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Taking advantage of the high-throughput genotyping technology of Single Nucleotide

Polymorphism (SNP), Genome-Wide Association Studies (GWASs) have been

successfully implemented for defining the relative role of genes and the environment

in disease risk, assisting in enabling preventative and precision medicine. However,

current multi-locus-based methods are insufficient in terms of computational cost

and discrimination power to detect statistically significant interactions with different

genetic effects on multifarious diseases. Statistical tests for multi-locus interactions

(≥2 SNPs) raise huge analytical challenges because computational cost increases

exponentially as the growth of the cardinality of SNPs in an interaction module. In

this paper, we develop a simple, fast, and powerful method, named JS-MA, based

on Jensen-Shannon divergence and agglomerative hierarchical clustering, to detect

the genome-wide multi-locus interactions associated with multiple diseases. From the

systematical simulation, JS-MA is more powerful and efficient compared with the

state-of-the-art association mapping tools. JS-MA was applied to the real GWAS

datasets for two common diseases, i.e., Rheumatoid Arthritis and Type 1 Diabetes. The

results showed that JS-MA not only confirmed recently reported, biologically meaningful

associations, but also identified novel multi-locus interactions. Therefore, we believe that

JS-MA is suitable and efficient for a full-scale analysis of multi-disease-related interactions

in the large GWASs.
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1. INTRODUCTION

Genome-wide association studies (GWASs) have been proved to be a powerful tool to identify
the genetic susceptibility of associations between a trait of interests using statistical tests (Sabaa
et al., 2013). Recent studies have confirmed that single nucleotide polymorphisms (SNPs) are
associated with a variety of common diseases (Peter and Hunter, 2009). The current primary
research paradigm in GWASs is dominated by analyzing the susceptibility of single SNP to
one disease at a time. One SNP might only explain a small part of causal genetic effects for
multiple complex diseases (He and Lin, 2011). The word, epistasis, is defined generally as the
interaction among different genes (Cordell, 2002). Many studies have demonstrated that epistasis
is an important contributor to genetic variation in complex diseases. Most common diseases, such
as obesity (Cordell, 2009), cancer (Ritchie et al., 2001), diabetes (Wang et al., 2012), and heart
disease (Nelson et al., 2001), are complex traits, which result from a joint effect of various genetic
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variants, environmental factors, or their interactions. It is of
great interest for us to identify the genetic risk factors for
complex diseases, so as to understand disease mechanisms,
develop effective treatments, and improve public health. The
cost of genomic technologies is falling exponentially over time.
For instance, the Human Genome Project took 13 years and
cost $2.7 billion in the early twenty-first century, whereas now
we can sequence a genome with $1,000 and less than a week.
The availability of large-scale genotyping technology with its
rapid improvement makes the cost of genome-wide analyses
widely decrease, and a great number of large-scale genetic
association studies are initiated. Complex diseases do not show
the “simple” inheritance pattern observed in Mendelian diseases,
where alterations in a single gene or a unique locus are causal
for a phenotype. In complex disease, multiple genes are involved,
each with low-penetrance that each gene modestly increases
the probability of disease and does not ultimately determine
disease status. These factors often render the traditional genetic
dissection approaches, such as linkage analysis, ineffective tools
to study complex diseases. In this article, we consider epistatic
interactions as the statistically significant associations of d-SNP
modules (d ≥ 2) with multiple phenotypes (Wang et al., 2011).

