) in Table 5. Then,
we trained our module including only the reads located on a
particular area and the method was marked as NanoReviser
(local) in these tables. In both the low-coverage and local
training methods, NanoReviser provided better performances
than did the default basecaller Albacore. Since both Scrappie
events and Scrapie raw could not produce all the reads contained
in the test data, we used the reads basecalled by the default
basecaller Albacore to make sure all the tools could yield the
whole reads contained in the test datasets. As it is shown in
Table 5, NanoReviser trained with the local and low-coverage
data achieved the best performance, with an error rate of 17.07%,
compared to the error rate of 22.74% for the default basecaller
and error rate of 18.13% for the Chiron program.

When trained on the E. coli dataset, NanoReviser showed the
same error recognition pattern as it did when trained on the
human dataset, i.e., learning more about insertion errors from

Frontiers in Genetics | www.frontiersin.org 6 August 2020 | Volume 11 | Article 900

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 7

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

FIGURE 2 | NanoReviser fitting performances for various window sizes and over many iterations. (A) Total loss value. (B) Softmax cross-entropy loss value.
(C) Center loss value.

Frontiers in Genetics | www.frontiersin.org 7 August 2020 | Volume 11 | Article 900

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 8

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

TABLE 4 | Performances of various tools on E. coli genome sequencing data.

Dataset Tool Deletion rate (%) Insertion rate (%) Mismatch rate (%) Error rate (%)

E. coli 100 reads Albacore (default) 6.66 5.14 7.74 19.55

Chiron 5.48 3.93 6.70 16.64 (−3.44)

Scrappie events 8.34 3.82 4.68 16.84 (−2.71)

Scrappie rawa 6.61 4.27 4.53 15.42 (−4.13)

NanoReviser (low coverage) 5.82 3.88 4.60 14.30 (−5.25)

NanoReviser (local) 5.37 4.74 4.94 15.05 (−4.50)

NanoReviser 5.62 3.91 4.69 14.22 (−5.33)

aScrappie raw only generate 90 reads. The number in bold denotes the lowest error rate in the corresponding columns.

TABLE 5 | Performances of various tools on human NA12878 genome sequencing data.

Dataset Tool Deletion rate (%) Insertion rate (%) Mismatch rate (%) Error rate (%)

NA12878 Chr. 1-21 and Chr. X Total 2,200 reads Albacore (default) 12.32 4.53 5.88 22.74

DeepNano 11.67 5.15 5.53 22.36 (−0.38)

Chiron 9.46 4.21 4.47 18.13 (−4.61)

Scrappie eventsa 10.43 4.39 4.09 18.89 (−3.84)

Scrappie rawb 9.15 4.67 4.22 19.01 (−3.73)

NanoReviser (low coverage) 9.65 4.94 4.38 18.97 (−4.76)

NanoReviser (local) 8.64 4.81 4.35 17.80 (−4.93)

NanoReviser 8.84 4.40 3.83 17.07 (−5.66)

aScrappie events could only basecall 2,186 reads, we use the default reads basecalled by Albacore to instead the miss-basecalled 14 reads. bScrappie raw could only
basecall 1,625 reads, we use the default reads basecalled by Albacore to instead the miss-basecalled 575 reads. The number in bold denotes the lowest error rate in the
corresponding columns.

the low-coverage data and more about deletion errors from the
local data. Moreover, unlike the Illumina sequencing technology
whose sequencing errors have been shown to be random (Besser
et al., 2018), Oxford Nanopore sequencing technology showed
more deletion type errors both when trained on the E. coli data
and human data. The deletion error rates were observed to be
higher than the other types of error rates regardless of the kind
of basecalling or revision tools used. Also, for all tools tested,
we noticed that the deletion error rates for the human dataset
were much higher than those for the E. coli dataset. Although the
deletion error was indicated to be a serious issue for the Oxford
Nanopore sequencing, sacrificing the insertion error rate in order
to detect more deletion errors, from comparing the performance
of NanoReviser (local) with the performance of NanoReviser
(low coverage), was concluded to not be warranted. Fortunately,
NanoReviser could learn the tradeoff between detecting deletion
errors and insertion errors through a combination of using
low-coverage data and local data, and in this way increase the
overall performance.

Methylation and Error Revision on the
E. coli Dataset
Studies have shown that methylation could severely affect the
basecalling (Feng et al., 2015; Jain et al., 2016; Simpson et al., 2017;
Rang et al., 2018). Therefore, we analyzed the error rates of the
methylated bases of the E. coli genome. The Oxford Nanopore
sequencing technology did encounter troubles in this regard. The
overall error rate for the E. coli dataset was 19.55%, whereas

the error rate for the methylated bases was over 34% and the
mismatch error rate was as high as 28.53% (see Figure 3 and
Table 5). The deletion error rate seemed to be similar to the
overall genome deletion error rate whereas no insertion error
happened for the methylated bases.

Since, promisingly, a tool was able to detect the modified
bases at the same time as basecalling, we annotated the
methylated areas of the reads based on the MethSMRT database
(Ye et al., 2017) and took the methylation information as
an additional input feature to train the model. We used the
same 100-read E. coli test set here as described above, and
the results are presented in Table 6. During the NanoReviser
(methylation) training process, we used the combination of
the low-coverage data and local data we had used in training
NanoReviser without methylation. Interestingly, it seems that
all tools reduced the error rate by revising the mismatch
errors when basecalling the methylated bases. The analysis
of insertion rates of different tools on the methylated bases
was excluded from Figure 3 and Table 6 because all tools
either translate methylated bases into other bases or skip
methylated bases. In other words, insertion errors never
happened on the methylated bases. As for the methylated area,
the overall error rate of NanoReviser without the methylation
information was observed to be higher than Chiron, yet
was also observed to be lower than the overall error rates
of Scrappie raw and Scrapie event (Figure 3). However, by
taking the methylation positions into consideration, NanoReviser
(methylation) reduced the error rate by about 7.5% compared

Frontiers in Genetics | www.frontiersin.org 8 August 2020 | Volume 11 | Article 900

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 9

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

FIGURE 3 | Error rates of different error types on different genome areas. (A) Overall error rate. (B) Mismatch error rate. (C) Deletion error rate. NanoReviser
(methylation) stands for NanoReviser trained with methylation information.

with the default basecalling result and decreased the error rate
by over 2% compared with the model without the methylation
information, which achieved the best performance on all kinds
of methylated bases including the m6A bases, m4C bases, and
the modified bases.

The above results taken together indicated minimizing
deletion errors to be at odds with minimizing insertion errors
in training on low-coverage data or local data, and indicated
methylation information to be crucial to the process of translating
the electrical signal into a DNA sequence. Notably, decreasing
the mismatch error was found to be the core improvement of

NanoReviser (methylation), consistent with the high miscalling
of the methylated bases.

Runtime Comparison
We have compared the computing speeds on a local PC
(MacBook Air, 2017) with one CPU processor (2.2 GHz Intel
Core i7) and DDR3 memory (8GB, 1600 MHz), as well as
on a high-performance computer (Dell R930, 2019) with four
CPU processors (2.1 GHz Intel Xeon E7-4809 v4), four GPU
processors (Nvidia Tesla T4) and 18 DDR4 memories (18× 32G,
2133 MHz). The results are listed in Table 7. An advantage

Frontiers in Genetics | www.frontiersin.org 9 August 2020 | Volume 11 | Article 900

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 10

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

TABLE 6 | Performances of various areas of the E. coli genome.

Location Albacore (default) NanoReviser NanoReviser (methylation)

Error rate Mismatch rate Error rate Mismatch rate Error rate Mismatch rate

Overall 19.55 7.74 14.22 4.69 12.05 3.29

Methylated bases 34.69 18.54 29.53 24.55 26.27 21.38

m6A bases 37.32 32.97 32.45 28.41 28.38 24.89

m4C bases 31.89 25.66 27.08 23.60 25.72 22.53

Modified bases 33.46 26.27 28.13 22.43 25.12 19.25

TABLE 7 | Running speeds of various tools used on E. coli data and human data.