The problem of detecting high-order genome-wide epistatic
interaction for case-control data has attracted more research
interests recently. Generally, there are two challenges in mapping
genome-wide associations for multiple diseases on a large GWAS
dataset (Guo et al., 2014a): the first is arose from the heavy
computational burden, i.e., the number of association patterns
increases exponentially as the order of interaction goes up. For
example, there are around 6.25 × 1011 statistical tests required
to detect pairwise interactions for a moderate dataset with
∼500,000 SNPs. The second challenge is that existing approaches
do not have enough statistical powers to report significant high-
order multi-locus interaction on multiple diseases. Because of
the huge number of hypotheses and the limited sample size,
a large proportion of significant associations are expected to
be false positives. In recent, many computational algorithms
have been proposed to overcome the above difficulties. They
can be broadly classified into three categories (Xie et al., 2012):
exhaustive search, stepwise search, and heuristics approach. The
naive solution to tack the problem is exhaustive search using
statistical tests, like χ2 test, exact likelihood ratio test or entropy-
based test, for all SNPmodules (Wan et al., 2010c; Liu et al., 2011;
Yung et al., 2011). In order to minimize the huge computation
requests, stepwise search strategies select a subset of SNPs or
their combinations based on some low-order measurement tests,
then extend them to higher-order interactions if it is statistically
possible (Marchini1 et al., 2005; Li, 2008). Heuristic methods
adopt machine learning or stochastic procedures to search the
space of interactions rather than explicitly enumerating all
combinations of SNPs (Zhang and Liu, 2007; Wan et al., 2010b).
More details about the popular GWAS mapping tools can be
found in recent surveys (Guo et al., 2014b; Niel et al., 2015;
Visscher et al., 2017; Wen et al., 2017).

To the best of our knowledge, most epistasis detecting tools
are only capable of identifying interactions on the data of
GWAS with two groups, i.e., case-control studies. These tools

are incompetent to discover genetic factors with diverse effects
on multiple diseases. Moreover, using a limited number of
case samples may lose the benefit of alleviating deficiency of
statistical powers by pooling different disease samples together.
Recently, Guo et al. developed a Bayesian inference based
method, named DAM, to detect multi-locus epistatic interactions
on multiple diseases (Guo et al., 2015, 2017). From our
experiments, DAM took 3 days to finish the analyzing a real
GWAS dataset using a desktop computer and only reported a few
significant epistatic interactions. In this manuscript, we present
a heuristic method, named JS-AM, based on Jensen-Shannon
divergence and agglomerative hierarchical clustering to select a
set of candidate SNPs that potentially have effects on multiple
phenotypic traits (Guo, 2015). A stepwise interaction evaluation
is engaged in JS-MA to further determining the association
types. Systematic experiments on both simulated and real GWAS
datasets demonstrate that JS-AM is feasible for identifying multi-
locus interaction using GWAS datasets and enriches some novel,
significant high-order epistatic interactions with various effects
on multiple diseases.

2. MATERIALS AND METHODS

2.1. Notation
For a GWAS dataset, let L denote the total number of groups,
including L − 1 case groups and one control group. Each group
has Nl samples with l ∈ {1, 2, . . . , L}. Let N be the total count of
samples from these L groups, and M be the number of diallelic
SNP markers. In general, the major alleles are represented
by uppercase letters (e.g., A, B,...) and the minor alleles are
represented by lowercase letters (e.g., a, b). We use {0, 1, 2}

to represent {AA,Aa, aa}. We use X to indicate the SNP set,
where xi indicates the i-th SNP. Let gxi ,...,xj be the combination

of genotypes giving a list of SNPs
{

xi, . . . , xj
}

. The probability
distribution of gxi ,...,xj is denoted as pgxi ,...,xj , or pg for simplicity.

Different from the most existing methods that deal with
one case and one control groups, we have two or more
cases. The number of partitions of L groups is known as the
Bell number (Guo et al., 2015). The SNPs can be assigned
to be associated with one or more cases either with the
same or different effects. Here, we call the assignment based
on association as trait-association types, or AT in short. An
example about five association types for a three-group dataset is
shown in Figure 1. In this example, each AT includes 2 SNPs.
There are three different probability distributions of genotype
combinations, which are labeled by color white, gray, and black.
SNPs 1 & 2 are related to case 1, and we call this type effect
as AT1. Similarly, we call the trait-association types for SNPs 3
& 4 and SNPs 5 & 6 are AT2 and AT3, respectively. For SNPs
7 & 8, the genotype combinations display different effects on
two cases, and we label it as AT4. For the last two SNPs, they
are not related to any case, i.e., following the same probability
distribution among three groups, and we call it AT5. In general,
the number association types is increasing as the number of
phenotype groups increases, which is controlled by the Bell
number.We use9 to denote the set of association types that have
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FIGURE 1 | The illustration for five association types by giving three groups. Ten SNPs of AT 1, 2, 3, 4, and 5 are associated with the phenotype traits with interactions

between each pair of them.

different probability distribution between the case and control
groups. Given L groups, we denote the number of all pairwise
combinations as |H| = L(L − 1)/2 and the combination set as
H =

{

h1, . . . , h|H|
}

. The probability distributions of genotype

data in hi combination are denoted as p(hi) and q(hi) for the first
and second groups, respectively.

2.2. Jensen-Shannon Divergence
We used a distance measurement based on the Jensen-Shannon
divergence (JS) for measuring the similarity between two SNPs.
JS is a popular distance measurement based on Kullback-Leibler
divergence (Lin, 1991), which evaluates the similarity between
two probability distributions. Given two distributions, p and q,
both with g categories, the Kullback-Leibler divergence is defined
as follows:

KL
(

p ‖ q
)

=

g
∑

i=1

pg log
pg

qg
(1)

The KL divergence is not a distance because it is not symmetric.
One symmetric version of KL divergence is JS, defined as:

JS
(

p, q
)

= 0.5KL

(

p ‖
p+ q

2

)

+ 0.5KL

(

q ‖
p+ q

2

)

(2)

where
p+q
2 is the pointwise mean of p and q. Here, for a genotype

g,
p+q
2 is equal to the average of pg and qg . Given a pairwise

group combination hk and two SNPs, xi and xj, we denote the

probability distributions of the genotype combination of xi and xj

as phk for the first group and qhk for the second group. Based on
JS, we define the distance between two SNPs, xi and xj as follows:

Dist(xi, xj) =

∑

hk∈H
JS

(

phk , qhk
)

|H|
(3)

If these two SNPs are associated to any cases, the distribution
of genotype combinations in case groups should be the same as
the one in control. And Dist(xi, xj) should be a very small value
toward 0; otherwise, Dist(xi, xj) is a large value toward 1.

2.3. Clustering
Our goal is to find a list of SNP modules containing d(d ≥
2) SNPs, which have large JS dissimilarity between any two
groups. It is computationally expensive to examine all d SNP
combinations when d ≥ 3 given millions of SNPs in one dataset.
In order to diminish the time complexity, we use agglomerative
hierarchical clustering to group SNPs into clusters so that SNPs
jointly affecting a trait go into separate clusters. More specifically,
the complete-linkage clustering criterion was used to determine
the distance between sets of SNPs. The distance from an SNP, xi,
to a cluster, C, is defined as

Dist(xi,C) = max
xj∈C

Dist(xi, xj) (4)