Tool Local PC with only CPU (MacBook) HPC with CPU and GPU (Dell R930)

E. coli Human E. coli Human

Chiron 21 bp/s 21 bp/s 1,428 bp/s 1,526 bp/s

DeepNano 604 bp/s 723 bp/s 1,025 bp/s 1,134 bp/s

Scrappie events – – 6,240 bp/s 7,628 bp/s

Scrappie Raw – – 5,312 bp/s 6,004 bp/s

NanoReviser 875 bp/s 1,122 bp/s 3,050 bp/s 3,042 bp/s

NanoReviser (local) 887 bp/s 1,089 bp/s 3,036 bp/s 3,094 bp/s

NanoReviser (low coverage) 860 bp/s 1,092 bp/s 3,004 bp/s 3,006 bp/s

NanoReviser (methylation) 849 bp/s – 2,690 bp/s –

of Chiron and Scrappie in the tests was its use of parallel
computation to accelerate the basecalling process, which was also
used in NanoReviser basecalling process. Notably, since Scrappie
needs to run on a Linux Ubuntu system, we just compared
Scrappie raw and Scrappie events on the high-performance
computer (Dell R930, 2019). With the local PC, running the
tests using NanoReviser was over 40 times faster than that
using Chiron, and much faster than DeepNano. When running
the tests on the high-performance computer, NanoReviser was
twice faster than Chiron. Due to the efficient operation ability
of C, Scrappie, which was code in C, run faster than tools
written in Python, including DeepNano, Chiron as well as
NanoReviser. However, tools, which written in Python, have an
excellent cross platform capability. Notably, some researchers
(Rang et al., 2018) believed that the high demand of computing
resources primarily limited the wide use of Chiron despite its
high accuracy on basecalling. However, NanoReviser, which takes
advantage of more of the available sequencing information than
does Chiron, is a better solution for obtaining high-quality
nanopore sequencing reads, especially when the computing
resources are limited.

CONCLUSION

We have developed software based on a deep-learning algorithm
and named NanoReviser, which was shown to efficiently
correct the basecalling errors introduced by current basecallers
provided by default. NanoReviser was validated using E. coli
and H. sapiens data, and showed a higher accuracy than that
of default basecaller, Albacore, the commonly regarded best

basecaller, Chiron, as well as two separate models in Scrappie.
Based on our elaborate training data construction, we found
that NanoReviser learned more about insertion errors when
trained on low-coverage data and more about deletion errors
when trained on local reads. When trained on a combination
of low-coverage data and local data, NanoReviser learned a
compromise solution, which showed the importance of the
training data selection. Moreover, due to our belief in the
power of using genomics information when constructing a
bioinformatics algorithm, we analyzed the methylated area of
the E. coli genome. Here we found that the overall error rate
for the modified area showed a different pattern than did the
overall error rate for the whole genome. Specifically, the error
rate was much higher for the modified areas, and mismatch
error type contributed the most to the error rate. In order to
handle the high mismatch error rate of the methylated bases,
we used the methylation annotation to train NanoReviser. This
training improved the performance of NanoReviser for both
the methylated bases and on the whole genome scale. And
when taking the methylation information into consideration,
NanoReviser showed a reduced deletion error. Therefore, it
may be concluded that there could be an enhanced relationship
between modification detection, at least methylation detection,
and basecalling, and we are looking forward to combining
modification calling and basecalling. Furthermore, we believe
that the error rate in the homopolymer region is a unique
challenge in improving the basecalling accuracy, and according to
the assessment on NA12878 chromosome 4, which contains the
most homopolymer regions in all the NA12878 chromosomes,
NanoReviser showed the ability to improve the basecalling
accuracy on the homopolymer regions. Finally, we compared

Frontiers in Genetics | www.frontiersin.org 10 August 2020 | Volume 11 | Article 900

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 11

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

the running speeds of NanoReviser with DeepNano, Chiron and
Scrappie on both our local PC and a high-performance computer.
NanoReviser ran faster than did DeepNano and Chiron on the
local PC and on the high-performance computer. On the high-
performance computer, both Scrappie events and Scrappie raw
are more efficient than NanoReviser. However, Scrappie can
only supported by Linux Ubuntu system. Therefore, NanoReviser
is expected to be a universal solution for the elimination of
nanopore sequencing errors in the future.