The distance between two clusters is defined as

Dist(Ci,Cj) = max
a∈Ci ,b∈Cj

Dist(a, b) (5)
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In the implementation of JS-MA, we used the nearest-neighbor
chain algorithm (Murtagh, 1983; Müllner, 2011). Compared to
the greedy algorithm that repeatedly forms a new cluster by
merging the closest pair of clusters, the nearest-neighbor chain
algorithm runs faster by merging pairs of clusters in a different
order. In brief, the nearest neighbor chain algorithm grows a
chain of clusters, where the newly added cluster is the nearest
neighbor of the previous one, and stops growing when reaching
a pair of clusters that are mutual nearest neighbors. For our
complete-linkage clustering criterion, the nearest neighbor chain
algorithm can be guaranteed to generate the same hierarchical
clustering as the greedy algorithm (Murtagh, 1983; Müllner,
2011). The time complexity of the nearest-neighbor chain
algorithm is O(M2), where M is the number of SNPs. In our
setting, we will stop the chain growing once the number of
clusters reaches the expected number. Here, the number of
clusters is a user-defined parameter. It can be set to the largest,
expected size of epistatic modules. In our simulation, we set the
number of clusters to two and three for 2- and 3-locus models,
respectively. In the real data experiments, we set the number of
clusters to ten. Once the clustering is done, top f SNPs from every
cluster are selected for further interaction testing. Here, f is a
user-defined number. An SNP will be picked if it shows a high
dissimilarity measured by JS with other SNPs between any two
groups. Every SNP is ranked based on the following score.

Score(x) =
∑

x/∈Ci ,

Dist(x,Ci) (6)

2.4. Stepwise Evaluation of Interaction
We apply the χ2 statistic and the conditional χ2 test similar
to the ones in (Guo et al., 2015) to measure the statistical
significance for a SNP module. Let A = (x1, x2, . . . , xd :T)
denote an SNP module A with d SNPs of association type T.
We use χ2(x1, x2, . . . , xd :T) to denote the χ2 statistic of A

and χ2(x1, x2, . . . , xd|xc1 , xc2 , . . . , xcd′ :T) as the conditional χ2

statistic given a subset A′ = (xc1 , xc2 , . . . , xcd′ ) with d′ SNPs. The

χ2 statistic is calculated as

χ2(x1, x2, . . . , xd :T) =

|ST |
∑

i=1

3d
∑

s=1

(ni,s − ei,s)
2

ei,s
(7)

where ni,s is the frequency of s-th genotype combination in i-th
disjoint set for the association type T, ei,s is the corresponding
expected frequency, and ST denotes all the disjoint sets for L
groups. The degrees of freedom for Equation (7) is (|ST | − 1) ·
(3d − 1). The conditional χ2 statistic is defined as follows

χ2(x1, . . . , xd|xc1 , . . . , xcd′ :T) =

3d
′

∑

ι=1

|ST |
∑

i=1

3d−d
′

∑

s=1

(n
(ι)
i,s − e

(ι)
i,s )

2

e
(ι)
i,s

(8)

where we calculate χ2 statistic for A − A
′ separately for

each genotype combination in A
′. The degrees of freedom for

Equation (8) is 3d
′
· (|ST | − 1) · (3d−d

′
− 1). We treat SNPs as

redundant SNPs when they are conditional independent given
a subset of the SNP module. To avoid the redundant SNPs, we
are looking for compact epistatic interactions, which is defined
as follows:

Definition 1. An SNP module A = (x1, x2, . . . , xd) is considered
as a significant, compact interaction given a significant level αd, if
it meets the following two conditions:
(1) The p-value of χ2(x1, . . . , xd) ≤ αd, where the p-value of
χ2(x1, . . . , xd) = minT χ2(x1, . . . , xd :T);
(2) The p-value of χ2(x1, . . . , xd|xc1 , . . . , xcd′ ) ≤ αd, for
∀A′ = (xc1 , xc2 , . . . , xcd′ ), given the association type =

argminT χ2(x1, . . . , xd :T).

Based on the Definition 1, we develop a stepwise algorithm to
search for d-locus significant compact interactions. We assume
that one SNP can only participate in one significant interaction
and is only associated with one association type. We first search
all modules with only one SNP based on Definition 1. Then
we recursively enlarge the SNP module size by one at a time
until it reaches a user pre-set value d. We add all novel d-way
interactions (i.e., none of the SNPs in the module has been
reported earlier) that are significant to a list L after applying
Bonferroni correction for 9 ·

(M
d

)

tests. For the interactions
whose subsets have been reported as significant before, we use the
conditional independent test, and put the interaction in L if it is

still significant after Bonferroni correction for 9 ·
(M
d

)

·
(d
d′

)

tests.
We also apply a distance constraint that the physical distance
between two SNPs in a multi-locus module should be at least
1Mb when analyzing real data. This constraint is used to avoid
associations that might be due to the linkage disequilibrium
effect (Cordell, 2002).

2.5. Algorithm
The details of the JS-MA algorithm are shown in Algorithm 1
consisting of three steps: clustering, SNP ranking, and stepwise
evaluation. In clustering, the nearest neighbor chain algorithm
repeatedly follows a chain of clusters, where each cluster is has
the smallest distance to the previous one, until the number of
clusters reaching user-defined parameter. In the second step, all
SNPs are ranked based on Equation (6) and inserted into a size-
limited descending list to select promising SNPs. In the last step,
the χ2 and the conditional χ2 statistics are used to search for the
significant, compact epistatic interactions.

3. EXPERIMENTAL DESIGN

In this section, we introduce the simulation design, including the
definitions of 10 two-locus, 6 three-locus multi-disease models
and the power metric. The other start-of-the-art methods we
used to compared with JS-MA, including BOOST (Wan et al.,
2010a), DAM (Guo et al., 2015), SEE (Sun et al., 2019), and
SNPRuler (Wan et al., 2010b). Note that BOOST and SEE are
designed for detecting gene-gene interactions, i.e., interactions
between two loci.
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3.1. Data Simulation
To evaluate the performance of JS-MA, we perform extensive
simulation experiments using 10 two-locus disease models
(Model 1–10) and 6 three-locusmodels (Model 11–16) with three
groups, including 2 case and 1 control groups. Since there are
three phenotype groups, we could have five different association
types (ATs 1–5). Note that AT1 and AT2 are equivalent if
case 1 and case 2 are interchangeable, which is the case in
our simulation.

The odds tables describing these 16 models are in the
Supplementary Material. For the two-locus models, models 1–
4 are the base models, and the rest are derived from the base
ones by combining two models or letting one case group follow
the same distribution as the control group. For the four two-
locus base models, we took the same parameters as in Wan et al.
(2010a) and Guo et al. (2014a). More specifically, we have h2 =
0.03 for Model 1, h2 = 0.02 for Models 2, 3, and 4 and p(D) =
0.1 for all four models. Minor allele frequencies (maf ) are set to
three levels: {0.1, 0.2, 0.4}. For the three-locus models, models 11
to 13 are the base models, the rest are derived using the same
way as for the two-locus models. We set h2 = 0.03 and p(D) = 0.1
for Model 11, 12, and 13. The solved parameters µ and θ under
different settings are provided in the Supplementary Material.
The genotypes of unassociated SNP are generated by the same
procedure used in previous studies (Guo et al., 2014a) with mafs
sampled from [0.05, 0.5].

As introduced in the section 2.1, AT1 indicates the loci having
different effects on the first case group compared to the other
groups. AT2 indicates the loci having different effects on the
second case group compared to the other groups. AT3 indicates
the loci showing an identical effect on both case groups but
different from the control group. AT4 indicates the loci with
distinct effects on each group. We generate 100 replicas for each
model, as well as for each maf . Note that some models do not
have mathematical solution for µ and θ when maf = 0.1 or
= 0.2. In this case, the power metric value is missing for all

methods. Each simulated replica containsM = 1, 000 SNPs. The
sample sizes of two case groups and one control group are set to
(500, 500, 1, 000) or (1, 000, 1, 000, 2, 000).

3.2. Statistical Power
The measure of discrimination power is defined as the fraction of
100 replicas on which the ground-truth associations are the top
one signification epistatic interactions.