DATA AVAILABILITY STATEMENT

NanoReviser is an open source program and the source code is
available at https://github.com/pkubioinformatics/NanoReviser.

AUTHOR CONTRIBUTIONS

HZ, LW, and LQ conceived the study and wrote the manuscript.
LW developed the code. LW, LY, and YW performed data analysis

under the supervision of HZ. All authors read and approved the
final manuscript.

FUNDING

This work was supported by the National Key Research
and Development Program of China (2017YFC1200205), the
National Natural Science Foundation of China (31671366), and
the Special Research Project of “Clinical Medicine + X” of Peking
University. Part of the analysis was performed on the High-
Performance Computing Platform of the Center for Life Science
of Peking University.

ACKNOWLEDGMENTS

We thank Dr. Binbin Lai, Qi Wang, Xiaoqi Wang, Yongchu
Liu, and Yang Li for their beneficial discussions and assistance
with this manuscript.

REFERENCES
Ameur, A., Kloosterman, W. P., and Hestand, M. S. (2018). Single-molecule

sequencing: towards clinical applications. Trends Biotechnol. 37, 72–85. doi:
10.1016/j.tibtech.2018.07.013

Besser, J., Carleton, H. A., Gerner-Smidt, P., Lindsey, R. L., and Trees, E. (2018).
Next-generation sequencing technologies and their application to the study
and control of bacterial infections. Clin. Microbiol. Infect. 24, 335–341. doi:
10.1016/j.cmi.2017.10.013

Bouthillier, X., Konda, K., Vincent, P., and Memisevic, R. (2015). Dropout as data
augmentation. arXiv [Preprint]. Available online at: http://arxiv.org/abs/1506.
08700 (accessed February 16, 2019).

Boža, V., Brejová, B., and Vinař, T. (2017). DeepNano: deep recurrent neural
networks for base calling in MinION nanopore reads. PLoS One 12:e0178751.
doi: 10.1371/journal.pone.0178751

Brown, C. G., and Clarke, J. (2016). Nanopore development at Oxford Nanopore.
Nat. Biotechnol. 34, 810–811. doi: 10.1038/nbt.3622

David, M., Dursi, L. J., Yao, D., Boutros, P. C., and Simpson, J. T. (2017). Nanocall:
an open source basecaller for Oxford Nanopore sequencing data. Bioinformatics
33, 49–55. doi: 10.1093/bioinformatics/btw569

Feng, Y., Zhang, Y., Ying, C., Wang, D., and Du, C. (2015). Nanopore-based fourth-
generation DNA sequencing technology. Genom. Proteom. Bioinform. 13, 4–16.
doi: 10.1016/j.gpb.2015.01.009

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image
recognition. arXiv [Prreprint], Available online at: http://arxiv.org/abs/1512.
03385 (accessed February 16, 2019).

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., et al. (2018).
Nanopore sequencing and assembly of a human genome with ultra-long reads.
Nat. Biotechnol. 36, 338–345. doi: 10.1038/nbt.4060

Jain, M., Olsen, H. E., Paten, B., and Akeson, M. (2016). The Oxford Nanopore
MinION: delivery of nanopore sequencing to the genomics community.
Genome Biol. 17:239. doi: 10.1186/s13059-016-1103-0

Jain, M., Tyson, J. R., Loose, M., Ip, C. L. C., Eccles, D. A., O’Grady, J., et al. (2017).
MinION analysis and reference consortium: phase 2 data release and analysis
of R9.0 chemistry. F1000Research 6:760. doi: 10.12688/f1000research.11
354.1

James, G. (2016). Nanocorr:Error Correction For Oxford Nanopore Reads. Available
online at: https://github.com/jgurtowski/nanocorr (accessed Februrary 28,
2016).

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). “A convolutional
neural network for modelling sentences,” in Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, Baltimore, MD.

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization.
arXiv [Preprint]. Available online at: http://arxiv.org/abs/1412.6980 (accessed
December 21, 2019).

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Leggett, R. M., and Clark, M. D. (2017). A world of opportunities with nanopore
sequencing. J. Exper. Bot. 68, 5419–5429. doi: 10.1093/jxb/erx289

Loman, N. J., Quick, J., and Simpson, J. T. (2015). A complete bacterial genome
assembled de novo using only nanopore sequencing data. Nat. Methods 12,
733–735. doi: 10.1038/nmeth.3444

Lu, H., Giordano, F., and Ning, Z. (2016). Oxford nanopore MinION sequencing
and genome assembly. Genom. Proteom. Bioinform. 14, 265–279. doi: 10.1016/
j.gpb.2016.05.004

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013). How to construct deep
recurrent neural networks. arXiv [Preprint]. Available online at: http://arxiv.
org/abs/1312.6026 (accessed December 20, 2018).

Pollard, M. O., Gurdasani, D., Mentzer, A. J., Porter, T., and Sandhu, M. S. (2018).
Long reads: their purpose and place. Hum. Mol. Genet. 27, R234–R241. doi:
10.1093/hmg/ddy177

Rang, F. J., Kloosterman, W. P., and de Ridder, J. (2018). From squiggle to basepair:
computational approaches for improving nanopore sequencing read accuracy.
Genome Biol. 19:90. doi: 10.1186/s13059-018-1462-9

Rosenberg, A., Audhkhasi, K., Sethy, A., Ramabhadran, B., and Picheny, M.
(2017). “End-to-end speech recognition and keyword search on low-resource
languages,” in Proceedings of the 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA.

Schuster, M., and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.
IEEE Trans. Signal Process. 45, 2673–2681. doi: 10.1109/78.650093

Simpson, J. T., Workman, R. E., Zuzarte, P. C., David, M., Dursi, L. J.,
and Timp, W. (2017). Detecting DNA cytosine methylation using
nanopore sequencing. Nat. Methods 14, 407–410. doi: 10.1038/nmeth.
4184

Sović, I., Šikić, M., Wilm, A., Fenlon, S. N., Chen, S., and Nagarajan, N. (2016).
Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat.
Commun. 7:11307. doi: 10.1038/ncomms11307

Stoiber, M., and James, B. (2017). BasecRAWller: Streaming Nanopore Basecalling
Directly from Raw Signal. Available online at: https://www.osti.gov/biblio/
1358006 (accessed May 5, 2017).

Frontiers in Genetics | www.frontiersin.org 11 August 2020 | Volume 11 | Article 900

https://github.com/pkubioinformatics/NanoReviser
https://doi.org/10.1016/j.tibtech.2018.07.013
https://doi.org/10.1016/j.tibtech.2018.07.013
https://doi.org/10.1016/j.cmi.2017.10.013
https://doi.org/10.1016/j.cmi.2017.10.013
http://arxiv.org/abs/1506.08700
http://arxiv.org/abs/1506.08700
https://doi.org/10.1371/journal.pone.0178751
https://doi.org/10.1038/nbt.3622
https://doi.org/10.1093/bioinformatics/btw569
https://doi.org/10.1016/j.gpb.2015.01.009
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1038/nbt.4060
https://doi.org/10.1186/s13059-016-1103-0
https://doi.org/10.12688/f1000research.11354.1
https://doi.org/10.12688/f1000research.11354.1
https://github.com/jgurtowski/nanocorr
http://arxiv.org/abs/1412.6980
https://doi.org/10.1038/nature14539
https://doi.org/10.1093/jxb/erx289
https://doi.org/10.1038/nmeth.3444
https://doi.org/10.1016/j.gpb.2016.05.004
https://doi.org/10.1016/j.gpb.2016.05.004
http://arxiv.org/abs/1312.6026
http://arxiv.org/abs/1312.6026
https://doi.org/10.1093/hmg/ddy177
https://doi.org/10.1093/hmg/ddy177
https://doi.org/10.1186/s13059-018-1462-9
https://doi.org/10.1109/78.650093
https://doi.org/10.1038/nmeth.4184
https://doi.org/10.1038/nmeth.4184
https://doi.org/10.1038/ncomms11307
https://www.osti.gov/biblio/1358006
https://www.osti.gov/biblio/1358006
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