4. RESULTS AND DISCUSSION

In this section, we first present the type 1 error rate of JS-
MA under the null model. And then we show the experimental
results on the simulated datasets. We also present the results
of JS-MA on two real GWAS datasets from WTCCC (Zeggini
et al., 2007), i.e., Rheumatoid Arthritis (RA) and Type 1 Diabetes
(T1D). Note that among these five approaches, only JS-MA and
DAM are able to label the association types that we defined in
section 2.1, and the rest methods can only report the interactions
without information about the phenotype(s) on which they have
genetic effects.

4.1. Null Simulation to Test Type I Errors
We examined the type I error rate for interactions with different
number of SNPs, i.e., d = 2, 3, 4. We generated 1,000 null
datasets for six settings, respectively. Specifically, we fixed the
number of SNP to 1,000 and vary the number of samples in each
group. The first four settings contained the following numbers
of samples: N1 = {200, 200, 400}, N2 = {400, 400, 800}, N3 =
{800, 800, 1, 600}, andN4 = {1, 600, 1, 600, 3, 200}, where the first
two numbers indicated the sizes of two case groups, and the last
number was the control group size. For the last two settings,
using N4, we increased the number of SNP to 2,000 and 4,000.
All SNPs were generated independently, with maf uniformly
distributed in [0.05, 0.5]. Note that we set the significance level to
0.1 and applied the Bonferroni correction for multiple hypothesis

FIGURE 2 | False positive rates of JS-MA under null simulation. The plots in (A,B) show the false positive rates for different ds, sample sizes, and the numbers of SNP.
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testing. The degree of freedom for Pearson’s χ2 test is df =
(|T| − 1)(|G| − 1), where |T| denotes the number of disjoint
set of groups for the association type |T|, and G is the set of
genotypes given the SNP module. The degree of freedom for

conditional χ2 test is |G′|(|T| − 1)(|G/G′| − 1), where G′ is the
set of genotypes given a subset of the SNP module, and G/G′

denotes the set of genotypes for the rest SNPs. The results shown

in Figure 2 demonstrated that JS-MA can well control the type
I error rate.

4.2. Simulation Experiments on Two-Locus
Models
We tested the performance of JS-MA and four other methods
on the datasets generated by two-locus models. The test results

FIGURE 3 | Performance comparison between JS-AM, BOOST, DAM, SEE, and SNPRuler on the simulated two-locus models 1, 2, 3, and 4 for association types 1,

2, and 3.
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FIGURE 4 | Performance comparison between JS-AM, BOOST, DAM, SEE, and SNPRuler on the simulated two-locus models 5–10 for association type 4. Note that

the models 5, 6, and 7 have no mathematical solution when maf = 0.1.

are illustrated in Figures 3, 4. As we expected, the powers of all
methods increased when the sample size increased from (500,
500, 1,000) to (1,000, 1,000, 2,000). For all models, the powers
of JS-MA and SEE increased when the maf increased from 0.1
to 0.4. We do not observe a similar trend for BOOST, DAM, and
SNPRuler. All models were more powerful for AT3 than ATs 1
and 2 because ATs 1 and 2 have some cases similar to controls,
whichmakes it hard to locate the embedded interactions. Overall,
the powers of JS-MA are higher compared to other methods
except in a few cases where the power is comparable with
others. For a more intuitive comparison, we adopt a concept,
overall quality q = 100 × ncorrect/ntotal from (Guo et al.,
2014a), where ncorrect is the number of datasets from which the
method successfully detected the ground-truth interaction, and
ntotal is the total number of datasets. The overall quality of JS-
MA, BOOST, DAM, SEE, and SNPRuler are 94, 50, 89, 51, and
11% for the sample size (500, 500, 1, 000), and 97, 78, 93, 71,
and 13% for the sample size (1, 000, 1, 000, 2, 000), respectively.

It showed that JS-MA achieved 3–5% better results than the
second best.

4.3. Simulation Experiments on
Three-Locus Models
The experimental results on models 11–16 are shown in
Figures 5, 6. In these experiments, BOOST and SEE were
dropped because they cannot detect three-locus interactions.
From Figures 5, 6 we can find that all three methods had nearly
no power when the sample size is small. It is reasonable since a
high-order interaction needs to have larger effect size for small
sample size compared to large sample size. When the sample
size was doubled, all three methods started to gain some power.
Compared to the results from two-locus models, all the methods
are not as powerful as before. In all settings, JS-MA is the most
powerful approach. Using the same overall quality measurement
introduced in the last section, JS-MA, DAM, and SNPRuler
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FIGURE 5 | Performance comparison between JS-AM, DAM, and SNPRuler on the simulated three-locus models 11, 12, and 13 for association types 1, 2, and 3.

reached 4, 3, and 1% for sample size (500, 500, 1,000), and 77,
70, and 9% for sample size (1,000, 1,000, 2,000), respectively.

4.4. Computation Efficiency
From a practical point of view, a challenging bottleneck of
mapping multi-locus epistatic interactions in GWASs is the
computational efficiency. Traditional tools for two-locus epistatic
interaction detection usually take several days for a dataset with
millions of SNPs using a standard desktop (Wan et al., 2010a).
We measured the running time of JS-MA, BOOST, DAM, SEE,

and SNPRuler on one computing node of an HPC system with
a UNIX operating system, Intel Xeon E5-2699v4 Broadwell, and
128 GB memory. The results are shown in Table 1. Here, we set
the target number of SNPs in an epistatic interaction to be two,
and the rest of the parameters for each tool were left unchanged
with default values. Table 1 showed that JS-MA was faster than
BOOST, DAM, and SNPRuler in most scenarios. The running
time used by JS-MA did not increase as fast as SNPRuler and
DAM did when the number of SNPs increased. Since SEE is a
heuristic method, it used the least amount of time. However, its
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FIGURE 6 | Performance comparison between JS-AM, DAM, and SNPRuler on the simulated three-locus models 14, 15, and 16 for association type 4. Note that the

models 14 and 16 have no mathematical solution when maf = 0.2.

TABLE 1 | Time comparison of JS-MA, BOOST, DAM, SEE, and SNPRuler (in

seconds).

Data size JS-MA BOOST DAM SEE SNPRuler

N = 6,000, M = 1,000 8 6 31 6 13

N = 6,000, M = 5,000 20 31 187 10 184

N = 6,000, M = 10,000 81 96 512 18 741

performance is not as good as the rest. We also measured the
memory consumption for JS-MA. JS-MA used 10, 62, and 130
MB for 1,000, 5,000, and 10,000 SNPs, respectively. The majority
of the consumed memory was used for storing the genotype data.

4.5. Experiments on The WTCCC Data
We employed JS-MA to analyze real data from the
WTCCC Zeggini et al. (2007) for two common human
diseases, i.e., Rheumatoid Arthritis (RA), Type 1 Diabetes
(T1D). There are 3999 cases and 3004 shared controls. We
constructed a dataset with RA as case 1 and T1D as case 2. The
procedure of quality control is the same as presented in Guo et al.
(2014a). After the SNP filtration, the dataset contains 333,739
high-quality SNPs. By setting f × k = 100 with k = 10 as the
number of clusters, JS-MA finished the searching in 3 h using
the same computing node, which was used in the computation
time analysis. JS-MA reported some novel epistatic interactions.
For example, (rs6679677, rs805301) was labeled as AT4, and its
p-value is 6.2 × 10−120 from the χ2 test. For this interaction,
rs6679677, located on Chromosome 1, has been reported to be
associated with both RA and T1D (Burton et al., 2007). The
association between rs6679677 and T1D is due to a closely linked,
potentially causal variant identified as rs2476601, which is also
known as Arg620Trp (Smyth et al., 2008). Whereas, rs805301 is
located inside gene BAG6 on Chromosome 6. BAG6 encodes a
nuclear protein that forms a complex with E1A binding protein
p300 and is required for the response to DNA damage. The
SNP module (rs6679677, rs805301) shows different association