fgene-11-00900 August 10, 2020 Time: 16:12 # 12

Wang et al. NanoReviser: Nanopore Sequencing Error Reviser

Stoiber, M., Quick, J., Egan, R., Eun Lee, J., Celniker, S., Neely, R. K., et al. (2017).
Identification of DNA modifications enabled by genome-guided nanopore
signal processing. bioRxiv [Preprint]. doi: 10.1101/094672

Teng, H., Cao, M. D., Hall, M. B., Duarte, T., Wang, S., and Coin, L. J. M. (2018).
Chiron: translating nanopore raw signal directly into nucleotide sequence using
deep learning. Gigascience 7:giy037. doi: 10.1093/gigascience/giy037

Wen, Y., Zhang, K., Li, Z., and Qiao, Y. (2016). “A discriminative feature learning
approach for deep face recognition,” in Computer Vision - ECCV 2016, eds
B. Leibe, J. Matas, N. Sebe, and M. Welling (Cham: Springer International
Publishing), 499–515. doi: 10.1007/978-3-319-46478-7_31

Wick, R. R., Judd, L. M., and Holt, K. E. (2019). Performance of neural network
basecalling tools for Oxford Nanopore sequencing. bioRxiv [Preprint]. doi:
10.1101/543439

Ye, P., Luan, Y., Chen, K., Liu, Y., Xiao, C., and Xie, Z. (2017). MethSMRT:
an integrative database for DNA N6-methyladenine and N4-methylcytosine
generated by single-molecular real-time sequencing. Nucleic Acids Res. 45,
D85–D89. doi: 10.1093/nar/gkw950

Yue, T., and Wang, H. (2018). Deep learning for genomics: a concise overview.
arXiv [Preprint]. Available online at: http://arxiv.org/abs/1802.00810 (accessed
December 18, 2018).

Zhao, G., Zhang, Z., Guan, H., Tang, P., and Wang, J. (2017). Rethink ReLU to
training better CNNs. arXiv [Preprint]. Available online at: http://arxiv.org/abs/
1709.06247 (accessed February 14, 2019).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Wang, Qu, Yang, Wang and Zhu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 12 August 2020 | Volume 11 | Article 900

https://doi.org/10.1101/094672
https://doi.org/10.1093/gigascience/giy037
https://doi.org/10.1007/978-3-319-46478-7_31
https://doi.org/10.1101/543439
https://doi.org/10.1101/543439
https://doi.org/10.1093/nar/gkw950
http://arxiv.org/abs/1802.00810
http://arxiv.org/abs/1709.06247
http://arxiv.org/abs/1709.06247
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	NanoReviser: An Error-Correction Tool for Nanopore Sequencing Based on a Deep Learning Algorithm
	Introduction
	Materials and Methods
	Data Sets
	Preprocessing
	Re-segmentation of Events During Sequencing
	Labeling and Training

	Model Architecture
	Main Model Architecture
	Convolutional Neural Network Layers
	Recurrent Neural Network Layers
	Loss Function

	Evaluation Criterion

	Results and Discussion
	Implementation of NanoReviser
	Performance Comparison on the E. coli Dataset
	Performance Comparison on the Human Dataset
	Methylation and Error Revision on the E. coli Dataset
	Runtime Comparison

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