effects on RA and T1D compared to the control group. Another
interesting interaction is (rs200991, rs11171739) labeled as
AT2, and its p-value is 6.7 × 10−26 from the χ2 test. In this
interaction, rs200991 is located on Chromosome 6 near the gene,
HIST1H2BN, which encodes Histone H2B type 1-N. Histones
play a central role in transcription regulation, DNA repair, DNA
replication, and chromosomal stability. And rs11171739 has
been reported to be associated with T1D (Burton et al., 2007).
AT2 means the SNP module may not have a genetic effect on RA.

Algorithm 1: The JS-MA Algorithm.

Require: An N × (M + 1) matrix
Require: Number of clusters k, top f SNPs in a cluster
1: Read N × (M + 1) matrix file
2: Calculate the pairwise distance based on JS (Equation 3)
3: Initialize each SNP as a cluster
4: n← M
5: while n > k do

6: Apply nearest neighbor chain algorithm
7: n− = 1
8: end while

9: Initialize descending list L with length f × k
10: for each SNP x do
11: Calculate Score(x)
12: Place x into L if Score(x) is among top f SNPs
13: end for

14: Stepwise evaluate all possible SNPmodules using SNPs in L

JS-MA also reported some three-locus epistatic interactions. For
instance, (rs6679677, rs377763, rs9273363) labeled as AT2 with
p-value 1.3 × 10−116. Both rs377763 and rs9273363 are located
on Chromosome 6. rs377763 is near the downstream of gene
NOTCH4, which is found to be associated withmultiple sclerosis,
a chronic inflammatory disease. rs9273363 is inside the gene
HLA-DQA1, which plays a critical role in the immune system.
The protein produced from the HLA-DQA1 gene binds to the
protein produced from the MHC class II gene, HLA-DQB2.
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Many studies have reported the MHC region on chromosome
6 with respect to infection, inflammation, autoimmunity, and
transplant medicine (Lechler and Warrens, 2000; Wan et al.,
2010a; Zhang et al., 2012). A four-locus interaction found by JS-
MA is (rs10924239, rs17432869, rs7610077, rs11098422) labeled
as AT4 with p-value 3.9× 10−106. rs10924239 is an intron variant
of the gene KIF26B on Chromosome 1. KIF26B is essential
for embryonic kidney development. rs17432869 is located on
Chromosome 2 and inside gene LOC105373439, which is an
RNA Gene and is affiliated with the ncRNA class. rs7610077 is
located on Chromosome 3 and inside gene SNX4, which encodes
a member of the sorting nexin family. rs11098422 is located
on Chromosome 4 and inside gene NDST3, whose expression
impacts the cardiovascular system. Validating the relationship
between these SNP modules and RA and T1D is beyond
the scope of this work. The significant enrichment of some
genotype combinations from these SNP modules in both cases
implies that they might interact and/or be associated with these
two diseases.

5. CONCLUSION

The enormous number of SNPs genotyped in genome-wide case-
control studies poses a significant computational challenge in
the identification of gene-gene interactions. During the last few
years, many computational and statistical tools are developed
to find gene-gene interactions for the data containing only two
traits, i.e., case-control groups. Here, we present a novel method,
named “JS-MA,” to address the computation and statistical power
issues in multi-disease GWASs. We have successfully applied JS-
MA to systematically simulated datasets and analyzed two real
GWAS datasets. Our experimental results on both simulated
and real data demonstrate that JS-MA is capable of detecting

high-order epistatic interactions for multiple diseases at the
genome-wide scale. It is worth mentioning that when JS-MA is
used to analyze real data, quality control procedures are necessary
because sequencing bias and genotyping bias could confound
JS-MA by leading to false-positives. For example, the coverage
bias caused by sequencing machines may have SNPs with low,
uneven coverage. Thus, quality control is required to filter out
unreliable SNPs.
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